Endocrine

, Volume 45, Issue 2, pp 178–189 | Cite as

Zinc and insulin in pancreatic beta-cells

Review

Abstract

Zinc (Zn2+) is an essential element crucial for growth and development, and also plays a role in cell signaling for cellular processes like cell division and apoptosis. In the mammalian pancreas, Zn2+ is essential for the correct processing, storage, secretion, and action of insulin in beta (β)-cells. Insulin is stored inside secretory vesicles or granules, where two Zn2+ ions coordinate six insulin monomers to form the hexameric-structure on which maturated insulin crystals are based. The total Zn2+ content of the mammalian pancreas is among the highest in the body, and Zn2+ concentration reach millimolar levels in the interior of the dense-core granule. Changes in Zn2+ levels in the pancreas have been found to be associated with diabetes. Hence, the relationship between co-stored Zn2+ and insulin undoubtedly is critical to normal β-cell function. The advances in the field of Zn2+ biology over the last decade have facilitated our understanding of Zn2+ trafficking, its intracellular distribution and its storage. When exocytosis of insulin occurs, insulin granules fuse with the β-cell plasma membrane and release their contents, i.e., insulin as well as substantial amount of free Zn2+, into the extracellular space and the local circulation. Studies increasingly indicate that secreted Zn2+ has autocrine or paracrine signaling in β-cells or the neighboring cells. This review discusses the Zn2+ homeostasis in β-cells with emphasis on the potential signaling role of Zn2+ to islet biology.

Keywords

β-Cell Diabetes Insulin Pancreas Zinc Autocrine 

References

  1. 1.
    F.G. Banting, C.H. Best, The internal secretion of the pancreas. 1922. Indian J. Med. Res. 125(3), 251–266 (2007)PubMedGoogle Scholar
  2. 2.
    M. Bliss, Banting’s, Best’s, and Collip’s accounts of the discovery of insulin. Bull. Hist. Med. 56(4), 554–568 (1982)PubMedGoogle Scholar
  3. 3.
    M. Bliss, The discovery of insulin: the inside story. Publ. Am. Inst. Hist. Pharm. 16, 93–99 (1997)PubMedGoogle Scholar
  4. 4.
    D.A. Scott, A.M. Fisher, The insulin and the zinc content of normal and diabetic pancreas. J. Clin. Invest. 17(6), 725–728 (1938)PubMedCentralPubMedGoogle Scholar
  5. 5.
    G.D. Smith et al., Structural stability in the 4-zinc human insulin hexamer. Proc. Natl. Acad. Sci. USA 81(22), 7093–7097 (1984)PubMedGoogle Scholar
  6. 6.
    M.F. Dunn et al., Comparison of the zinc binding domains in the 7S nerve growth factor and the zinc-insulin hexamer. Biochemistry 19(4), 718–725 (1980)PubMedGoogle Scholar
  7. 7.
    J. Goldman, F.H. Carpenter, Zinc binding, circular dichroism, and equilibrium sedimentation studies on insulin (bovine) and several of its derivatives. Biochemistry 13(22), 4566–4574 (1974)PubMedGoogle Scholar
  8. 8.
    D.P. Figlewicz et al., Kinetics of 65zinc uptake and distribution in fractions from cultured rat islets of langerhans. Diabetes 29(10), 767–773 (1980)PubMedGoogle Scholar
  9. 9.
    S.O. Emdin et al., Role of zinc in insulin biosynthesis. Some possible zinc-insulin interactions in the pancreatic B-cell. Diabetologia 19(3), 174–182 (1980)PubMedGoogle Scholar
  10. 10.
    S.J. Chan, P. Keim, D.F. Steiner, Cell-free synthesis of rat preproinsulins: characterization and partial amino acid sequence determination. Proc. Natl. Acad. Sci. USA 73(6), 1964–1968 (1976)PubMedGoogle Scholar
  11. 11.
    D.F. Steiner, Editorial: Errors in insulin biosynthesis. N. Engl. J. Med. 294(17), 952–953 (1976)PubMedGoogle Scholar
  12. 12.
    D.F. Steiner et al., Chemical and biological aspects of insulin and proinsulin. Acta Med. Scand. Suppl. 601, 55–107 (1976)PubMedGoogle Scholar
  13. 13.
    T.L. Blundell et al., Three-dimensional atomic structure of insulin and its relationship to activity. Diabetes 21(2 Suppl), 492–505 (1972)PubMedGoogle Scholar
  14. 14.
    D.F. Steiner, Adventures with insulin in the islets of Langerhans. J. Biol. Chem. 286(20), 17399–17421 (2011)PubMedGoogle Scholar
  15. 15.
    B.K. Milthorpe, L.W. Nichol, P.D. Jeffrey, The polymerization pattern of zinc(II)-insulin at pH 7.0. Biochim. Biophys. Acta 495(2), 195–202 (1977)PubMedGoogle Scholar
  16. 16.
    C.P. Hill et al., X-ray structure of an unusual Ca2+ site and the roles of Zn2+ and Ca2+ in the assembly, stability, and storage of the insulin hexamer. Biochemistry 30(4), 917–924 (1991)PubMedGoogle Scholar
  17. 17.
    M.F. Dunn, Zinc-ligand interactions modulate assembly and stability of the insulin hexamer—a review. Biometals 18(4), 295–303 (2005)PubMedGoogle Scholar
  18. 18.
    D.F. Steiner et al., A brief perspective on insulin production. Diabetes Obes. Metab. 11(Suppl 4), 189–196 (2009)PubMedGoogle Scholar
  19. 19.
    S.L. Howell, D.A. Young, P.E. Lacy, Isolation and properties of secretory granules from rat islets of Langerhans. 3. Studies of the stability of the isolated beta granules. J. Cell Biol. 41(1), 167–176 (1969)PubMedGoogle Scholar
  20. 20.
    G. Gold, G.M. Grodsky, Kinetic aspects of compartmental storage and secretion of insulin and zinc. Experientia 40(10), 1105–1114 (1984)PubMedGoogle Scholar
  21. 21.
    B. Formby, F. Schmid-Formby, G.M. Grodsky, Relationship between insulin release and 65zinc efflux from rat pancreatic islets maintained in tissue culture. Diabetes 33(3), 229–234 (1984)PubMedGoogle Scholar
  22. 22.
    C.E. Outten, T.V. O’Halloran, Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292(5526), 2488–2492 (2001)PubMedGoogle Scholar
  23. 23.
    B.L. Vallee, K.H. Falchuk, The biochemical basis of zinc physiology. Physiol. Rev. 73(1), 79–118 (1993)PubMedGoogle Scholar
  24. 24.
    R.J. Cousins, J.P. Liuzzi, L.A. Lichten, Mammalian zinc transport, trafficking, and signals. J. Biol. Chem. 281(34), 24085–24089 (2006)PubMedGoogle Scholar
  25. 25.
    D.J. Eide, Zinc transporters and the cellular trafficking of zinc. Biochim. Biophys. Acta 1763(7), 711–722 (2006)PubMedGoogle Scholar
  26. 26.
    P.D. Zalewski et al., Video image analysis of labile zinc in viable pancreatic islet cells using a specific fluorescent probe for zinc. J. Histochem. Cytochem. 42(7), 877–884 (1994)PubMedGoogle Scholar
  27. 27.
    M.C. Foster et al., Elemental composition of secretory granules in pancreatic islets of Langerhans. Biophys. J. 64(2), 525–532 (1993)PubMedCentralPubMedGoogle Scholar
  28. 28.
    A. Krezel, W. Maret, Zinc-buffering capacity of a eukaryotic cell at physiological pZn. J. Biol. Inorg. Chem. 11(8), 1049–1062 (2006)PubMedGoogle Scholar
  29. 29.
    Y. Li, W. Maret, Transient fluctuations of intracellular zinc ions in cell proliferation. Exp. Cell Res. 315(14), 2463–2470 (2009)PubMedGoogle Scholar
  30. 30.
    E.A. Bellomo, G. Meur, G.A. Rutter, Glucose regulates free cytosolic Zn2+ concentration, Slc39 (ZiP), and metallothionein gene expression in primary pancreatic islet {beta}-cells. J. Biol. Chem. 286(29), 25778–25789 (2011)PubMedGoogle Scholar
  31. 31.
    M. Foster, S. Samman, Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid. Redox Signal 13(10), 1549–1573 (2010)PubMedGoogle Scholar
  32. 32.
    M. Hershfinkel, W.F. Silverman, I. Sekler, The zinc sensing receptor, a link between zinc and cell signaling. Mol. Med. 13(7–8), 331–336 (2007)PubMedCentralPubMedGoogle Scholar
  33. 33.
    H. Haase, L. Rink, Functional significance of zinc-related signaling pathways in immune cells. Annu. Rev. Nutr. 29, 133–152 (2009)PubMedGoogle Scholar
  34. 34.
    S.L. Sensi et al., Zinc in the physiology and pathology of the CNS. Nat. Rev. Neurosci. 10(11), 780–791 (2009)PubMedGoogle Scholar
  35. 35.
    K.G. Slepchenko, Y.V. Li, Rising intracellular zinc by membrane depolarization and glucose in insulin-secreting clonal HIT-T15 beta cells. Exp. Diabetes Res. 2012, 190309 (2012)PubMedCentralPubMedGoogle Scholar
  36. 36.
    L.A. Gaither, D.J. Eide, Eukaryotic zinc transporters and their regulation. Biometals 14(3–4), 251–270 (2001)PubMedGoogle Scholar
  37. 37.
    C.J. Frederickson, J.Y. Koh, A.I. Bush, The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 6(6), 449–462 (2005)PubMedGoogle Scholar
  38. 38.
    Y.V. Li, Zinc overload in stroke, in Metal Ion in Stroke, ed. by Y.V. Li, J.H. Zhang (Springer Science + Business Media, New York, 2012), pp. 167–189Google Scholar
  39. 39.
    G. Csordas, G. Hajnoczky, Plasticity of mitochondrial calcium signaling. J. Biol. Chem. 278(43), 42273–42282 (2003)PubMedGoogle Scholar
  40. 40.
    I.G. Gazaryan et al., Zinc irreversibly damages major enzymes of energy production and antioxidant defense prior to mitochondrial permeability transition. J. Biol. Chem. 282(33), 24373–24380 (2007)PubMedGoogle Scholar
  41. 41.
    D. Jiang et al., Zn(2+) induces permeability transition pore opening and release of pro-apoptotic peptides from neuronal mitochondria. J. Biol. Chem. 276(50), 47524–47529 (2001)PubMedGoogle Scholar
  42. 42.
    C.J. Stork, Y.V. Li, Zinc release from thapsigargin/IP3-sensitive stores in cultured cortical neurons. J. Mol. Signal 5, 5 (2010)PubMedCentralPubMedGoogle Scholar
  43. 43.
    T.J. Ostwald, D.H. MacLennan, Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J. Biol. Chem. 249(3), 974–979 (1974)PubMedGoogle Scholar
  44. 44.
    E.F. Corbett et al., The conformation of calreticulin is influenced by the endoplasmic reticulum luminal environment. J. Biol. Chem. 275(35), 27177–27185 (2000)PubMedGoogle Scholar
  45. 45.
    N.C. Khanna, M. Tokuda, D.M. Waisman, Conformational changes induced by binding of divalent cations to calregulin. J. Biol. Chem. 261(19), 8883–8887 (1986)PubMedGoogle Scholar
  46. 46.
    S. Baksh et al., Identification of the Zn2+ binding region in calreticulin. FEBS Lett. 376(1–2), 53–57 (1995)PubMedGoogle Scholar
  47. 47.
    Y. Tan et al., The calcium- and zinc-responsive regions of calreticulin reside strictly in the N-/C-domain. Biochim. Biophys. Acta 1760(5), 745–753 (2006)PubMedGoogle Scholar
  48. 48.
    L. Guo et al., Identification of an N-domain histidine essential for chaperone function in calreticulin. J. Biol. Chem. 278(50), 50645–50653 (2003)PubMedGoogle Scholar
  49. 49.
    W. Qiao et al., Zinc status and vacuolar zinc transporters control alkaline phosphatase accumulation and activity in Saccharomyces cerevisiae. Mol. Microbiol. 72(2), 320–334 (2009)PubMedCentralPubMedGoogle Scholar
  50. 50.
    K. Ishihara et al., Zinc transport complexes contribute to the homeostatic maintenance of secretory pathway function in vertebrate cells. J. Biol. Chem. 281(26), 17743–17750 (2006)PubMedGoogle Scholar
  51. 51.
    T. Suzuki et al., Two different zinc transport complexes of cation diffusion facilitator proteins localized in the secretory pathway operate to activate alkaline phosphatases in vertebrate cells. J. Biol. Chem. 280(35), 30956–30962 (2005)PubMedGoogle Scholar
  52. 52.
    C.D. Ellis, C.W. Macdiarmid, D.J. Eide, Heteromeric protein complexes mediate zinc transport into the secretory pathway of eukaryotic cells. J. Biol. Chem. 280(31), 28811–28818 (2005)PubMedGoogle Scholar
  53. 53.
    C.D. Ellis et al., Zinc and the Msc2 zinc transporter protein are required for endoplasmic reticulum function. J. Cell Biol. 166(3), 325–335 (2004)PubMedGoogle Scholar
  54. 54.
    T. Suzuki et al., Zinc transporters, ZnT5 and ZnT7, are required for the activation of alkaline phosphatases, zinc-requiring enzymes that are glycosylphosphatidylinositol-anchored to the cytoplasmic membrane. J. Biol. Chem. 280(1), 637–643 (2005)PubMedGoogle Scholar
  55. 55.
    W. Maret, Metallothionein redox biology in the cytoprotective and cytotoxic functions of zinc. Exp. Gerontol. 43(5), 363–369 (2008)PubMedGoogle Scholar
  56. 56.
    D.K. Lee et al., Pancreatic metallothionein-I may play a role in zinc homeostasis during maternal dietary zinc deficiency in mice. J. Nutr. 133(1), 45–50 (2003)PubMedGoogle Scholar
  57. 57.
    G.K. Andrews et al., Metal ions induce expression of metallothionein in pancreatic exocrine and endocrine cells. Pancreas 5(5), 548–554 (1990)PubMedGoogle Scholar
  58. 58.
    T. Tomita, Metallothionein in pancreatic endocrine neoplasms. Mod. Pathol. 13(4), 389–395 (2000)PubMedGoogle Scholar
  59. 59.
    L. Cai, Metallothionein as an adaptive protein prevents diabetes and its toxicity. Nonlinearity Biol. Toxicol. Med. 2(2), 89–103 (2004)PubMedCentralPubMedGoogle Scholar
  60. 60.
    S.G. Laychock, J. Duzen, C.O. Simpkins, Metallothionein induction in islets of Langerhans and insulinoma cells. Mol. Cell. Endocrinol. 165(1–2), 179–187 (2000)PubMedGoogle Scholar
  61. 61.
    J. Yang, M.G. Cherian, Protective effects of metallothionein on streptozotocin-induced diabetes in rats. Life Sci. 55(1), 43–51 (1994)PubMedGoogle Scholar
  62. 62.
    Z.H. Wang et al., Increased pancreatic metallothionein and glutathione levels: protecting against cerulein- and taurocholate-induced acute pancreatitis in rats. Pancreas 13(2), 173–183 (1996)PubMedGoogle Scholar
  63. 63.
    C.J. Frederickson et al., Concentrations of extracellular free zinc (pZn)e in the central nervous system during simple anesthetization, ischemia and reperfusion. Exp. Neurol. 198(2), 285–293 (2006)PubMedGoogle Scholar
  64. 64.
    R.A. Bozym et al., Free zinc ions outside a narrow concentration range are toxic to a variety of cells in vitro. Exp. Biol. Med. (Maywood) 235(6), 741–750 (2010)Google Scholar
  65. 65.
    L. Cai et al., Essentiality, toxicology and chelation therapy of zinc and copper. Curr. Med. Chem. 12(23), 2753–2763 (2005)PubMedGoogle Scholar
  66. 66.
    V. Frazzini et al., Oxidative stress and brain aging: is zinc the link? Biogerontology 7(5–6), 307–314 (2006)PubMedGoogle Scholar
  67. 67.
    C.J. Frederickson et al., Importance of zinc in the central nervous system: the zinc-containing neuron. J. Nutr. 130(5S Suppl), 1471S–1483S (2000)PubMedGoogle Scholar
  68. 68.
    A.S. Prasad, Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp. Gerontol. 43(5), 370–377 (2008)PubMedGoogle Scholar
  69. 69.
    A.Q. Truong-Tran et al., The role of zinc in caspase activation and apoptotic cell death. Biometals 14(3–4), 315–330 (2001)PubMedGoogle Scholar
  70. 70.
    C.T. Walsh et al., Zinc: health effects and research priorities for the 1990s. Environ. Health Perspect. 102(Suppl 2), 5–46 (1994)PubMedCentralPubMedGoogle Scholar
  71. 71.
    S.R. Hubbard et al., Identification and characterization of zinc binding sites in protein kinase C. Science 254(5039), 1776–1779 (1991)PubMedGoogle Scholar
  72. 72.
    A.F. Quest et al., The regulatory domain of protein kinase C coordinates four atoms of zinc. J. Biol. Chem. 267(14), 10193–10197 (1992)PubMedGoogle Scholar
  73. 73.
    K.I. Jeon, J.Y. Jeong, D.M. Jue, Thiol-reactive metal compounds inhibit NF-kappa B activation by blocking I kappa B kinase. J. Immunol. 164(11), 5981–5989 (2000)PubMedGoogle Scholar
  74. 74.
    G.J. Brewer et al., Zinc inhibition of calmodulin: a proposed molecular mechanism of zinc action on cellular functions. Am. J. Hematol. 7(1), 53–60 (1979)PubMedGoogle Scholar
  75. 75.
    I. Lengyel et al., Modulation of the phosphorylation and activity of calcium/calmodulin-dependent protein kinase II by zinc. J. Neurochem. 75(2), 594–605 (2000)PubMedGoogle Scholar
  76. 76.
    R.P. Weinberger, J.A. Rostas, Effect of zinc on calmodulin-stimulated protein kinase II and protein phosphorylation in rat cerebral cortex. J. Neurochem. 57(2), 605–614 (1991)PubMedGoogle Scholar
  77. 77.
    J.A. Park, J.Y. Koh, Induction of an immediate early gene egr-1 by zinc through extracellular signal-regulated kinase activation in cortical culture: its role in zinc-induced neuronal death. J. Neurochem. 73(2), 450–456 (1999)PubMedGoogle Scholar
  78. 78.
    S. Kim et al., NF-kappa B prevents beta cell death and autoimmune diabetes in NOD mice. Proc. Natl. Acad. Sci. USA 104(6), 1913–1918 (2007)PubMedGoogle Scholar
  79. 79.
    T. Kambe et al., Overview of mammalian zinc transporters. Cell. Mol. Life Sci. 61(1), 49–68 (2004)PubMedGoogle Scholar
  80. 80.
    K.A. Jackson et al., Mechanisms of mammalian zinc-regulated gene expression. Biochem. Soc. Trans. 36(Pt 6), 1262–1266 (2008)PubMedGoogle Scholar
  81. 81.
    R.J. Cousins et al., Regulation of zinc metabolism and genomic outcomes. J. Nutr. 133(5 Suppl 1), 1521S–1526S (2003)PubMedGoogle Scholar
  82. 82.
    L.A. Lichten, R.J. Cousins, Mammalian zinc transporters: nutritional and physiologic regulation. Annu. Rev. Nutr. 29, 153–176 (2009)PubMedGoogle Scholar
  83. 83.
    Y. Chao, D. Fu, Kinetic study of the antiport mechanism of an Escherichia coli zinc transporter. ZitB. J. Biol. Chem. 279(13), 12043–12050 (2004)Google Scholar
  84. 84.
    A.A. Guffanti et al., An antiport mechanism for a member of the cation diffusion facilitator family: divalent cations efflux in exchange for K+ and H+. Mol. Microbiol. 45(1), 145–153 (2002)PubMedGoogle Scholar
  85. 85.
    T. Bloss, S. Clemens, D.H. Nies, Characterization of the ZAT1p zinc transporter from Arabidopsis thaliana in microbial model organisms and reconstituted proteoliposomes. Planta 214(5), 783–791 (2002)PubMedGoogle Scholar
  86. 86.
    R.D. Palmiter et al., ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc. Natl. Acad. Sci. USA 93(25), 14934–14939 (1996)PubMedGoogle Scholar
  87. 87.
    L. Huang et al., The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J. Biol. Chem. 280(15), 15456–15463 (2005)PubMedGoogle Scholar
  88. 88.
    W. Chowanadisai, B. Lonnerdal, S.L. Kelleher, Zip6 (LIV-1) regulates zinc uptake in neuroblastoma cells under resting but not depolarizing conditions. Brain Res. 1199, 10–19 (2008)PubMedGoogle Scholar
  89. 89.
    L. Belloni-Olivi et al., Localization of zip1 and zip4 mRNA in the adult rat brain. J. Neurosci. Res. 87(14), 3221–3230 (2009)PubMedCentralPubMedGoogle Scholar
  90. 90.
    J. Dufner-Beattie et al., Mouse ZIP1 and ZIP3 genes together are essential for adaptation to dietary zinc deficiency during pregnancy. Genesis 44(5), 239–251 (2006)PubMedGoogle Scholar
  91. 91.
    L. Huang, M. Yan, C.P. Kirschke, Over-expression of ZnT7 increases insulin synthesis and secretion in pancreatic beta-cells by promoting insulin gene transcription. Exp. Cell Res. 316(16), 2630–2643 (2011)Google Scholar
  92. 92.
    K. Smidt et al., SLC30A3 responds to glucose- and zinc variations in beta-cells and is critical for insulin production and in vivo glucose-metabolism during beta-cell stress. PLoS One 4(5), e5684 (2009)PubMedCentralPubMedGoogle Scholar
  93. 93.
    A.V. Gyulkhandanyan et al., Investigation of transport mechanisms and regulation of intracellular Zn2+ in pancreatic alpha-cells. J. Biol. Chem. 283(15), 10184–10197 (2008)PubMedGoogle Scholar
  94. 94.
    T. Kambe et al., Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic beta cells. J. Biol. Chem. 277(21), 19049–19055 (2002)PubMedGoogle Scholar
  95. 95.
    R.A. Colvin et al., Zn2+ transporters and Zn2+ homeostasis in neurons. Eur. J. Pharmacol. 479(1–3), 171–185 (2003)PubMedGoogle Scholar
  96. 96.
    C.W. Shuttleworth, J.H. Weiss, Zinc: new clues to diverse roles in brain ischemia. Trends Pharmacol. Sci. 32(8), 480–486 (2011)PubMedCentralPubMedGoogle Scholar
  97. 97.
    E. Ohana et al., A sodium zinc exchange mechanism is mediating extrusion of zinc in mammalian cells. J. Biol. Chem. 279(6), 4278–4284 (2004)PubMedGoogle Scholar
  98. 98.
    Y. Qin et al., Mechanisms of Zn2+ efflux in cultured cortical neurons. J. Neurochem. 107(5), 1304–1313 (2008)PubMedGoogle Scholar
  99. 99.
    R.A. Colvin et al., Evidence for a zinc/proton antiporter in rat brain. Neurochem. Int. 36(6), 539–547 (2000)PubMedGoogle Scholar
  100. 100.
    K. Inoue, D. Branigan, Z.G. Xiong, Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels. J. Biol. Chem. 285(10), 7430–7439 (2010)PubMedGoogle Scholar
  101. 101.
    T.F. Wagner et al., TRPM3 channels provide a regulated influx pathway for zinc in pancreatic beta cells. Pflugers Arch. 460(4), 755–765 (2010)PubMedGoogle Scholar
  102. 102.
    A.V. Gyulkhandanyan et al., The Zn2+-transporting pathways in pancreatic beta-cells: a role for the L-type voltage-gated Ca2+ channel. J. Biol. Chem. 281(14), 9361–9372 (2006)PubMedGoogle Scholar
  103. 103.
    F. Chimienti et al., Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53(9), 2330–2337 (2004)PubMedGoogle Scholar
  104. 104.
    F. Chimienti et al., In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J. Cell Sci. 119(Pt 20), 4199–4206 (2006)PubMedGoogle Scholar
  105. 105.
    N. Wijesekara, F. Chimienti, M.B. Wheeler, Zinc, a regulator of islet function and glucose homeostasis. Diabetes Obes. Metab. 11(Suppl 4), 202–214 (2009)PubMedGoogle Scholar
  106. 106.
    G.A. Rutter, Think zinc: New roles for zinc in the control of insulin secretion. Islets 2(1), 49–50 (2011)Google Scholar
  107. 107.
    N. Wijesekara et al., Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia 53(8), 1656–1668 (2010)PubMedGoogle Scholar
  108. 108.
    K. Lemaire et al., Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc. Natl. Acad. Sci. USA 106(35), 14872–14877 (2009)PubMedGoogle Scholar
  109. 109.
    T.J. Nicolson et al., Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 58(9), 2070–2083 (2009)PubMedGoogle Scholar
  110. 110.
    L. Egefjord et al., Zinc transporter gene expression is regulated by pro-inflammatory cytokines: a potential role for zinc transporters in beta-cell apoptosis? BMC Endocr. Disord. 9, 7 (2009)PubMedCentralPubMedGoogle Scholar
  111. 111.
    M. El Muayed et al., Acute cytokine-mediated downregulation of the zinc transporter ZnT8 alters pancreatic beta-cell function. J. Endocrinol. 206(2), 159–169 (2010)PubMedCentralPubMedGoogle Scholar
  112. 112.
    C.B. Newgard, J.D. McGarry, Metabolic coupling factors in pancreatic beta-cell signal transduction. Annu. Rev. Biochem. 64, 689–719 (1995)PubMedGoogle Scholar
  113. 113.
    A. Tarasov, J. Dusonchet, F. Ashcroft, Metabolic regulation of the pancreatic beta-cell ATP-sensitive K+ channel: a pas de deux. Diabetes 53(Suppl 3), S113–S122 (2004)PubMedGoogle Scholar
  114. 114.
    L. Aguilar-Bryan, J. Bryan, Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr. Rev. 20(2), 101–135 (1999)PubMedGoogle Scholar
  115. 115.
    F.M. Ashcroft, P. Rorsman, G. Trube, Single calcium channel activity in mouse pancreatic beta-cells. Ann. N Y Acad. Sci. 560, 410–412 (1989)PubMedGoogle Scholar
  116. 116.
    I. Findlay et al., Calcium currents in insulin-secreting beta-cells. Ann. N Y Acad. Sci. 560, 403–409 (1989)PubMedGoogle Scholar
  117. 117.
    K. Aoyagi, M. Ohara-Imaizumi, S. Nagamatsu, Regulation of resident and newcomer insulin granules by calcium and SNARE proteins. Front Biosci. 16, 1197–1210 (2011)Google Scholar
  118. 118.
    T.L. Blundell et al., The crystal structure of rhombohedral 2 zinc insulin. Cold Spring Harb. Symp. Quant. Biol. 36, 233–241 (1972)PubMedGoogle Scholar
  119. 119.
    D.J. Michael et al., Pancreatic beta-cells secrete insulin in fast- and slow-release forms. Diabetes 55(3), 600–607 (2006)PubMedGoogle Scholar
  120. 120.
    R.P. Robertson, H. Zhou, M. Slucca, A role for zinc in pancreatic islet beta-cell cross-talk with the alpha-cell during hypoglycaemia. Diabetes Obes. Metab. 13(Suppl 1), 106–111 (2011)PubMedGoogle Scholar
  121. 121.
    Li, Y., et al., Translocation of synaptically released zinc involves voltage dependent calcium channels (vdccs) in rat hippocampal ca3 pyramidal neurons. Society for Neuroscience, 2002 (Program No. 437.12.)Google Scholar
  122. 122.
    Y. Li et al., Rapid translocation of zn(2+) from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation. J. Neurophysiol. 86(5), 2597–2604 (2001)PubMedGoogle Scholar
  123. 123.
    Y.V. Li, C.J. Hough, J.M. Sarvey, Do we need zinc to think? Sci STKE 2003(182), pe19 (2003)PubMedGoogle Scholar
  124. 124.
    H. Zhou et al., Zinc, not insulin, regulates the rat alpha-cell response to hypoglycemia in vivo. Diabetes 56(4), 1107–1112 (2007)PubMedGoogle Scholar
  125. 125.
    F. Atouf, P. Czernichow, R. Scharfmann, Expression of neuronal traits in pancreatic beta cells. Implication of neuron-restrictive silencing factor/repressor element silencing transcription factor, a neuron-restrictive silencer. J. Biol. Chem. 272(3), 1929–1934 (1997)PubMedGoogle Scholar
  126. 126.
    N. Inagaki et al., Expression and role of ionotropic glutamate receptors in pancreatic islet cells. FASEB J 9(8), 686–691 (1995)PubMedGoogle Scholar
  127. 127.
    Z.Y. Wu et al., AMPA receptors regulate exocytosis and insulin release in pancreatic beta cells. Traffic 13(8), 1124–1139 (2012)PubMedGoogle Scholar
  128. 128.
    C. Ludvigsen, M. McDaniel, P.E. Lacy, The mechanism of zinc uptake in isolated islets of Langerhans. Diabetes 28(6), 570–575 (1979)PubMedGoogle Scholar
  129. 129.
    P.D. Borge et al., Insulin receptor signaling and sarco/endoplasmic reticulum calcium ATPase in beta-cells. Diabetes 51(Suppl 3), S427–S433 (2002)PubMedGoogle Scholar
  130. 130.
    M. Braun, R. Ramracheya, P. Rorsman, Autocrine regulation of insulin secretion. Diabetes Obes. Metab. 14(Suppl 3), 143–151 (2012)PubMedGoogle Scholar
  131. 131.
    Y. Lin, Z. Sun, Current views on type 2 diabetes. J. Endocrinol. 204(1), 1–11 (2012)Google Scholar
  132. 132.
    S. Jitrapakdee et al., Regulation of insulin secretion: role of mitochondrial signalling. Diabetologia 53(6), 1019–1032 (2010)PubMedCentralPubMedGoogle Scholar
  133. 133.
    E. Zini et al., Hyperglycaemia but not hyperlipidaemia causes beta cell dysfunction and beta cell loss in the domestic cat. Diabetologia 52(2), 336–346 (2009)PubMedGoogle Scholar
  134. 134.
    P. Proks, J.D. Lippiat, Membrane ion channels and diabetes. Curr. Pharm. Des. 12(4), 485–501 (2006)PubMedGoogle Scholar
  135. 135.
    M.D. Bosco et al., Zinc and zinc transporter regulation in pancreatic islets and the potential role of zinc in islet transplantation. Rev. Diabet. Stud. 7(4), 263–274 (2010)PubMedCentralPubMedGoogle Scholar
  136. 136.
    A. Mathie et al., Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability. Pharmacol. Ther. 111(3), 567–583 (2006)PubMedGoogle Scholar
  137. 137.
    D.W. Barnett, D.M. Pressel, S. Misler, Voltage-dependent Na + and Ca2+ currents in human pancreatic islet beta-cells: evidence for roles in the generation of action potentials and insulin secretion. Pflugers Arch. 431(2), 272–282 (1995)PubMedGoogle Scholar
  138. 138.
    A. Bloc et al., Zinc-induced changes in ionic currents of clonal rat pancreatic-cells: activation of ATP-sensitive K+ channels. J. Physiol. 529(Pt 3), 723–734 (2000)PubMedGoogle Scholar
  139. 139.
    R. Ferrer et al., Effects of Zn2+ on glucose-induced electrical activity and insulin release from mouse pancreatic islets. Am. J. Physiol. 246(5 Pt 1), C520–C527 (1984)PubMedGoogle Scholar
  140. 140.
    T. Ghafghazi, M.L. McDaniel, P.E. Lacy, Zinc-induced inhibition of insulin secretion from isolated rat islets of Langerhans. Diabetes 30(4), 341–345 (1981)PubMedGoogle Scholar
  141. 141.
    V. Bancila et al., Zinc inhibits glutamate release via activation of pre-synaptic K channels and reduces ischaemic damage in rat hippocampus. J. Neurochem. 90(5), 1243–1250 (2004)PubMedGoogle Scholar
  142. 142.
    B. Holst et al., G protein-coupled receptor 39 deficiency is associated with pancreatic islet dysfunction. Endocrinology 150(6), 2577–2585 (2009)PubMedGoogle Scholar
  143. 143.
    P. Popovics, A.J. Stewart, GPR39: a Zn(2+)-activated G protein-coupled receptor that regulates pancreatic, gastrointestinal and neuronal functions. Cell. Mol. Life Sci. 68(1), 85–95 (2011)PubMedGoogle Scholar
  144. 144.
    M. Hutton, The effects of environmental lead exposure and in vitro zinc on tissue delta-aminolevulinic acid dehydratase in urban pigeons. Comp. Biochem. Physiol. C 74(2), 441–446 (1983)PubMedGoogle Scholar
  145. 145.
    G.M. Grodsky, F. Schmid-Formby, Kinetic and quantitative relationships between insulin release and 65Zn efflux from perifused islets. Endocrinology 117(2), 704–710 (1985)PubMedGoogle Scholar
  146. 146.
    B. Turan, Zinc-induced changes in ionic currents of cardiomyocytes. Biol. Trace Elem. Res. 94(1), 49–60 (2003)PubMedGoogle Scholar
  147. 147.
    X.P. Chu et al., Subunit-dependent high-affinity zinc inhibition of acid-sensing ion channels. J. Neurosci. 24(40), 8678–8689 (2004)PubMedCentralPubMedGoogle Scholar
  148. 148.
    K.G. Slepchenko, C.B. James, Y.V. Li, Inhibitory effect of zinc on glucose-stimulated zinc/insulin secretion in an insulin-secreting beta-cell line. Exp. Physiol. 98(8), 1301–1311 (2013)PubMedGoogle Scholar
  149. 149.
    D. Baetens et al., Endocrine pancreas: three-dimensional reconstruction shows two types of islets of langerhans. Science 206(4424), 1323–1325 (1979)PubMedGoogle Scholar
  150. 150.
    O. Cabrera et al., The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. Acad. Sci. USA 103(7), 2334–2339 (2006)PubMedGoogle Scholar
  151. 151.
    M.A. Ravier, G.A. Rutter, Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic alpha-cells. Diabetes 54(6), 1789–1797 (2005)PubMedGoogle Scholar
  152. 152.
    R. Ramracheya et al., Membrane potential-dependent inactivation of voltage-gated ion channels in alpha-cells inhibits glucagon secretion from human islets. Diabetes 59(9), 2198–2208 (2010)PubMedGoogle Scholar
  153. 153.
    B.A. Cooperberg, P.E. Cryer, Insulin reciprocally regulates glucagon secretion in humans. Diabetes 59(11), 2936–2940 (2010)PubMedGoogle Scholar
  154. 154.
    M. Slucca et al., ATP-sensitive K+ channel mediates the zinc switch-off signal for glucagon response during glucose deprivation. Diabetes 59(1), 128–134 (2010)PubMedGoogle Scholar
  155. 155.
    I. Franklin et al., Beta-cell secretory products activate alpha-cell ATP-dependent potassium channels to inhibit glucagon release. Diabetes 54(6), 1808–1815 (2005)PubMedGoogle Scholar
  156. 156.
    A.L. Prost et al., Zinc is both an intracellular and extracellular regulator of KATP channel function. J. Physiol. 559(Pt 1), 157–167 (2004)PubMedGoogle Scholar
  157. 157.
    K.M. Hope et al., Regulation of alpha-cell function by the beta-cell in isolated human and rat islets deprived of glucose: the “switch-off” hypothesis. Diabetes 53(6), 1488–1495 (2004)PubMedGoogle Scholar
  158. 158.
    J.C. Hutton, E.J. Penn, M. Peshavaria, Low-molecular-weight constituents of isolated insulin-secretory granules. Bivalent cations, adenine nucleotides and inorganic phosphate. Biochem. J. 210(2), 297–305 (1983)PubMedGoogle Scholar
  159. 159.
    J. Brandao-Neto et al., Renal handling of zinc in insulin-dependent diabetes mellitus patients. Biometals 14(1), 75–80 (2001)PubMedGoogle Scholar
  160. 160.
    J.J. Cunningham et al., Hyperzincuria in individuals with insulin-dependent diabetes mellitus: concurrent zinc status and the effect of high-dose zinc supplementation. Metabolism 43(12), 1558–1562 (1994)PubMedGoogle Scholar
  161. 161.
    W.B. Kinlaw et al., Abnormal zinc metabolism in type II diabetes mellitus. Am. J. Med. 75(2), 273–277 (1983)PubMedGoogle Scholar
  162. 162.
    E. Ho, C. Courtemanche, B.N. Ames, Zinc deficiency induces oxidative DNA damage and increases p53 expression in human lung fibroblasts. J. Nutr. 133(8), 2543–2548 (2003)PubMedGoogle Scholar
  163. 163.
    E. Ho et al., Dietary zinc supplementation inhibits NFkappaB activation and protects against chemically induced diabetes in CD1 mice. Exp. Biol. Med. (Maywood) 226(2), 103–111 (2001)Google Scholar
  164. 164.
    A.B. Chausmer, Zinc, insulin and diabetes. J. Am. Coll. Nutr. 17(2), 109–115 (1998)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Biomedical SciencesOhio University Heritage College of Osteopathic MedicineAthensUSA

Personalised recommendations