Endocrine

, Volume 44, Issue 1, pp 33–39

The role of leptin in obesity and the potential for leptin replacement therapy

  • Helin Feng
  • Lihua Zheng
  • Zhangying Feng
  • Yaheng Zhao
  • Ning Zhang
Review

Abstract

Leptin (from the Greek word “lepto’’ meaning “thin”) is a 167-amino acid peptide hormone encoded by the obesity (ob) gene and secreted by white adipocytes. Blood leptin concentrations are increased in obese individuals. Leptin is a satiety hormone that provides negative feedback to the hypothalamus, controlling appetite and energy expenditure. Leptin binds to presynaptic GABAergic neurons to produce its effect, raising the distinct possibility that GABAergic axon terminals are the ultimate subcellular site of action for its effects. Released into the circulation, leptin crosses the blood–brain barrier and binds to leptin receptors, influencing the activity of various hypothalamic neurons, as well as encoding orexigenic and anorexigenic neuropeptides. Moreover, leptin affects a wide range of metabolic functions in the peripheral tissue. In this review, we discuss some physiologic functions of leptin, including effects on obesity and some effects of leptin replacement therapy.

Keywords

Leptin Obesity Leptin replacement therapy 

References

  1. 1.
    H.R. Byun, D.K. Kim, J.Y. Koh, Obesity and downregulated hypothalamic leptin receptors in male metallothionein-3-null mice. Neurobiol. Dis. 44, 125–132 (2011)PubMedCrossRefGoogle Scholar
  2. 2.
    R.P. Bogers, W.J. Bemelmans, R.T. Hoogenveen, H.C. Boshuizen, M. Woodward, P. Knekt, R.M. van Dam, F.B. Hu, T.L. Visscher, A. Menotti, R.J. Thorpe, K. Jamrozik, S. Calling, B.H. Strand, M.J. Shipley, Association of overweight with increased risk of coronary heart disease partly independent of blood pressure and cholesterol levels: a meta-analysis of 21 cohort studies including more than 300 000 persons. Arch. Intern. Med. 167, 1720–1728 (2007)PubMedCrossRefGoogle Scholar
  3. 3.
    W. Vongpatanasin, Cardiovascular morbidity and mortality in high-risk populations: epidemiology and opportunities for risk reduction. J. Clin. Hypertens. (Greenwich) 9(11 Suppl 4), 11–15 (2007)Google Scholar
  4. 4.
    P. Mitrou, V. Lambadiari, E. Maratou, Skeletal muscle insulin resistance in morbid obesity: the role of interleukin-6 and leptin. Exp. Clin. Endocrinol. Diabetes 119, 484–489 (2011)PubMedCrossRefGoogle Scholar
  5. 5.
    J.A. Cooper, K.S. Polonsky, D.A. Schoeller, Serum leptin levels in obese males during over- and underfeeding. Obesity. 17, 2149–2154 (2009)PubMedCrossRefGoogle Scholar
  6. 6.
    C.M. Boustany-Kari, V.M. Jackson, C.P. Gibbons, A.G. Swick, Leptin potentiates the anti-obesity effects of rimonabant. Eur. J. Pharmacol. 658, 270–276 (2011)PubMedCrossRefGoogle Scholar
  7. 7.
    M.D. Klork, S. Jakobsdottir, M.L. Drent, The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes. Rev. 8, 21–34 (2007)CrossRefGoogle Scholar
  8. 8.
    M.G. Myers, R.L. Leibel, R.J. Seeley, M.W. Schwartz, Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol. Metab. 21, 643–651 (2010)PubMedCrossRefGoogle Scholar
  9. 9.
    L. Vong, C. Ye, Z. Yang, B. Choi, S. Chua, B.B. Lowell, Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Cell 71, 142–154 (2011)Google Scholar
  10. 10.
    T. Reinehr, M. Kleber, G. de Sousa, W. Andlerl, Leptin concentrations are a predictor of overweight reduction in a lifestyle intervention. Int. J. Pediatr. Obes. 4, 215–223 (2009)PubMedCrossRefGoogle Scholar
  11. 11.
    C.J. Hukshorn, M.S. Westerterp-Plantenga, W.H.M. Saris, Pegylated human recombinant leptin [PEG-OB] causes additional weight loss in severely energy-restricted, overweight men. Am. J. Clin. Nutr. 77, 771–776 (2003)PubMedGoogle Scholar
  12. 12.
    K. Holtkamp, J. Hebebrand, C. Mika, I. Grzella, M. Heer, N. Heussen, B. Herpertz-Dahlmann, The effect of therapeutically induced weight gain on plasma leptin levels in patients with anorexia nervosa. J. Psychiatr. Res. 37, 165–169 (2003)PubMedCrossRefGoogle Scholar
  13. 13.
    Y. Bai, S. Zhang, K.S. Kim, J.K. Lee, K.H. Kim, Obese gene expression alters the ability of 30A5 preadipocytes to respond to lipogenic hormones. J. Biol. Chem. 271, 13939–13942 (1996)PubMedCrossRefGoogle Scholar
  14. 14.
    T. Reinehr, J. Kratzsch, W. Kiess, W. Andler, Circulating soluble leptin receptor, leptin, and insulin resistance before and after weight loss in obese children. Int. J. Obes. (Lond) 29, 1230–1235 (2005)CrossRefGoogle Scholar
  15. 15.
    R. Talisman, N. Belinson, D. Modan-Moses, H. Canti, A. Orenstein, Z. Barzilai, G. Parret, The effect of reduction of the peripheral fat content by liposuction-assisted lipectomy [SAL] on serum leptin levels in the postoperative period: a prospective study. Aesthetic Plast. Surg. 25, 265–268 (2001)CrossRefGoogle Scholar
  16. 16.
    M. Azrad, B.A. Gower, G.R. Hunter, T.R. Nagy, Racial differences in adiponectin and leptin in healthy premenopausal women. Endocrine (2012) [Epub ahead of print]Google Scholar
  17. 17.
    G.R. Steinberg, M. Parolin, G.J.F. Heigenhauser, D.J. Dycki, Leptin increases FA oxidation in lean but not obese human skeletal muscle: evidence of peripheral leptin resistance. Am. J. Physiol. Endocrinol. Metab. 283, 187–192 (2002)Google Scholar
  18. 18.
    M. Maffei, J. Halaas, E. Ravussin, R.E. Pratley, G.H. Lee, Y. Zhang, H. Fei, S. Kim, R. Lallone, S. Ranganathan, Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat. Med. 1, 1155–1161 (1995)PubMedCrossRefGoogle Scholar
  19. 19.
    E. Resmini, G. Andraghtti, A. Rebora, R. Cordera, L. Vera, M. Giusti, F. Minuto, D. Ferone, Leptin, ghrelin, and adiponectin evaluation in transsexual subjects during hormonal treatments. J. Androl. 29, 580–585 (2008)PubMedCrossRefGoogle Scholar
  20. 20.
    S.H. Bates, M.G. Myers, The role of leptin receptor signaling in feeding and neuroendocrine function. Trends Endocrinol. Metab. 14, 447–452 (2003)PubMedCrossRefGoogle Scholar
  21. 21.
    J.M. Friedman, J.L. Halaas, Leptin and the regulation of body weight in mammals. Nature 395, 763–770 (1998)PubMedCrossRefGoogle Scholar
  22. 22.
    G.J. da Paz-Filho, A. Volaco, H.L. Suplicy, R.B. Radominski, C.L. Boguszewski, Decrease in leptin production by the adipose tissue in obesity associated with severe metabolic syndrome. Arq. Bras. Endocrinol. Metab. 53, 1088–1095 (2009)CrossRefGoogle Scholar
  23. 23.
    S.P. Kalra, Central leptin insufficiency syndrome: an interactive etiology for obesity, metabolic and neural diseases and for designing new therapeutic interventions. Peptides 29, 127–138 (2008)PubMedCrossRefGoogle Scholar
  24. 24.
    L.Y. Shih, T.H. Liou, J.C. Chao, H.N. Kau, Y.J. Wu, M.J. Shieh, C.Y. Yeh, B.C. Han, Leptin, superoxide dismutase, and weight loss: initial leptin predicts weight loss. Obesity (Silver Spring) 14, 2184–2192 (2006)CrossRefGoogle Scholar
  25. 25.
    C. Verdich, S. Toubro, B. Buemann, J.J. Holst, J. Bülow, L. Simonsen, S.B. Søndergaard, N.J. Christensen, A. Astrup, Leptin levels are associated with fat oxidation and dietary-induced weight loss in obesity. Obes. Res. 9, 452–461 (2001)PubMedCrossRefGoogle Scholar
  26. 26.
    E. Naslund, I. Andersson, M. Degerblad, P. Kogner, J.G. Kral, S. Rössner, P.M. Hellström, Associations of leptin, insulin resistance and thyroid function with long-term weight loss in dieting obese men. J. Intern. Med. 248, 299–308 (2000)PubMedCrossRefGoogle Scholar
  27. 27.
    M. Nakamura, M. Tanaka, N. Kinukawa, S. Abe, K. Itoh, K. Imai, T. Masuda, H. Nakao, Association between basal serum and leptin levels and changes in abdominal fat distribution during weight loss. J. Atheroscler. Thromb. 6, 28–32 (2000)PubMedGoogle Scholar
  28. 28.
    R. Talisman, N. Belinson, D. Modan-Moses, H. Canti, A. Orenstein, Z. Barzilai, G. Parret, The effect of reduction of the peripheral fat content by liposuction-assisted lipectomy [SAL] on serum leptin levels in the postoperative period: a prospective study. Aesthetic Plast. Surg. 25, 265–268 (2001)CrossRefGoogle Scholar
  29. 29.
    A. Lammert, W. Kiess, A. Bottner, A. Glasow, J. Kratzsch, Soluble leptin receptor represents the main leptin binding activity in human blood. Biochem. Biophys. Res. Commun. 283, 982–988 (2001)PubMedCrossRefGoogle Scholar
  30. 30.
    M. Rauchenzauner, E. Haberlandt, S. Scholl-Bürgi, D. Karall, E. Schoenherr, T. Tatarczyk, J. Engl, M. Laimer, G. Luef, C.F. Ebenbichler, Effect of valproic acid treatment on body composition, leptin and the soluble leptin receptor in epileptic children. Epilepsy Res. 80, 142–149 (2008)PubMedCrossRefGoogle Scholar
  31. 31.
    J. Beltrand, N. Lahlou, T. Le Charpentier, G. Sebag, S. Leka, M. Polak, N. Tubiana-Rufi, D. Lacombe, M. de Kerdanet, F. Huet, J.J. Robert, D. Chevenne, P. Gressens, C. Lévy-Marchal, Resistance to leptin-replacement therapy in Berardinelli–Seip congenital lipodystrophy: an immunological origin. Eur. J. Endocrinol. 162, 1083–1091 (2010)PubMedCrossRefGoogle Scholar
  32. 32.
    J.S. Flier, Obesity wars: molecular progress confronts an expanding epidemic. Cell 116, 337–350 (2004)PubMedCrossRefGoogle Scholar
  33. 33.
    S.D. Rhee, Y.Y. Sung, Y.S. Lee, Obesity of TallyHO/JngJ mouse is due to increased food intake with early development of leptin resistance. Exp. Clin. Endocrinol. Diabetes 119, 243–251 (2011)PubMedCrossRefGoogle Scholar
  34. 34.
    J.F. Caro, J.W. Kolaczynski, M.R. Nyce, J.P. Ohannesian, I. Opentanova, W.H. Goldman, R.B. Lynn, P.L. Zhang, M.K. Sinha, R.V. Considine, Decreased cerebrospinal fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet 348, 159–161 (1996)PubMedCrossRefGoogle Scholar
  35. 35.
    M. Van Heek, D.S. Compton, C.F. France, R.P. Tedesco, A.B. Fawzi, M.P. Graziano, E.J. Sybertz, C.D. Strader, H.R. Davis, Diet-induced obese mice develop peripheral, but not central, resistance to leptin. J. Clin. Invest. 99, 385–390 (1997)PubMedCrossRefGoogle Scholar
  36. 36.
    K. El-Haschimi, D.D. Pierroz, S.M. Hileman, C. Bjørbaek, J.S. Flier, Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J. Clin. Invest. 105, 1827–1832 (2000)PubMedCrossRefGoogle Scholar
  37. 37.
    H. Mori, R. Hanada, T. Hanada, D. Aki, R. Mashima, H. Nishinakamura, T. Torisu, K.R. Chien, H. Yasukawa, A. Yoshimura, Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat. Med. 10, 739–743 (2004)PubMedCrossRefGoogle Scholar
  38. 38.
    G. de Lartigue, C. Barbier de la Serre, E. Espero, J. Lee, H.E. Raybould, Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons. Am. J. Physiol. Endocrinol. Metab. 301, 187–195 (2011)CrossRefGoogle Scholar
  39. 39.
    C. Bjørbaek, J.K. Elmquist, J.D. Frantz, S.E. Shoelson, J.S. Flier, Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol. Cell 1, 619–625 (1998)PubMedCrossRefGoogle Scholar
  40. 40.
    Z. Wang, Y.T. Zhou, T. Kakuma, Y. Lee, S.P. Kalra, P.S. Kalra, W. Pan, R.H. Unger, Leptin resistance of adipocytes in obesity: role of suppressors of cytokine signaling. Biochem. Biophys. Res. Commun. 277, 20–26 (2000)PubMedCrossRefGoogle Scholar
  41. 41.
    N. Yiannakouris, M. Yannakoulia, L. Melistas, J.L. Chan, D. Klimis-Zacas, C.S. Mantzoros, The Q223R polymorphism of the leptin receptor gene is significantly associated with obesity and predicts a small percentage of body weight and body composition variability. J. Clin. Endocrinol. Metab. 86, 4434–4439 (2001)PubMedCrossRefGoogle Scholar
  42. 42.
    X.S. Wu-Peng, S.C. Chua Jr, N. Okada, S.M. Liu, M. Nicolson, R.L. Leibel, Phenotype of the obese Koletsky [f] rat due to Tyr763Stop mutation in the extracellular domain of the leptin receptor [Lepr]. Evidence for deficient plasma-to-CSF transport of leptin in both the Zucker and Koletsky obese rat. Diabetes 46, 513–518 (1997)PubMedCrossRefGoogle Scholar
  43. 43.
    S.C. Chua Jr, W.K. Chung, X.S. Wu-Peng, Y. Zhang, S.M. Liu, L. Tartaglia, R.L. Leibel, Phenotypes of mouse diabetes and rat fatty due to mutations in the OB [leptin] receptor. Science 271, 994–996 (1996)PubMedCrossRefGoogle Scholar
  44. 44.
    S.D. Rhee, Y.Y. Sung, Y.S. Lee, J.Y. Kim, W.H. Jung, M.J. Kim, M.S. Lee, M.K. Lee, S.D. Yang, H.G. Cheon, Obesity of TallyHO/JngJ mouse is due to increased food intake with early development of leptin resistance. Exp. Clin. Endocrinol. Diabetes 119, 243–251 (2011)PubMedCrossRefGoogle Scholar
  45. 45.
    A.S. Anubhuti, Leptin and its metabolic interactions-an update. Diabetes Obes. Metab. 10, 973–993 (2008)PubMedCrossRefGoogle Scholar
  46. 46.
    K. Holtkamp, J. Hebebrand, C. Mika, M. Heer, N. Heussen, B. Herpertz-Dahlmann, High serum leptin levels subsequent to weight gain predict renewed weight loss in patients with anorexia nervosa. Psychoneuroendocrinology 29, 791–797 (2004)PubMedCrossRefGoogle Scholar
  47. 47.
    T. Reinehr, A. Isa, G. de Sousa, R. Dieffenbach, W. Andler, Thyroid hormones and their relationship to weight status. Horm. Res. 70, 51–57 (2008)PubMedCrossRefGoogle Scholar
  48. 48.
    J.H. Pinkney, S.J. Goodrick, J. Katz, A.B. Johnson, S.L. Lightman, S.W. Coppack, V. Mohamed-Ali, Leptin and the pituitary-thyroid axis: a comparative study in lean, obese, hypothyroid and hyperthyroid subjects. Clin. Endocrinol. (Oxford) 49, 583–588 (1998)CrossRefGoogle Scholar
  49. 49.
    T.M. Ortiga-Carvalho, K.J. Oliveira, B.A. Soares, C.C. Pazos-Moura, The role of leptin in the regulation of TSH secretion in the fed state: in vivo and in vitro studies. J. Endocrinol. 174, 121–125 (2002)PubMedCrossRefGoogle Scholar
  50. 50.
    A. Constantin, G. Costache, A.V. Sima, C.S. Glavce, M. Vladica, D.L. Popov, Leptin G-2548A and leptin receptor Q223R gene polymorphisms are not associated with obesity in Romanian subjects. Biochem. Biophys. Res. Commun. 391, 282–286 (2010)PubMedCrossRefGoogle Scholar
  51. 51.
    W. Berardinelli, An undiagnosed endocrinometabolic syndrome: report of 2 cases. J. Clin. Endocrinol. Metab. 14, 193–204 (1954)PubMedCrossRefGoogle Scholar
  52. 52.
    M. Seip, O. Trygstad, Generalized lipodystrophy. Arch. Dis. Child. 38, 447–453 (1963)PubMedCrossRefGoogle Scholar
  53. 53.
    A.K. Agarwal, E. Arioglu, S. de Almeida, N. Akkoc, S.I. Taylor, A.M. Bowcock, R.I. Barnes, A. Garg, AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat. Genet. 31, 21–23 (2002)PubMedCrossRefGoogle Scholar
  54. 54.
    J. Magré, M. Delepine, E. Khallouf, T.J. Gedde-Dahl, L. Van Maldergem, E. Sobel, J. Papp, M. Meier, A. Mégarbané, B.W. Group, M. Lathrop, J. Capeau, Identification of the gene altered in Berardinelli–Seip congenital lipodystrophy on chromosome 11q13. Nat. Genet. 28, 365–370 (2001)PubMedCrossRefGoogle Scholar
  55. 55.
    C.A. Kim, M. Delepine, E. Boutet, H. El Mourabit, S. Le Lay, M. Meier, M. Nemani, E. Bridel, C.C. Leite, D.R. Bertola, R.K. Semple, S. O’Rahilly, I. Dugail, J. Capeau, M. Lathrop, J. Magre, Association of a homozygous nonsense caveolin-1 mutation with Berardinelli–Seip congenital lipodystrophy. J. Clin. Endocrinol. Metab. 93, 1129–1134 (2008)PubMedCrossRefGoogle Scholar
  56. 56.
    K.M. Szymanski, D. Binns, R. Bartz, N.V. Grishin, W.P. Li, A.K. Agarwal, A. Garg, R.G. Anderson, J.M. Goodman, The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc. Natl. Acad. Sci. U.S.A. 104, 20890–20895 (2007)PubMedCrossRefGoogle Scholar
  57. 57.
    M.L. Reitman, E. Arioglu, O. Gavrilova, S.I. Taylor, Lipodystrophy revisited. Trends Endocrinol. Metab. 11, 410–416 (2000)PubMedCrossRefGoogle Scholar
  58. 58.
    R.D. Lawrence, Lipodystrophy and hepatomegaly with diabetes, lipaemia, and other metabolic disturbances: a case throwing new light on the action of insulin. Lancet 1, 773 (1946)PubMedCrossRefGoogle Scholar
  59. 59.
    A.A. Rossini, J. Self, T.T. Aoki, R.F. Goldman, S.R. Newmark, M.M. Meguid, J.S. Soeldner, G.F. Cahill, Metabolic and endocrine studies in a case of lipoatrophic diabetes. Metabolism 26, 637–650 (1977)PubMedCrossRefGoogle Scholar
  60. 60.
    I. Shimomura, R.E. Hammer, J.A. Richardson, S. Ikemoto, Y. Bashmakov, J.L. Goldstein, M.S. Brown, Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev. 12, 3182–3194 (1998)PubMedCrossRefGoogle Scholar
  61. 61.
    J. Moitra, M.M. Mason, M. Olive, D. Krylov, O. Gavrilova, B. Marcus-Samuels, L. Feigenbaum, E. Lee, T. Aoyama, M. Eckhaus, M.L. Reitman, C. Vinson, Life without white fat: a transgenic mouse. Genes Dev. 12, 3168–3181 (1998)PubMedCrossRefGoogle Scholar
  62. 62.
    O. Gavrilova, B. Marcus-Samuels, D. Graham, J.K. Kim, G.I. Shulman, A.L. Castle, C. Vinson, M. Eckhaus, M.L. Reitman, Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J. Clin. Invest. 105, 271–278 (2000)PubMedCrossRefGoogle Scholar
  63. 63.
    F. Andreelli, H. Hanaire-Broutin, M. Laville, J.P. Tauber, J.P. Riou, C. Thivolet, Normal reproductive function in leptin-deficient patients with lipodystrophy. J. Clin. Endocrinol. Metab. 85, 715–719 (2000)PubMedCrossRefGoogle Scholar
  64. 64.
    I. Shimomura, R.E. Hammer, S. Ikemoto, M.S. Brown, J.L. Goldstein, Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 401, 73–76 (1999)PubMedCrossRefGoogle Scholar
  65. 65.
    K. Ebihara, Y. Ogawa, H. Masuzaki, M. Shintani, F. Miyanaga, M. Aizawa-Abe, T. Hayashi, K. Hosoda, G. Inoue, Y. Yoshimasa, O. Gavrilova, M.L. Reitman, K. Nakao, Transgenic overexpression of leptin rescues insulin resistance and diabetes in a mouse model of lipoatrophic diabetes. Diabetes 50, 1440–1448 (2001)PubMedCrossRefGoogle Scholar
  66. 66.
    A. Esteghamati, A. Zandieh, B. Zandieh, O. Khalilzadeh, A. Meysamie, M. Nakhjavani, M.M. Gouya, Leptin cut-off values for determination of metabolic syndrome: third national surveillance of risk factors of non-communicable diseases in Iran (SuRFNCD-2007). Endocrine 40, 117–123 (2011)PubMedCrossRefGoogle Scholar
  67. 67.
    E.A. Oral, V. Simha, E. Ruiz, A. Andewelt, A. Premkumar, P. Snell, A.J. Wagner, A.M. DePaoli, M.L. Reitman, S.I. Taylor, P. Gorden, A. Garg, Leptin-replacement therapy for lipodystrophy. N. Engl. J. Med. 346, 570–578 (2002)PubMedCrossRefGoogle Scholar
  68. 68.
    A.J. Kruger, C. Yang, K.L. Lipson, S.C. Pino, J.H. Leif, C.M. Hogan, B.J. Whalen, D.L. Guberski, Y. Lee, R.H. Unger, D.L. Greiner, A.A. Rossini, R. Bortell, Leptin treatment confers clinical benefit at multiple stages of virally induced type 1 diabetes in BB rats. Autoimmunity 44, 137–148 (2011)PubMedCrossRefGoogle Scholar
  69. 69.
    V.P. Andreev, G. Paz-Filho, M.L. Wong, J. Licinio, Deconvolution of insulin secretion, insulin hepatic extraction post-hepatic delivery rates and sensitivity during 24-hour standardized meals: time course of glucose homeostasis in leptin replacement treatment. Horm. Metab. Res. 41, 142–151 (2009)PubMedCrossRefGoogle Scholar
  70. 70.
    G. Paz-Filho, K. Esposito, B. Hurwitz, A. Sharma, C. Dong, V. Andreev, T. Delibasi, H. Erol, A. Ayala, M.L. Wong, J. Licinio, Changes in insulin sensitivity during leptin replacement therapy in leptin-deficient patients. Am. J. Physiol. Endocrinol. Metab. 295, E1401–E1408 (2008)PubMedCrossRefGoogle Scholar
  71. 71.
    J. Beltrand, M. Beregszaszi, D. Chevenne, G. Sebag, M. de Kerdanet, F. Huet, M. Polak, N. Tubiana-Rufi, D. Lacombe, A.M. de Paoli, C. Levy-Marchal, Metabolic correction induced by leptin replacement treatment in young children with Berardinelli-Seip congenital lipoatrophy. Pediatrics 120, 291–296 (2007)CrossRefGoogle Scholar
  72. 72.
    S.A. Moran, N. Patten, J.R. Young, E. Cochran, N. Sebring, J. Reynolds, A. Premkumar, A.M. Depaoli, M.C. Skarulis, E.A. Oral, P. Gorden, Changes in body composition in patients with severe lipodystrophy after leptin replacement therapy. Metabolism 53, 513–519 (2004)PubMedCrossRefGoogle Scholar
  73. 73.
    S.H. Chou, J.P. Chamberland, X. Liu, G. Matarese, C. Gao, R. Stefanakis, M.T. Brinkoetter, H. Gong, K. Arampatzi, C.S. Mantzoros, Leptin is an effective treatment for hypothalamic amenorrhea. Proc. Natl. Acad. Sci. U.S.A. 108, 6585–6590 (2011)PubMedCrossRefGoogle Scholar
  74. 74.
    C.K. Welt, J.L. Chan, J. Bullen, R. Murphy, P. Smith, A.M. DePaoli, A. Karalis, C.S. Mantzoros, Recombinant human leptin in women with hypothalamic amenorrhea. N. Engl. J. Med. 351, 987–997 (2004)PubMedCrossRefGoogle Scholar
  75. 75.
    J. Licinio, S. Caglayan, M. Ozata, B.O. Yildiz, P.B. de Miranda, F. O’Kirwan, R. Whitby, L. Liang, P. Cohen, S. Bhasin, R.M. Krauss, J.D. Veldhuis, A.J. Wagner, A.M. DePaoli, S.M. McCann, M.L. Wong, Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc. Natl. Acad. Sci. U.S.A. 101, 4531–4536 (2004)PubMedCrossRefGoogle Scholar
  76. 76.
    G. Paz-Filho, C. Mastronardi, T. Delibasi, Congenital leptin deficiency: diagnosis and effects of leptin replacement therapy. Arq. Bras. Endocrinol. Metab. 54, 690–697 (2010)CrossRefGoogle Scholar
  77. 77.
    G. Paz-Filho, M.L. Wong, J. Licinio, Ten years of leptin replacement therapy. Obesity 12, 315–323 (2011)CrossRefGoogle Scholar
  78. 78.
    G.J. Paz-Filho, D. Andrews, K. Esposito, H.K. Erol, T. Delibasi, M.L. Wong, J. Licinio, Effects of leptin replacement on risk factors for cardiovascular disease in genetically leptin-deficient subjects. Horm. Metab. Res. 41, 164–167 (2009)PubMedCrossRefGoogle Scholar
  79. 79.
    G.J. Paz-Filho, T. Delibasi, H.K. Erol, M.L. Wong, J. Licinio, Cellular immunity before and after leptin replacement therapy. J. Pediatr. Endocrinol. Metab. 22, 1069–1074 (2009)PubMedCrossRefGoogle Scholar
  80. 80.
    E.D. London, S.M. Berman, S. Chakrapani, T. Delibasi, J. Monterosso, H.K. Erol, G. Paz-Filho, M.L. Wong, J. Licinio, Short-term plasticity of gray matter associated with leptin deficiency and replacement. J. Clin. Endocrinol. Metab. 96, E1212–E1220 (2011)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Helin Feng
    • 1
  • Lihua Zheng
    • 2
  • Zhangying Feng
    • 3
  • Yaheng Zhao
    • 2
  • Ning Zhang
    • 4
  1. 1.Department of OrthopedicsThe Fourth Affiliated Hospital of Hebei Medical UniversityShijiazhuangChina
  2. 2.Department of General SurgeryThe Fourth Affiliated Hospital of Hebei Medical UniversityShijiazhuangChina
  3. 3.Beijing Key Laboratory of Drug Target and Screening ResearchInstitute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
  4. 4.Department of CardiologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina

Personalised recommendations