, Volume 46, Issue 1, pp 8–15

Epicardial adipose tissue in endocrine and metabolic diseases



Epicardial adipose tissue has recently emerged as new risk factor and active player in metabolic and cardiovascular diseases. Albeit its physiological and pathological roles are not completely understood, a body of evidence indicates that epicardial adipose tissue is a fat depot with peculiar and unique features. Epicardial fat is able to synthesize, produce, and secrete bioactive molecules which are then transported into the adjacent myocardium through vasocrine and/or paracrine pathways. Based on these evidences, epicardial adipose tissue can be considered an endocrine organ. Epicardial fat is also thought to provide direct heating to the myocardium and protect the heart during unfavorable hemodynamic conditions, such as ischemia or hypoxia. Epicardial fat has been suggested to play an independent role in the development and progression of obesity- and diabetes-related cardiac abnormalities. Clinically, the thickness of epicardial fat can be easily and accurately measured. Epicardial fat thickness can serve as marker of visceral adiposity and visceral fat changes during weight loss interventions and treatments with drugs targeting the fat. The potential of modulating the epicardial fat with targeted pharmacological agents can open new avenues in the pharmacotherapy of endocrine and metabolic diseases. This review article will provide Endocrine’s reader with a focus on epicardial adipose tissue in endocrinology. Novel, established, but also speculative findings on epicardial fat will be discussed from the unexplored perspective of both clinical and basic Endocrinologist.


Epicardial adipose tissue Epicardial fat Visceral adiposity Echocardiography 


  1. 1.
    G. Iacobellis, A.C. Bianco, Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trend. Endocrinol. Metab. 22, 450–457 (2011)CrossRefGoogle Scholar
  2. 2.
    G. Iacobellis, D. Corradi, A.M. Sharma, Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat. Clin. Pract. Cardiovasc. Med. 2, 536–543 (2005)PubMedCrossRefGoogle Scholar
  3. 3.
    P. Iozzo, Myocardial, perivascular, and epicardial fat. Diabetes Care 34(Suppl 2), S371–S379 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    G. Iacobellis, Epicardial and pericardial fat: close, but very different. Obesity 17, 625 (2009)PubMedCrossRefGoogle Scholar
  5. 5.
    J.M. Marchington, C.A. Mattacks, C.M. Pond, Adipose tissue in the mammalian heart and pericardium; structure, foetal development and biochemical properties. Comp. Biochem. Physiol. 94B, 225–232 (1989)Google Scholar
  6. 6.
    H.S. Sacks, J.N. Fain, Human epicardial adipose tissue: a review. Am. Heart J. 153, 907–917 (2007)PubMedCrossRefGoogle Scholar
  7. 7.
    T. Mazurek, L. Zhang, A. Zalewski, J.D. Mannion, J.T. Diehl, H. Arafat, Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108, 2460–2466 (2003)PubMedCrossRefGoogle Scholar
  8. 8.
    C. Bambace, M. Telesca, E. Zoico, A. Sepe, D. Olioso, A. Rossi, F. Corzato, V. Di Francesco, A. Mazzucco, F. Santini, M. Zamboni, Adiponectin gene expression and adipocyte diameter: a comparison between epicardial and subcutaneous adipose tissue in men. Cardiovasc. Pathol. 20(5), 153–156 (2010)CrossRefGoogle Scholar
  9. 9.
    J.S. Judkin, E. Eringa, C.D.A. Stehouwer, “Vasocrine signalling” from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet 365, 1817–1820 (2005)CrossRefGoogle Scholar
  10. 10.
    J.M. Marchington, C.M. Pond, Site-specific properties of pericardial and epicardial adipose tissue. The effects of insulin and high-fat feeding on lipogenesis and the incorporation of fatty acids in vitro. Int. J. Obes. 14, 1013–1022 (1990)PubMedGoogle Scholar
  11. 11.
    M. Pezeshkian, M. Noori, H. Najjarpour-Jabbari, A. Abolfathi, M. Darabi, M. Darabi, M. Shaaker, G. Shahmohammadi, Fatty acid composition of epicardial and subcutaneous human adipose tissue. Metab. Syndr. Relat. Disord. 7, 125–131 (2009)PubMedCrossRefGoogle Scholar
  12. 12.
    B. Vural, F. Atalar, C. Ciftci, A. Demirkan, B. Susleyici-Duman, D. Gunay, Presence of fatty-acid-binding protein 4 expression in human epicardial adipose tissue in metabolic syndrome. Cardiovasc. Pathol. 17, 392–398 (2008)PubMedCrossRefGoogle Scholar
  13. 13.
    H.S. Sacks, J.N. Fain, B. Holman, P. Cheema, A. Chary, F. Parks, Uncoupling protein-1 and related mRNAs in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. J. Clin. Endocrinol. Metab. 94, 3611–3615 (2009)PubMedCrossRefGoogle Scholar
  14. 14.
    A.M. Cypess, S. Lehman, G. Williams, I. Tal, D. Rodman, A.B. Goldfine, F.C. Kuo, E.L. Palmer, Y.H. Tseng, A. Doria, G.M. Kolodny, Kahn CR Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    H.S. Sacks, J.N. Fain, S.W. Bahouth, S. Ojha, A. Frontini, H. Budge, S. Cinti, M.E. Symonds, Adult epicardial fat exhibits beige features. J. Clin. Endocrinol. Metab. 98(9), 1448–1455 (2013)CrossRefGoogle Scholar
  16. 16.
    G. Iacobellis, H.J. Willens, G. Barbaro, A.M. Sharma, Threshold values of high-risk echocardiographic epicardial fat thickness. Obesity (Silver Spring) 16, 887–892 (2008)CrossRefGoogle Scholar
  17. 17.
    G. Iacobellis, H.J. Willens, Echocardiographic epicardial fat: a review of research and clinical applications. J. Am. Soc. Echocardiogr. 22, 1311–1319 (2009)PubMedCrossRefGoogle Scholar
  18. 18.
    G. Iacobellis, F. Assael, M.C. Ribaudo, A. Zappaterreno, G. Alessi, U. Di Mario, F. Leonetti, Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes. Res. 11, 304–310 (2003)PubMedCrossRefGoogle Scholar
  19. 19.
    G. Iacobellis, M.C. Ribaudo, F. Assael, E. Vecci, C. Tiberti, A. Zappaterreno, U. Di Mario, Leonetti F Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J. Clin. Endocrinol. Metab. 388, 5163–5168 (2003)CrossRefGoogle Scholar
  20. 20.
    A.E. Malavazos, G. Di Leo, F. Secchi, E.N. Lupo, G. Dogliotti, C. Coman, L. Morricone, M.M. Corsi, F. Sardanelli, G. Iacobellis, Relation of echocardiographic epicardial fat thickness and myocardial fat. Am. J. Cardiol. 105, 1831–1835 (2010)PubMedCrossRefGoogle Scholar
  21. 21.
    M. Kankaanpää, H.R. Lehto, J.P. Pärkkä, M. Komu, A. Viljanen, E. Ferrannini, J. Knuuti, P. Nuutila, R. Parkkola, P. Iozzo, Myocardial triglyceride content and epicardial fat mass in human obesity: relationship to left ventricular function and serum free fatty acid levels. J. Clin. Endocrinol. Metab. 91, 4689–4695 (2006)PubMedCrossRefGoogle Scholar
  22. 22.
    G. Iacobellis, M.C. Ribaudo, A. Zappaterreno, C.V. Iannucci, F. Leonetti, Relation between epicardial adipose tissue and left ventricular mass. Am. J. Cardiol. 94, 1084–1087 (2004)PubMedCrossRefGoogle Scholar
  23. 23.
    G. Iacobellis, Relation of epicardial fat thickness to right ventricular cavity size in obese subjects. Am. J. Cardiol. 104, 1601–1602 (2009)PubMedCrossRefGoogle Scholar
  24. 24.
    G. Iacobellis, N. Singh, S. Wharton, A.M. Sharma, Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity 16, 1693–1697 (2008)PubMedCrossRefGoogle Scholar
  25. 25.
    H.J. Willens, P. Byers, J.A. Chirinos, E. Labrador, J.M. Hare, E. de Marchena, Effects of weight loss after bariatric surgery on epicardial fat measured using echocardiography. Am. J. Cardiol. 99, 1242–1245 (2007)PubMedCrossRefGoogle Scholar
  26. 26.
    M.K. Kim, T. Tomita, M.J. Kim, H. Sasai, S. Maeda, K. Tanaka, Aerobic exercise training reduces epicardial fat in obese men. J. Appl. Physiol. 106, 5–11 (2009)PubMedCrossRefGoogle Scholar
  27. 27.
    B. Gaborit, A. Jacquier, F. Kober, I. Abdesselam, T. Cuisset, S. Boullu-Ciocca, O. Emungania, M.C. Alessi, K. Clément, M. Bernard, A. Dutour, Effects of bariatric surgery on cardiac ectopic fat: lesser decrease in epicardial fat compared to visceral fat loss and no change in myocardial triglyceride content. J. Am. Coll. Cardiol. 60, 1381–1389 (2012)PubMedCrossRefGoogle Scholar
  28. 28.
    G. Iacobellis, G. Barbaro, Gerstein HC Relationship of epicardial fat thickness and fasting glucose. Int. J. Cardiol. 128, 424–426 (2008)PubMedCrossRefGoogle Scholar
  29. 29.
    M. Cetin, M. Cakici, M. Polat, A. Suner, C. Zencir, I. Ardic, Relation of epicardial fat thickness with carotid intima-media thickness in patients with type 2 diabetes mellitus. Int. J. Endocrinol. 2013, 769175 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    M. Pezeshkian, M.R. Mahtabipour, Epicardial and subcutaneous adipose tissue Fatty acids profiles in diabetic and non-diabetic patients candidate for coronary artery bypass graft. Bioimpacts 3, 83–89 (2013)PubMedPubMedCentralGoogle Scholar
  31. 31.
    G. Iacobellis, F. Leonetti, Epicardial adipose tissue and insulin resistance in obese subjects. J. Clin. Endocrinol. Metab. 90, 6300–6302 (2005)PubMedCrossRefGoogle Scholar
  32. 32.
    M. Manco, A. Morandi, M. Marigliano, F. Rigotti, R. Manfredi, C. Maffeis, Epicardial fat, abdominal adiposity and insulin resistance in obese pre-pubertal and early pubertal children. Atherosclerosis 226, 490–495 (2013)PubMedCrossRefGoogle Scholar
  33. 33.
    H.J. Willens, O. Gómez-Marín, J.A. Chirinos, R. Goldberg, M.H. Lowery, G. Iacobellis, Comparison of epicardial and pericardial fat thickness assessed by echocardiography in African American and non-hispanic white men: a pilot study. Ethn. Dis. 18, 311–316 (2008)PubMedGoogle Scholar
  34. 34.
    S.S. Salami, M. Tucciarone, R. Bess, A. Kolluru, S. Szpunar, H. Rosman, G. Cohen, Race and epicardial fat: the impact of anthropometric measurements, percent body fat and sex. Ethn. Dis. 23, 281–285 (2013)PubMedGoogle Scholar
  35. 35.
    M. Bluher, Vaspin in obesity and diabetes: pathophysiological and clinical significance. Endocrine 41, 176–182 (2012)PubMedCrossRefGoogle Scholar
  36. 36.
    S. Greulich, B. Maxhera, G. Vandenplas, D.H. de Wiza, K. Smiris, H. Mueller, J. Heinrichs, M. Blumensatt, C. Cuvelier, P. Akhyari, J.B. Ruige, D.M. Ouwens, J. Eckel, Secretory products from epicardial adipose tissue of patients with type 2 diabetes mellitus induce cardiomyocyte dysfunction. Circulation 126, 2324–2334 (2012)PubMedCrossRefGoogle Scholar
  37. 37.
    D. Yazıcı, B. Özben, D. Yavuz, O. Deyneli, H. Aydın, Ö. Tarcin, S. Akalın, Epicardial adipose tissue thickness in type 1 diabetic patients. Endocrine 40, 250–255 (2011)PubMedCrossRefGoogle Scholar
  38. 38.
    D.P. Momesso, I. Bussade, M.A. Epifanio, C.D. Schettino, L.A. Russo, R. Kupfer, Increased epicardial adipose tissue in type 1 diabetes is associated with central obesity and metabolic syndrome. Diabetes Res. Clin. Pract. 91, 47–53 (2011)PubMedCrossRefGoogle Scholar
  39. 39.
    J.H. Park, Y.S. Park, Y.J. Kim, I.S. Lee, J.H. Kim, J.H. Lee et al., Effects of statins on the epicardial fat thickness in patients with coronary artery stenosis underwent percutaneous coronary intervention: comparison of atorvastatin with simvastatin/ezetimibe. J. Cardiovasc. Ultrasound. 18, 121–126 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    N. Alexopoulos, B.H. Melek, C.D. Arepalli, G.R. Hartlage, Z. Chen, S. Kim, A.E. Stillman, P. Raggi, Effect of intensive versus moderate lipid-lowering therapy on epicardial adipose tissue in hyperlipidemic post-menopausal women: a substudy of the BELLES trial (Beyond Endorsed Lipid Lowering with EBT Scanning). J. Am. Coll. Cardiol. 61, 1956–1961 (2013)PubMedCrossRefGoogle Scholar
  41. 41.
    L. Nasarre, O. Juan-Babot, P. Gastelurrutia, A. Llucia-Valldeperas, L. Badimon, A. Bayes-Genis, V. Llorente-Cortés, Low density lipoprotein receptor-related protein 1 is upregulated in epicardial fat from type 2 diabetes mellitus patients and correlates with glucose and triglyceride plasma levels. Acta Diabetol. (2012)Google Scholar
  42. 42.
    H.S. Sacks, J.N. Fain, P. Cheema, S.W. Bahouth, E. Garrett, R.Y. Wolf, Inflammatory genes in epicardial fat contiguous with coronary atherosclerosis in the metabolic syndrome and type 2 diabetes: changes associated with pioglitazone. Diabetes Care 34, 730–733 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    E. Distel, G. Penot, T. Cadoudal, I. Balguy, S. Durant, C. Benelli, Early induction of a brown-like phenotype by rosiglitazone in the epicardial adipose tissue of fatty Zucker rats. Biochimie 94, 1660–1667 (2012)PubMedCrossRefGoogle Scholar
  44. 44.
    T. Shimasaki, T. Masaki, K. Mitsutomi, D. Ueno, K. Gotoh, S. Chiba, T. Kakuma, Yoshimatsu H The dipeptidyl peptidase-4 inhibitor des-fluoro-sitagliptin regulates brown adipose tissue uncoupling protein levels in mice with diet-induced obesity. PLoS One 8, e63626 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    S.D. Pierdomenico, A.M. Pierdomenico, F. Cuccurullo, G. Iacobellis, Metaanalysis of the relation of echocardiographic epicardial adipose tissue thickness and the metabolic syndrome. Am. J. Cardiol. 15, 1234–1236 (2012)Google Scholar
  46. 46.
    G. Iacobellis, L. Petramala, G. Barbaro, A.Y. Kargi, V. Serra, L. Zinnamosca, L. Colangelo, C. Marinelli, A. Ciardi, G. De Toma, C. Letizia, Epicardial fat thickness and left ventricular mass in subjects with adrenal incidentaloma. Endocrine 44(2), 532–536 (2013)PubMedCrossRefGoogle Scholar
  47. 47.
    R. Lanes, A. Soros, K. Flores, P. Gunczler, E. Carrillo, J. Bandel, Endothelial function, carotid artery intima-media thickness, epicardial adipose tissue, and left ventricular mass and function in growth hormone-deficient adolescents: apparent effects of growth hormone treatment on these parameters. J. Clin. Endocrinol. Metab. 90, 3978–3982 (2005)PubMedCrossRefGoogle Scholar
  48. 48.
    E. Ferrante, A.E. Malavazos, C. Giavoli, F. Ermetici, C. Coman, S. Bergamaschi, E. Profka, S. Briganti, C.L. Ronchi, E. Passeri, S. Corbetta, A.G. Lania, A. Spada, G. Iacobellis, B. Ambrosi, P. Beck-Peccoz, Epicardial fat thickness significantly decreases after short-term growth hormone (GH) replacement therapy in adults with GH deficiency. Nutr. Metab. Cardiovasc. Dis. 23, 459–465 (2013)PubMedCrossRefGoogle Scholar
  49. 49.
    S. Borruel, E. Fernández-Durán, M. Alpañés, D. Martí, F. Alvarez-Blasco, M. Luque-Ramírez, H.F. Escobar-Morreale, Global adiposity and thickness of intraperitoneal and mesenteric adipose tissue depots are increased in women with polycystic ovary syndrome (PCOS). J. Clin. Endocrinol. Metab. 98, 1254–1263 (2013)PubMedCrossRefGoogle Scholar
  50. 50.
    E. Cakir, M. Doğan, O. Topaloglu, M. Ozbek, E. Cakal, M.G. Vural, E. Yeter, T. Delibasi, Subclinical atherosclerosis and hyperandrogenemia are independent risk factors for increased epicardial fat thickness in patients with PCOS and idiopathic hirsutism. Atherosclerosis 226, 291–295 (2013)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Miller School of MedicineUniversity of MiamiMiamiUSA

Personalised recommendations