, Volume 46, Issue 1, pp 60–69 | Cite as

Expression of interleukin-15 and inflammatory cytokines in skeletal muscles of STZ-induced diabetic rats: effect of resistance exercise training

  • M. Molanouri ShamsiEmail author
  • Z. H. Hassan
  • R. Gharakhanlou
  • L. S. Quinn
  • K. Azadmanesh
  • L. Baghersad
  • A. Isanejad
  • M. MahdaviEmail author
Original Article


Skeletal muscle atrophy is associated with type-1 diabetes. Skeletal muscle is the source of pro- and anti-inflammatory cytokines that can mediate muscle hypertrophy and atrophy, while resistance exercise can modulate both muscle mass and muscle cytokine expression. This study determined the effects of a 5-week resistance exercise training regimen on the expression of muscle cytokines in healthy and streptozotocin-induced diabetic rats, with special emphasis on interleukin-15 (IL-15), a muscle-derived cytokine proposed to be involved in muscle hypertrophy or responses to stress. Induction of diabetes reduced muscle weight in both the fast flexor hallucis longus (FHL) and slow soleus muscles, while resistance training preserved FHL muscle weight in diabetic rats. IL-15 protein content was increased by training in both FHL and soleus muscles, as well as serum, in normal and diabetic rats. With regard to proinflammatory cytokines, muscle IL-6 levels were increased in diabetic rats, while training decreased muscle IL-6 levels in diabetic rats; training had no effect on FHL muscle IL-6 levels in healthy rats. Also, tumor necrosis factor-alpha (TNF-α) and IL-1β levels were increased by diabetes, but not changed by training. In conclusion, we found that in diabetic rats, resistance training increased muscle and serum IL-15 levels, decreased muscle IL-6 levels, and preserved FHL muscle mass.


Interleukin-15 Inflammatory cytokines Resistance training Type-1 diabetes 



This work was supported by the Research Center of Tarbiat Modares University (TMU), Tehran, Iran. We wish to thank Professor Yaghob Fathoallahy and Dr Alireza Mani for their kind help and sincere cooperation.

Conflict of interest

The authors of this research article have no financial and personal conflict of interest statement.


  1. 1.
    B.C. Frier, E.G. Noble, M. Locke, Diabetes-induced atrophy is associated with a muscle-specific alteration in NF-kappaB activation and expression. Cell Stress Chaperones 13(3), 287–296 (2008)PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    H. Andersen, P.C. Gadeberg, B. Brock, J. Jakobsen, Muscular atrophy in diabetic neuropathy: a stereological magnetic resonance imaging study. Diabetologia 40(9), 1062–1069 (1997)PubMedCrossRefGoogle Scholar
  3. 3.
    R.A. Frost, C.H. Lang, Regulation of muscle growth by pathogen-associated molecules. J. Anim. Sci. 86(14), 84–93 (2008)CrossRefGoogle Scholar
  4. 4.
    G.Q. Chen, C.Y. Mou, Y.Q. Yang, S. Wang, Z.W. Zhao, Exercise training has beneficial anti-atrophy effects by inhibiting oxidative stress-induced MuRF1 upregulation in rats with diabetes. Life Sci. 89(1–2), 44–49 (2011)PubMedCrossRefGoogle Scholar
  5. 5.
    R.B. Hunter, E. Stevenson, A. Koncarevic, H. Mitchell-Felton, D.A. Essig, S.C. Kandarian, Activation of an alternative NF-kappaB pathway in skeletal muscle during disuse atrophy. FASEB J 16(6), 529–538 (2002)PubMedCrossRefGoogle Scholar
  6. 6.
    L.G. Karagounis, B.B. Yaspelkis 3rd, D.W. Reeder, G.I. Lancaster, J.A. Hawley, V.G. Coffey, Contraction-induced changes in TNF alpha and Akt mediated signalling are associated with increased myofibrillar protein in rat skeletal muscle. Eur. J. Appl. Physiol. 109(5), 48–839 (2010)CrossRefGoogle Scholar
  7. 7.
    L.S. Quinn, B.G. Anderson, R.H. Drivdahl, B. Alvarez, J.M. Argilés, Overexpression of interleukin15 induces skeletal muscle hypertrophy in vitro: implications for treatment of muscle wasting disorders. Exp. Cell Res. 280(1), 55–63 (2002)PubMedCrossRefGoogle Scholar
  8. 8.
    F.S. Lira, C.H. Koyama, A.S. Yamashita, J.C. Rosa, N.E. Zanchi, M.L. Batista Jr et al., Chronic exercise decreases cytokines production in healthy rat skeletal muscle. Cell Biochem. Funct. 27, 458–461 (2009)PubMedCrossRefGoogle Scholar
  9. 9.
    N.E. Zanchi, F.S. Lira, M.A. de Siqueira Filho, J.C. Rosa, C.R. de Oliveira Carvalho, M. Seelaender et al., Chronic low frequency/low volume resistance training reduces pro-inflammatory cytokine protein levels and TLR4 mRNA in rat skeletal muscle. Eur. J. Appl. Physiol. 109(6), 1095–1102 (2010)PubMedCrossRefGoogle Scholar
  10. 10.
    S.C. Forbes, J.P. Little, D.G. Candow, Exercise and nutritional interventions for improving aging muscle health. Endocrine 42(1), 29–38 (2012)PubMedCrossRefGoogle Scholar
  11. 11.
    B.K. Pedersen, M.A. Febbraio, Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol. Rev. 88(4), 1379–1406 (2008)PubMedCrossRefGoogle Scholar
  12. 12.
    F. Haddad, G.R. Adams, Selected contribution: acute cellular and molecular responses to resistance exercise. J. Appl. Physiol. 93, 394–403 (2002)PubMedGoogle Scholar
  13. 13.
    T.O. Takala, P. Nuutila, J. Knuuti, M. Luotolahti, H. Yki-Järvinen, Insulin action on heart and skeletal muscle glucose uptake in weight lifters and endurance athletes. Am. J. Physiol. 276(4 Pt 1), E706–E711 (1999)PubMedGoogle Scholar
  14. 14.
    J.O. Holloszy, Exercise-induced increase in muscle insulin sensitivity. J. Appl. Physiol. 99(1), 338–343 (2005)PubMedCrossRefGoogle Scholar
  15. 15.
    A.L. Carey, G.R. Steinberg, S.L. Macaulay, W.G. Thomas, A.G. Holmes, G. Ramm et al., Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acidoxidation in vitro via AMP-activated protein kinase. Diabetes 55(10), 2688–2697 (2006)PubMedCrossRefGoogle Scholar
  16. 16.
    K.H. Grabstein, J. Eisenman, K. Shanebeck, C. Rauch, S. Srinivasan, V. Fung et al., Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 264(5161), 965–968 (1994)PubMedCrossRefGoogle Scholar
  17. 17.
    H.C. Kim, H.Y. Cho, Y.S. Hah, Role of IL-15 in sepsis-induced skeletal muscle atrophy and proteolysis. Tuberc. Respir. Dis. (Seoul) 73(6), 312–319 (2012)PubMedCentralCrossRefGoogle Scholar
  18. 18.
    M. Figueras, S. Busquets, N. Carbó, E. Barreiro, V. Almendro, J.M. Argilés et al., Interleukin 15 is able to suppress the increased DNA fragmentation associated with musclewasting in tumour-bearing rats. FEBS Lett 569(1–3), 201–206 (2004)PubMedCrossRefGoogle Scholar
  19. 19.
    J. Xia, W. Liu, B. Hu, Z. Tian, Y. Yang, IL-15promotes regulatory T cell function and protects against diabetes development in NK-depleted NOD mice. Clin Immunol 134(2), 130–139 (2010)PubMedCrossRefGoogle Scholar
  20. 20.
    S. Kuczyński, H. Winiarska, M. Abramczyk, K. Szczawińska, B. Wierusz-Wysocka, M. Dworacka, IL-15 is elevated in serum patients with type 1 diabetes mellitus. Diabetes Res. Clin. Pract. 69(3), 231–236 (2005)PubMedCrossRefGoogle Scholar
  21. 21.
    S.R. Gray, T. Kamolrat, The effect of exercise induced cytokines on insulin stimulated glucose transport in C2C12 cells. Cytokine 55(2), 221–228 (2011)PubMedCrossRefGoogle Scholar
  22. 22.
    S.E. Riechman, G. Balasekaran, S.M. Roth, R.E. Ferrell, Association of interleukin-15 protein and interleukin-15 receptor genetic variation with resistance exercise training responses. J. Appl. Physiol. 97, 2214–2219 (2004)PubMedCrossRefGoogle Scholar
  23. 23.
    A.R. Nielsen, R. Mounier, P. Plomgaard, O.H. Mortensen, M. Penkowa, T. Speerschneider et al., Expression of interleukin-15 in human skeletal muscle effect of exercise and muscle fibre type composition. J. Physiol. 584(Pt 1), 305–312 (2007)PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    L.S. Quinn, B.G. Anderson, L. Strait-Bodey, T. Wolden-Hanson, Serum and muscle interleukin-15 levels decrease in aging mice: correlation with declines in soluble interleukin-15 receptor alpha expression. Exp. Gerontol. 45(2), 106–112 (2010)PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    E. Marzetti, C.S. Carter, S.E. Wohlgemuth, H.A. Lees, S. Giovannini, B. Anderson et al., Changes in IL-15 expression and death-receptor apoptotic signaling in rat gastrocnemius muscle with aging and life-long calorie restriction. Mech. Ageing Dev. 130(4), 272–280 (2009)PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    E.E. Pistilli, P.M. Siu, S.E. Alway, Interleukin-15 responses to aging and unloading-induced skeletal muscle atrophy. Am. J. Physiol. Cell Physiol. 292(4), C1298–C1304 (2007)PubMedCrossRefGoogle Scholar
  27. 27.
    Y. Tamura, K. Watanabe, T. Kantani, J. Hyashi, N. Ishida, M. Kaneki, Upregulation of circulating IL-15 by treadmill running in healthy individuals: is IL-15 an endocrine mediator of the beneficial effects of endurance exercise? Endocr. J. 58, 211–215 (2011)PubMedCrossRefGoogle Scholar
  28. 28.
    S. Lee, E.R. Barton, H.L. Sweeney, R.P. Farrar, Viral expression of insulin-like growth factor-I enhances muscle hypertrophy in resistance-trained rats. J. Appl. Physiol. 96(3), 1097–1104 (2004)PubMedCrossRefGoogle Scholar
  29. 29.
    P.A. Farrell, M.J. Fedele, J. Hernandez, J.D. Fluckey, J.L. Miller 3rd, C.H. Lang et al., Hypertrophy of skeletal muscle in diabetic rats in response to chronic resistance exercise. J. Appl. Physiol. 87(3), 1075–1082 (1999)PubMedGoogle Scholar
  30. 30.
    E. Talebi-Garakani, A. Safarzade, Resistance training decreases serum inflammatory markers in diabetic rats. Endocrine 43(3), 564–570 (2013)PubMedCrossRefGoogle Scholar
  31. 31.
    K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4), 402–408 (2001)PubMedCrossRefGoogle Scholar
  32. 32.
    M.M. Bradford, A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)PubMedCrossRefGoogle Scholar
  33. 33.
    T.A. Hornberger Jr, R.P. Farrar, Physiological hypertrophy of the FHL muscle following 8 weeks of progressive resistance exercise in the rat. Can. J. Appl. Physiol. 29(1), 16–31 (2004)PubMedCrossRefGoogle Scholar
  34. 34.
    H. Yang, J. Chang, W. Chen, L. Zhao, B. Qu, C. Tang et al., Treadmill exercise promotes interleukin 15 expression in skeletal muscle and interleukin 15 receptor alphaexpression in adipose tissue of high-fat diet rats. Endocrine 43(3), 579–585 (2013)PubMedCrossRefGoogle Scholar
  35. 35.
    T.A. Fehniger, M.A. Caligiuri, Interleukin 15: biology and relevance to human disease. Blood 97, 14–32 (2001)PubMedCrossRefGoogle Scholar
  36. 36.
    V. Budagian, E. Bulanova, R. Paus, S. Bulfone-Paus, IL-15/IL-15 receptor biology: a guided tour through an expanding universe. Cytokine Growth Factor Rev. 17(4), 259–280 (2006)PubMedCrossRefGoogle Scholar
  37. 37.
    K. Baar, K. Esser, Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am. J. Physiol. 276(1 Pt 1), C120–C127 (1999)PubMedGoogle Scholar
  38. 38.
    M. Cesari, B.W. Penninx, M. Pahor, F. Lauretani, A.M. Corsi, W.G. Rhys et al., Inflammatory markers and physical performance in older persons: the In CHIANTI study. J. Gerontol. A Biol. Sci. Med. Sci. 59, 242–248 (2004)PubMedCrossRefGoogle Scholar
  39. 39.
    L.H. Colbert, M. Visser, E.M. Simonsick, R.P. Tracy, A.B. Newman, S.B. Kritchevsky et al., Physical activity, exercise, inflammatory markers in older adults: findings from the health, aging and body composition study. J. Am. Geriatr. Soc. 52, 1098–1104 (2004)PubMedCrossRefGoogle Scholar
  40. 40.
    N.H. Yeo, J. Woo, K.O. Shin, J.Y. Park, S. Kang, The effects of different exercise intensity on myokine and angiogenesis factors. J. Sport. Med. Phys. Fit. 52(4), 448–454 (2012)Google Scholar
  41. 41.
    M. Gleeson, Interleukins and exercise. J. Physiol. 529(Pt 1), 1 (2000)PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    N.B. Abdulrazaq, M.M. Cho, N.N. Win, R. Zaman, M.T. Rahman, Beneficial effects of ginger (Zingiber officinale) on carbohydrate metabolism in streptozotocin-induced diabetic rats. Br. J. Nutr. 12, 1–8 (2011)Google Scholar
  43. 43.
    O. Bozkurt, M. Severcan, F. Severcan, Diabetes induces compositional, structural and functional alterations on rat skeletal soleus muscle revealed by FTIR spectroscopy: a comparative study with EDL muscle. Analyst 135(12), 3110–3119 (2010)PubMedCrossRefGoogle Scholar
  44. 44.
    J.F. Liu, W.Y. Chang, K.H. Chan, W.Y. Tsai, C.L. Lin, M.C. Hsu, Blood lipid peroxides and muscle damage increased following intensive resistance training of female weightlifters. Ann. N. Y. Acad. Sci. 1042, 255–261 (2005)PubMedCrossRefGoogle Scholar
  45. 45.
    C. Scheele, S. Nielsen, B.K. Pedersen, ROS and myokines promote muscle adaptation to exercise. Trends Endocrinol. Metab. 20(3), 95–99 (2009)PubMedCrossRefGoogle Scholar
  46. 46.
    S. Copray, R. Liem, N. Brouwer, P. Greenhaff, F. Habens, P. Fernyhough, Contraction-induced muscle fiber damage is increased in soleus muscle of streptozotocin-diabetic rats and is associateed with elevated expression of brain derived neurotrophic factor mRNA in muscle fibers and activated satellite cells. Exp. Neurol. 161(2), 597–608 (2000)PubMedCrossRefGoogle Scholar
  47. 47.
    A. Rabinovitch, W.L. Suarez-Pinzon, Cytokines and their roles in pancreatic islet h-cell destruction and insulin-dependent diabetes mellitus. Biochem. Pharmacol. 55, 1139–1149 (1998)PubMedCrossRefGoogle Scholar
  48. 48.
    S.K. Jain, K. Kannan, G. Lim, R. McVie, J.A. Bocchini, Hyperketonemia increases TNF-α secretion in cultured U937 monocytes and type-1 diabetic patients. Diabetes 51, 2287–2293 (2002)PubMedCrossRefGoogle Scholar
  49. 49.
    M.G. Cavallo, P. Pozzilli, C. Bird, M. Wadhwa, A. Meager, N. Visalli et al., Cytokines in sera from insulin dependent diabetic patients at diagnosis. Clin. Exp. Immunol. 86, 256–259 (1991)PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    R.A. Frost, G.J. Nystrom, C.H. Lang, Lipopolysaccharide and proinflammatory cytokines stimulate interleukin-6 expression in C2C12 myoblasts: role of the Jun NH2-terminal kinase. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R1153–R1164 (2003)PubMedGoogle Scholar
  51. 51.
    H. Klitgaard, A model for quantitative strength training of hindlimb muscles of the rat. J. Appl. Physiol. 64(4), 1740–1745 (1988)PubMedGoogle Scholar
  52. 52.
    G. Whyte, The Physiology of Training (Advances in Sport and Exercise Science) (Amazon, 2006), pp. 135–161Google Scholar
  53. 53.
    R.S. Staron, R.S. Hikida, T.F. Murray, M.M. Nelson, P. Johnson, F.C. Hagerman, Assessment of skeletal muscle damage in successive biopsies from strength-trained and untrained men and women. Eur. J. Appl. Physiol. 65, 258–264 (1992)CrossRefGoogle Scholar
  54. 54.
    S.M. Roth, G.F. Martel, F.M. Ivey, J.T. Lemmer, E.J. Metter, B.F. Hurley, M.A. Rogers, High-volume, heavy-resistance strength training and muscle damage in young and older women. J. Appl. Physiol. 88(3), 1112–1118 (2000)PubMedGoogle Scholar
  55. 55.
    N.E. Zanchi, F.S. Lira, M. Seelaender, A.H. Lancha-Jr, Experimental chronic low-frequency resistance training produces skeletal muscle hypertrophy in the absence of muscle damage and metabolic stress markers. Cell Biochem. Funct. 28(3), 232–238 (2010)PubMedCrossRefGoogle Scholar
  56. 56.
    D. Hansen, B.O. Eijnde, M. Roelants, T. Broekmans, J.L. Rummens, K. Hensen et al., Clinical benefits of the addition of lower extremity low-intensity resistance muscle training to early aerobic endurance training intervention in patients with coronary artery disease: a randomized controlled trial. J. Rehabil. Med. 43(9), 800–807 (2011)PubMedCrossRefGoogle Scholar
  57. 57.
    S.L. Lee, K.W. Chen, S.T. Chen, P.J. Chu, C.S. Chen, M.C. Hsu et al., Effect of passive repetitive isokinetic training on cytokines and hormonal changes. Chin. J. Physiol. 54(1), 55–66 (2011)PubMedCrossRefGoogle Scholar
  58. 58.
    A.L. Mackey, M. Kjaer, S. Dandanell, K.H. Mikkelsen, L. Holm, S. Dossing et al., The influence of anti-inflammatory medication on exercise-induced myogenic precursor cell responses in humans. J. Appl. Physiol. 103, 425–431 (2007)PubMedCrossRefGoogle Scholar
  59. 59.
    Q.A. Soltow, J.L. Betters, J.E. Sellman, V.A. Lira, J.H. Long, D.S. Criswell, Ibuprofen inhibits skeletal muscle hypertrophy in rats. Med. Sci. Sport. Exerc. 38, 840–846 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. Molanouri Shamsi
    • 1
    Email author
  • Z. H. Hassan
    • 2
  • R. Gharakhanlou
    • 1
  • L. S. Quinn
    • 3
  • K. Azadmanesh
    • 4
  • L. Baghersad
    • 1
  • A. Isanejad
    • 5
  • M. Mahdavi
    • 4
    Email author
  1. 1.Physical Education & Sport Sciences Department, Faculty of HumanitiesTarbiat Modares UniversityTehranIslamic Republic of Iran
  2. 2.Department of Immunology, School of Medical SciencesTarbiat Modares UniversityTehranIslamic Republic of Iran
  3. 3.Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, and Division of Gerontology and Geriatric Medicine, Department of MedicineUniversity of WashingtonSeattleUSA
  4. 4.Virology DepartmentPasteur Institute of IranTehranIslamic Republic of Iran
  5. 5.Physical Education & Sport Sciences Department, Faculty of HumanitiesShahed UniversityTehranIslamic Republic of Iran

Personalised recommendations