, Volume 44, Issue 2, pp 369–379 | Cite as

Treatment with ferulic acid to rats with streptozotocin-induced diabetes: effects on oxidative stress, pro-inflammatory cytokines, and apoptosis in the pancreatic β cell

  • Souvik RoyEmail author
  • Satyajit Kumar Metya
  • Santanu Sannigrahi
  • Noorjaman Rahaman
  • Faiqa Ahmed
Original Article


In the present study, we aimed to investigate the protective effect of ferulic acid at different doses (50 mg/kg alternative day and 50 mg/kg daily) on diabetic rats and to explore the interrelationship between oxidative stress and cytokines correlates with apoptotic events in pancreatic tissue. Male Wistar rats were rendered diabetic by a single intraperitoneal injection of streptozotocin (60 mg/kg body weight). Ferulic acid was administered orally for 8 weeks. At the end of the study, all animals were sacrificed. Blood samples were collected for the biochemical estimations and pancreas was isolated for antioxidant status, histopathological, immunohistochemical, and apoptotic studies. Treatment with ferulic acid to diabetic rats significantly improved blood glucose, serum total cholesterol, triglycerides, creatinine, urea, and albumin levels toward normal. Furthermore, decrement of the elevated lipid peroxidation levels and increment of the reduced superoxide dismutase, catalase, and reduced glutathione enzyme activities in pancreatic tissues were observed in ferulic acid-treated groups. Ferulic acid-treated rats in the diabetic group showed an improved histological appearance. Our data also revealed a significant reduction in the activity of apoptosis using terminal dUTP nick end-labeling and reduced expression of TGF-β1 and IL-1β in the pancreatic β-cell of ferulic acid-treated rats. Treatment with ferulic acid daily doses produced a significant result compared to alternative dose. Collectively our results suggested that ferulic acid acts as a protective agent in diabetic rats by altering oxidative stress, expression of pro-inflammatory cytokines and apoptosis.


Diabetes Rat pancreas Ferulic acid TGF-β1 IL-1β Apoptosis 



The authors gratefully acknowledge Mr. Jayanta Bhowmick for his assistance in preparing the histopathological slides. We would like to thank Mr. Lalmohon Masanta and Mr. Pravanjan Bhakta for providing the laboratory oriented research facilities.

Conflict of interest

The authors declare that there is no conflict of interest.


  1. 1.
    I. Celik, E. Yegin, F. Odabasoglu, Effect of experimental diabetes mellitus on plasma lactate dehydrogenase and glutamic oxaloacetic transaminase levels in rabbits. Turk. J. Biol. 26, 151–154 (2002)Google Scholar
  2. 2.
    M. Brownlee, Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820 (2001). doi: 10.1038/414813a PubMedCrossRefGoogle Scholar
  3. 3.
    K. Pyorala, M. Laakso, M. Uusitupa, Diabetes and atherosclerosis: an epidemiologic view. Diabetes Metab. Rev. 3(2), 463–524 (1987). doi: 10.1002/dmr.5610030206 PubMedCrossRefGoogle Scholar
  4. 4.
    E.Y. Sozmen, B. Sozmen, Y. Delen, T. Onat, Catalase/superoxide dismutase (SOD) and catalase/paroxonase (PON) ratios may implicate poor glycemic control. Arch. Med. Res. 32, 283–287 (2001)PubMedCrossRefGoogle Scholar
  5. 5.
    C. Wang, Y. Guan, J. Yang, Cytokines in the progression of pancreatic β-cell dysfunction. Int. J. Endocrinol. (2010). doi: 10.1155/2010/515136 PubMedGoogle Scholar
  6. 6.
    S.K. Kim, M. Hebrok, Intercellular signals regulating pancreas development and function. Genes Dev. 15(2), 111–127 (2001). doi: 10.1101/gad.859401 PubMedCrossRefGoogle Scholar
  7. 7.
    S.K. Kim, R.J. MacDonald, Signaling and transcriptional control of pancreatic organogenesis. Curr. Opin. Genet. Dev. 12, 540–547 (2002). doi: 10.1016/S0959-437X(02)00338-6 PubMedCrossRefGoogle Scholar
  8. 8.
    S.G. Rane, J.H. Lee, H.M. Lin, Transforming growth factor-β pathway: role in pancreas development and pancreatic disease. Cytokine Growth Factor Rev. 17, 107–119 (2006). doi: 10.1016/j.cytogfr.2005.09.003 PubMedCrossRefGoogle Scholar
  9. 9.
    D.T. Finegood, L. Scaglia, S. Bonner-Weir, Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 44, 249–256 (1995)PubMedCrossRefGoogle Scholar
  10. 10.
    S. Roy, A.K. Mondru, S.K. Dontamalla, R.P. Vaddepalli, S. Sannigrahi, P.R. Veerareddy, Methoxy VO–salen stimulates pancreatic β cell survival by upregulation of eNOS and downregulation of apoptosis in STZ-induced diabetic rats. Biol. Trace Elem. Res. (2011). doi: 10.1007/s12011-011-9139-1 Google Scholar
  11. 11.
    N.T.L. Chigorimbo-Murefua, R. Sergio, S.G. Burton, Lipase catalysed synthesis of esters of ferulic acid with natural compounds and evaluation of their antioxidant properties. J. Mol. Catal. B 56(4), 277–282 (2009). doi: 10.1016/j.molcatb.2008.05.017 CrossRefGoogle Scholar
  12. 12.
    B.M. Thyagaraju, Muralidhara, Ferulic acid supplements abrogate oxidative impairments in liver and testis in the streptozotocin-diabetic rat. Zool. Sci. 25(8), 854–860 (2008)PubMedCrossRefGoogle Scholar
  13. 13.
    H. Ohkawa, N. Ohishi, K. Yagi, Assay for lipid peroxides in animal tissue by thiobarbituric reaction. Anal. Biochem. 95(2), 351–358 (2004). doi: 10.1016/0003-2697(79)90738-3 CrossRefGoogle Scholar
  14. 14.
    R. Kakkar, V.S. Mantha, J. Radhi, K. Prasad, J. Kalra, Increased oxidative stress in rat liver and pancreas during progression of streptozotocin-induced diabetes. Clin. Sci. 94, 623–632 (1998)PubMedGoogle Scholar
  15. 15.
    R. Kakkar, J. Kalra, S.V. Mantha, K. Prasad, Lipid peroxidation and antioxidant enzyme activity in streptozotocin-induced Fischer rats. Mol. Cell. Biochem. 151, 113–119 (1995)PubMedCrossRefGoogle Scholar
  16. 16.
    R. Balaraman, P.A. Bafna, S.A. Kolhapure, Antioxidant activity of DHC-1—a herbal formulation. J. Ethnopharmacol. 94, 135–141 (2004). doi: 10.1016/j.jep.2004.05.008 PubMedCrossRefGoogle Scholar
  17. 17.
    K. Srinivasan, P. Ramarao, Animal models in type 2 diabetes research: an overview. Indian J. Med. Res. 125, 451–472 (2007)PubMedGoogle Scholar
  18. 18.
    N. Takasu, T. Asawa, I. Komiya, Y. Nagasawa, T. Yamada, Alloxan induced DNA strand breaks in pancreatic islets. Evidence for H2O2 as an intermediate. J. Biol. Chem. 266, 2112–2114 (1991)PubMedGoogle Scholar
  19. 19.
    M. Eslnar, B. Guldbakke, M. Tiedge, R. Munday, S. Lenzen, Relative importance of transport and alkylation for pancreatic beta cells toxicity of streptozotocin. Diabetologia 43, 1528–1533 (2000). doi: 10.1007/s001250051564 CrossRefGoogle Scholar
  20. 20.
    M. Balasubashini, R. Rukkumani, V.P. Menon, Protective effects of ferulic acid on hyperlipidemic diabetic rats. Acta Diabetol. 40(3), 118–122 (2003). doi: 10.1007/s00592-003-0099-6 CrossRefGoogle Scholar
  21. 21.
    M. Ohnishi, T. Matuo, T. Tsuno, A. Hosoda, E. Nomura, H. Taniguchi, H. Sasaki, H. Morishita, Antioxidant activity and hypoglycemic effect of ferulic acid in STZ-induced diabetic mice and KK-Ay mice. BioFactors 21(1–4), 315–319 (2004). doi: 10.1002/biof.552210161 PubMedCrossRefGoogle Scholar
  22. 22.
    J. Baynes, Role of oxidative stress in development of complications in diabetes. Diabetes 40, 405–412 (1991). doi: 10.2337/diabetes.40.4.405 PubMedCrossRefGoogle Scholar
  23. 23.
    A. Vincent, J. Russell, P. Low, E. Feldman, Oxidative stress in the pathogenesis of diabetic neuropathy. Endocrine Rev. 25, 612–628 (2004). doi: 10.1210/er.2003-0019 CrossRefGoogle Scholar
  24. 24.
    J.W. Baynes, S.R. Thorpe, Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48(1), 1–9 (1999). doi: 10.2337/diabetes.48.1.1 PubMedCrossRefGoogle Scholar
  25. 25.
    P.L. Montilla, J.F. Vargas, I.F. Tunez, M.C. Munoz de Agueda, M.E. Valdelvira, E.S. Cabrera, Oxidative stress in diabetic rats induced by streptozotocin: preventive effects of melatonin. J. Pineal Res. 25, 94–100 (1998). doi: 10.1111/j.1600-079X.1998.tb00545.x PubMedCrossRefGoogle Scholar
  26. 26.
    M.S. Balasubashini, R. Rukkumani, P. Viswanathan, V.P. Menon, Ferulic acid alleviates lipid peroxidation in diabetic rats. Phytother. Res. 18(4), 310–314 (2004). doi: 10.1002/ptr.1440 PubMedCrossRefGoogle Scholar
  27. 27.
    J. Fujii, Y. Iuchi, S. Matsuki, T. Ishii, Cooperative function of antioxidant and redox systems against oxidative stress in male reproductive tissues. Asian J. Androl. 5, 231–242 (2003). doi: 10.1038/aja.2008.47 PubMedGoogle Scholar
  28. 28.
    N. Lin, H. Chen, H. Zhang, X. Wan, Q. Su, Mitochondrial reactive oxygen species (ROS) inhibition ameliorates palmitate induced INS-1 beta cell death. Endocrine 42, 107–117 (2012). doi: 10.1007/s12020-012-9633-z PubMedCrossRefGoogle Scholar
  29. 29.
    R.G. Mirmira, Saturated free fatty acids: islet β cell “stressERs”. Endocrine 42, 1–2 (2012). doi: 10.1007/s12020-012-9713-0 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Souvik Roy
    • 1
    Email author
  • Satyajit Kumar Metya
    • 1
  • Santanu Sannigrahi
    • 1
  • Noorjaman Rahaman
    • 1
  • Faiqa Ahmed
    • 1
  1. 1.Department of Pharmaceutical TechnologyNSHM Knowledge CampusKolkataIndia

Personalised recommendations