Advertisement

Endocrine

, Volume 46, Issue 3, pp 659–667 | Cite as

Crosstalk between nitric oxide synthases and cyclooxygenase 2 in the adrenal cortex of rats under lipopolysaccharide treatment

  • Rocío Sanchez
  • María E. Mercau
  • Esteban M. Repetto
  • Camila Martinez Calejman
  • Francisco Astort
  • Matías N. Perez
  • Pablo Arias
  • Cora B. CymeryngEmail author
Original Article

Abstract

The effect of lipopolysaccharide on the modulation of steroid production by adrenal cells has been recently acknowledged. The purpose of this study was to determine the in vivo effects of LPS on adrenal cyclooxygenase 2 (COX-2) expression, analyze its crosstalk with the nitric oxide synthase (NOS) system, and assess its involvement on the modulation of glucocorticoid production. Male Wistar rats were injected with LPS and with specific inhibitors for NOS and COX activities. PGE2 and corticosterone levels were determined by RIA. Protein levels were analyzed by immunoprecipitation and western blotting. Transfection assays were performed in murine adrenocortical Y1 cells. Results show that LPS treatment increases PGE2 production and COX-2 protein levels in the rat adrenal cortex. Systemic inhibition of COX-2 blunted the glucocorticoid response to ACTH, as well as the increase in NOS activity and the NOS-2 expression levels induced by LPS. Conversely, NOS inhibition prevented the LPS-dependent increase in PGE2 production, COX-2 protein levels, and the nitrotyrosine modification of COX-2 protein. Treatment of adrenocortical cells with a NO-donor significantly potentiated the LPS-dependent increase in NFκB activity and COX-2 expression levels. In conclusion, our results show a significant crosstalk between COX-2 and NOS in the adrenal cortex upon LPS stimulation, in which each activity has a positive impact on the other. In particular, as both the activities differently affect adrenal steroid production, we hypothesize that this kind of fine modulation enables the gland to adjust steroidogenesis to prevent either an excessive or an insufficient response to the endotoxin challenge.

Keywords

Glucocorticoids Adrenal cortex Nitric oxide synthase Cyclooxygenase Lipopolysaccharide Prostaglandins 

Notes

Acknowledgments

This work was supported by grants from Universidad de Buenos Aires (UBACYT M014-M021), CONICET (PIP5525), and ANPCyT (PICT 2005 N1 38283). The authors declare that there is no conflict of interest that would prejudice the impartiality of this scientific work. The authors thank Mr. Mark Stetina for critical reading of this manuscript.

References

  1. 1.
    A. Beishuizen, L.G. Thijs, Endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis. J. Endotoxin Res. 9(1), 3–24 (2003)PubMedGoogle Scholar
  2. 2.
    A.V. Turnbull, C.L. Rivier, Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol. Rev. 79(1), 1–71 (1999)PubMedGoogle Scholar
  3. 3.
    A. Mulla, J.C. Buckingham, Regulation of the hypothalamo-pituitary-adrenal axis by cytokines. Baillieres Best Pract. Res. Clin. Endocrinol. Metab. 13(4), 503–521 (1999)PubMedCrossRefGoogle Scholar
  4. 4.
    I.V. Tkachenko, T. Jaaskelainen, J. Jaaskelainen, J.J. Palvimo, R. Voutilainen, Interleukins 1alpha and 1beta as regulators of steroidogenesis in human NCI-H295R adrenocortical cells. Steroids 76(10–11), 1103–1115 (2011)PubMedCrossRefGoogle Scholar
  5. 5.
    I.V. Mikhaylova, T. Kuulasmaa, J. Jaaskelainen, R. Voutilainen, Tumor necrosis factor-alpha regulates steroidogenesis, apoptosis, and cell viability in the human adrenocortical cell line NCI-H295R. Endocrinology 148(1), 386–392 (2007)PubMedCrossRefGoogle Scholar
  6. 6.
    S.R. Bornstein, M. Ehrhart-Bornstein, W.A. Scherbaum, Morphological and functional studies of the paracrine interaction between cortex and medulla in the adrenal gland. Microsc. Res. Tech. 36(6), 520–533 (1997)PubMedCrossRefGoogle Scholar
  7. 7.
    S.R. Bornstein, H. Rutkowski, I. Vrezas, Cytokines and steroidogenesis. Mol. Cell. Endocrinol. 215(1–2), 135–141 (2004)PubMedCrossRefGoogle Scholar
  8. 8.
    L. Engstrom, K. Rosen, A. Angel, A. Fyrberg, L. Mackerlova, J.P. Konsman, D. Engblom, A. Blomqvist, Systemic immune challenge activates an intrinsically regulated local inflammatory circuit in the adrenal gland. Endocrinology 149(4), 1436–1450 (2008)PubMedCrossRefGoogle Scholar
  9. 9.
    C.B. Cymeryng, L.A. Dada, C. Colonna, C.F. Mendez, E.J. Podesta, Effects of l-arginine in rat adrenal cells: involvement of nitric oxide synthase. Endocrinology 140(7), 2962–2967 (1999)PubMedGoogle Scholar
  10. 10.
    C.B. Cymeryng, L.A. Dada, E.J. Podesta, Effect of nitric oxide on rat adrenal zona fasciculata steroidogenesis. J. Endocrinol. 158(2), 197–203 (1998)PubMedCrossRefGoogle Scholar
  11. 11.
    C.J. Hanke, J.G. Drewett, C.R. Myers, W.B. Campbell, Nitric oxide inhibits aldosterone synthesis by a guanylyl cyclase-independent effect. Endocrinology 139(10), 4053–4060 (1998)PubMedGoogle Scholar
  12. 12.
    N. Grion, E.M. Repetto, Y. Pomeraniec, C.M. Calejman, F. Astort, R. Sanchez, O.P. Pignataro, P. Arias, C.B. Cymeryng, Induction of nitric oxide synthase and heme oxygenase activities by endotoxin in the rat adrenal cortex: involvement of both signaling systems in the modulation of ACTH-dependent steroid production. J. Endocrinol. 194(1), 11–20 (2007)PubMedCrossRefGoogle Scholar
  13. 13.
    Y. Pomeraniec, N. Grion, L. Gadda, V. Pannunzio, E.J. Podesta, C.B. Cymeryng, Adrenocorticotropin induces heme oxygenase-1 expression in adrenal cells. J. Endocrinol. 180(1), 113–124 (2004)PubMedCrossRefGoogle Scholar
  14. 14.
    K. Vakharia, J.P. Hinson, Lipopolysaccharide directly stimulates cortisol secretion by human adrenal cells by a cyclooxygenase-dependent mechanism. Endocrinology 146(3), 1398–1402 (2005)PubMedCrossRefGoogle Scholar
  15. 15.
    C. Martinez Calejman, F. Astort, J.M. Di Gruccio, E.M. Repetto, M. Mercau, E. Giordanino, R. Sanchez, O. Pignataro, P. Arias, C.B. Cymeryng, Lipopolysaccharide stimulates adrenal steroidogenesis in rodent cells by a NFkappaB-dependent mechanism involving COX-2 activation. Mol. Cell Endocrinol. 337(1–2), 1–6 (2011)PubMedCrossRefGoogle Scholar
  16. 16.
    B.E. Linares-Fernandez, A.B. Alfieri, Cyclophosphamide induced cystitis: role of nitric oxide synthase, cyclooxygenase-1 and 2, and NK(1) receptors. J. Urol. 177(4), 1531–1536 (2007)PubMedCrossRefGoogle Scholar
  17. 17.
    M.L. Ribeiro, M. Cella, M. Farina, A. Franchi, Crosstalk between nitric oxide synthase and cyclooxygenase metabolites in the estrogenized rat uterus. Prostaglandins Leukot. Essent. Fatty Acids 68(4), 285–290 (2003)PubMedCrossRefGoogle Scholar
  18. 18.
    F. Astort, E.M. Repetto, C. Martinez Calejman, J.M. Cipelli, R. Sanchez, J.M. Di Gruccio, M. Mercau, O.P. Pignataro, P. Arias, C.B. Cymeryng, High glucose-induced changes in steroid production in adrenal cells. Diabetes Metab. Res. Rev. 25(5), 477–486 (2009)PubMedCrossRefGoogle Scholar
  19. 19.
    H. Ohkawa, N. Ohishi, K. Yagi, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95(2), 351–358 (1979)PubMedCrossRefGoogle Scholar
  20. 20.
    Y. Yasumura, V. Buonassisi, G. Sato, Clonal analysis of differentiated function in animal cell cultures. I. Possible correlated maintenance of differentiated function and the diploid karyotype. Cancer Res. 26(3), 529–535 (1966)PubMedGoogle Scholar
  21. 21.
    Y. Ichitani, K. Holmberg, A.B. Maunsbach, J.Z. Haeggstrom, B. Samuelsson, D. De Witt, T. Hokfelt, Cyclooxygenase-1 and cyclooxygenase-2 expression in rat kidney and adrenal gland after stimulation with systemic lipopolysaccharide: in situ hybridization and immunocytochemical studies. Cell Tissue Res. 303(2), 235–252 (2001)PubMedCrossRefGoogle Scholar
  22. 22.
    M. Caivano, B. Gorgoni, P. Cohen, V. Poli, The induction of cyclooxygenase-2 mRNA in macrophages is biphasic and requires both CCAAT enhancer-binding protein beta (C/EBP beta) and C/EBP delta transcription factors. J. Biol. Chem. 276(52), 48693–48701 (2001)PubMedCrossRefGoogle Scholar
  23. 23.
    C.E. Mohn, J. Fernandez-Solari, A. De Laurentiis, S.R. Bornstein, M. Ehrhart-Bornstein, V. Rettori, Adrenal gland responses to lipopolysaccharide after stress and ethanol administration in male rats. Stress 14(2), 216–226 (2011)PubMedGoogle Scholar
  24. 24.
    M.S. Sordelli, J.S. Beltrame, M. Cella, A.M. Franchi, M.L. Ribeiro, Cyclooxygenase-2 prostaglandins mediate anandamide-inhibitory action on nitric oxide synthase activity in the receptive rat uterus. Eur. J. Pharmacol. 685(1–3), 174–179 (2012)PubMedCrossRefGoogle Scholar
  25. 25.
    E. Borda, C. Furlan, B. Orman, S. Reina, L. Sterin-Borda, Nitric oxide synthase and PGE2 reciprocal interactions in rat dental pulp: cholinoceptor modulation. J. Endod. 33(2), 142–147 (2007)PubMedCrossRefGoogle Scholar
  26. 26.
    S.H. Lee, T.J. Acosta, S. Yoshioka, K. Okuda, Prostaglandin F(2alpha) regulates the nitric oxide generating system in bovine luteal endothelial cells. J. Reprod. Dev. 55(4), 418–424 (2009)PubMedCrossRefGoogle Scholar
  27. 27.
    D. Sodini, B. Baragatti, S. Barogi, V.E. Laubach, F. Coceani, Indomethacin promotes nitric oxide function in the ductus arteriosus in the mouse. Br. J. Pharmacol. 153(8), 1631–1640 (2008)PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    B.D. Lamon, R.K. Upmacis, R.S. Deeb, H. Koyuncu, D.P. Hajjar, Inducible nitric oxide synthase gene deletion exaggerates MAPK-mediated cyclooxygenase-2 induction by inflammatory stimuli. Am. J. Physiol. Heart Circ. Physiol. 299(3), H613–H623 (2010)PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    N. Ahmad, L.C. Chen, M.A. Gordon, J.D. Laskin, D.L. Laskin, Regulation of cyclooxygenase-2 by nitric oxide in activated hepatic macrophages during acute endotoxemia. J. Leukoc. Biol. 71(6), 1005–1011 (2002)PubMedGoogle Scholar
  30. 30.
    J. Aisemberg, C. Vercelli, S. Billi, M.L. Ribeiro, D. Ogando, R. Meiss, S.M. McCann, V. Rettori, A.M. Franchi, Nitric oxide mediates prostaglandins’ deleterious effect on lipopolysaccharide-triggered murine fetal resorption. Proc. Natl. Acad. Sci. USA 104(18), 7534–7539 (2007)PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    L. Connelly, M. Palacios-Callender, C. Ameixa, S. Moncada, A.J. Hobbs, Biphasic regulation of NF-kappa B activity underlies the pro- and anti-inflammatory actions of nitric oxide. J. Immunol. 166(6), 3873–3881 (2001)PubMedCrossRefGoogle Scholar
  32. 32.
    Y. Li, J. Qi, K. Liu, B. Li, H. Wang, J. Jia, Peroxynitrite-induced nitration of cyclooxygenase-2 and inducible nitric oxide synthase promotes their binding in diabetic angiopathy. Mol. Med. 16(9–10), 335–342 (2010)PubMedCentralPubMedGoogle Scholar
  33. 33.
    S.F. Kim, The role of nitric oxide in prostaglandin biology; update. Nitric Oxide 25(3), 255–264 (2011)PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    J. Boczkowski, C.L. Lisdero, S. Lanone, A. Samb, M.C. Carreras, A. Boveris, M. Aubier, J.J. Poderoso, Endogenous peroxynitrite mediates mitochondrial dysfunction in rat diaphragm during endotoxemia. Faseb. J. 13(12), 1637–1646 (1999)PubMedGoogle Scholar
  35. 35.
    S.H. Chan, K.L. Wu, L.L. Wang, J.Y. Chan, Nitric oxide- and superoxide-dependent mitochondrial signaling in endotoxin-induced apoptosis in the rostral ventrolateral medulla of rats. Free Radic. Biol. Med. 39(5), 603–618 (2005)PubMedCrossRefGoogle Scholar
  36. 36.
    Y.L. Sheh, C. Hsu, S.H. Chan, J.Y. Chan, NADPH oxidase- and mitochondrion-derived superoxide at rostral ventrolateral medulla in endotoxin-induced cardiovascular depression. Free Radic. Biol. Med. 42(10), 1610–1623 (2007)PubMedCrossRefGoogle Scholar
  37. 37.
    B.K. Yoo, J.W. Choi, C.Y. Shin, S.J. Jeon, S.J. Park, J.H. Cheong, S.Y. Han, J.R. Ryu, M.R. Song, K.H. Ko, Activation of p38 MAPK induced peroxynitrite generation in LPS plus IFN-gamma-stimulated rat primary astrocytes via activation of iNOS and NADPH oxidase. Neurochem. Int. 52(6), 1188–1197 (2008)PubMedCrossRefGoogle Scholar
  38. 38.
    C. Tsatsanis, A. Androulidaki, M. Venihaki, A.N. Margioris, Signalling networks regulating cyclooxygenase-2. Int. J. Biochem. Cell Biol. 38(10), 1654–1661 (2006)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Rocío Sanchez
    • 1
  • María E. Mercau
    • 1
  • Esteban M. Repetto
    • 1
  • Camila Martinez Calejman
    • 1
  • Francisco Astort
    • 1
  • Matías N. Perez
    • 1
  • Pablo Arias
    • 2
  • Cora B. Cymeryng
    • 1
    Email author
  1. 1.Departamento de Bioquímica Humana, Facultad de MedicinaUniversidad de Buenos Aires-CEFYBO-CONICETBuenos AiresArgentina
  2. 2.Departamento de Fisiología, Facultad de MedicinaUniversidad de RosarioRosarioArgentina

Personalised recommendations