Endocrine

, Volume 43, Issue 3, pp 626–634

Prevalence of cachexia in chronic heart failure and characteristics of body composition and metabolic status

  • Heidi Marie Christensen
  • Caroline Kistorp
  • Morten Schou
  • Niels Keller
  • Bo Zerahn
  • Jan Frystyk
  • Peter Schwarz
  • Jens Faber
Original Article

Abstract

The prevalence of cardiac cachexia has previously been estimated to 8–42 %. However, novel treatment strategies for chronic heart failure (CHF) have improved and decreased morbidity and mortality. Therefore, we aimed to reassess the prevalence of cachexia in an outpatient CHF clinic and to characterize a CHF population with and without cachexia with respect to body composition and related biomarkers. From 2008 to 2011, we screened 238 optimally treated, non-diabetic CHF patients for cardiac cachexia, defined as unintentional non-oedematous weight loss of >5 % over ≥6 months. CHF patients (LVEF <45 %) with cachexia (n = 19) and without (n = 19) were compared to controls with prior myocardial infarction and left ventricular ejection fraction (LVEF) >45 % (n = 19). The groups were matched for age, sex, and kidney function. Body composition was assessed by dual energy X-ray absorptiometry. The prevalence of cachexia was 10.5 %. Abdominal fat ± SD (%) was reduced in cachectic CHF: 27.4 ± 10.0 versus 37.5 ± 10.6 % (CHF, no cachexia) and 40.6 ± 8.0 % (controls), (P < 0.001). NT-proBNP levels were inversely correlated to abdominal fat in a multivariate linear regression analysis adjusted for known predictors of NT-proBNP (LVEF and NYHA); (β = −0.28; P = 0.018). Myostatin levels were reduced in cachectic CHF compared to controls (P = 0.013). The prevalence of cachexia in stable CHF, treated according to recent guidelines, is lower than previously anticipated. Body alterations in cachexia consist mainly of reduced abdominal fat mass, and its inverse correlation to NT-proBNP suggests involvement of abdominal lipolysis. Our data do not support a role of circulating myostatin as a biomarker for muscle wasting.

Keywords

Chronic heart failure Cardiac cachexia Body composition Prevalence Biomarkers 

References

  1. 1.
    T.B. Horwich, G.C. Fonarow, M.A. Hamilton, W.R. MacLellan, M.A. Woo, J.H. Tillisch, The relationship between obesity and mortality in patients with heart failure. J. Am. Coll. Cardiol. 38, 789–795 (2001)PubMedCrossRefGoogle Scholar
  2. 2.
    C.J. Lavie, A.F. Osman, R.V. Milani, M.R. Mehra, Body composition and prognosis in chronic systolic heart failure: the obesity paradox. Am. J. Cardiol. 91, 891–894 (2003)PubMedCrossRefGoogle Scholar
  3. 3.
    A. Oreopoulos, R. Padwal, K. Kalantar-Zadeh, G.C. Fonarow, C.M. Norris, F.A. McAlister, Body mass index and mortality in heart failure: a meta-analysis. Am. Heart J. 156, 13–22 (2008)PubMedCrossRefGoogle Scholar
  4. 4.
    S.J. Pocock, J.J. McMurray, J. Dobson, S. Yusuf, C.B. Granger, E.L. Michelson, J. Ostergren, M.A. Pfeffer, S.D. Solomon, S.D. Anker, K.B. Swedberg, Weight loss and mortality risk in patients with chronic heart failure in the candesartan in heart failure: assessment of reduction in mortality and morbidity (CHARM) programme. Eur. Heart J. 29, 2641–2650 (2008)PubMedCrossRefGoogle Scholar
  5. 5.
    S.D. Anker, P. Ponikowski, S. Varney, T.P. Chua, A.L. Clark, K.M. Webb-Peploe, D. Harrington, W.J. Kox, P.A. Poole-Wilson, A.J. Coats, Wasting as independent risk factor for mortality in chronic heart failure. Lancet 349, 1050–1053 (1997)PubMedCrossRefGoogle Scholar
  6. 6.
    H.S. Von, S.D. Anker, Cachexia as a major underestimated and unmet medical need: facts and numbers. J. Cachex. Sarcopenia. Muscle 1, 1–5 (2010)CrossRefGoogle Scholar
  7. 7.
    S.D. Anker, A. Negassa, A.J. Coats, R. Afzal, P.A. Poole-Wilson, J.N. Cohn, S. Yusuf, Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study. Lancet 361, 1077–1083 (2003)PubMedCrossRefGoogle Scholar
  8. 8.
    Effects of enalapril on mortality in severe congestive heart failure. Results of the cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). The CONSENSUS Trial Study Group. N. Engl. J. Med. 316, 1429–1435 (1987)Google Scholar
  9. 9.
    P.A. Poole-Wilson, K. Swedberg, J.G. Cleland, L.A. Di, P. Hanrath, M. Komajda, J. Lubsen, B. Lutiger, M. Metra, W.J. Remme, C. Torp-Pedersen, A. Scherhag, A. Skene, Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol or Metoprolol European Trial (COMET): randomised controlled trial. Lancet 362, 7–13 (2003)PubMedCrossRefGoogle Scholar
  10. 10.
    S.D. Anker, P.P. Ponikowski, A.L. Clark, F. Leyva, M. Rauchhaus, M. Kemp, M.M. Teixeira, P.G. Hellewell, J. Hooper, P.A. Poole-Wilson, A.J. Coats, Cytokines and neurohormones relating to body composition alterations in the wasting syndrome of chronic heart failure. Eur. Heart J. 20, 683–693 (1999)PubMedCrossRefGoogle Scholar
  11. 11.
    F. Gustafsson, H. Ulriksen, H. Villadsen, H. Nielsen, B.B. Andersen, R. Hildebrandt, Prevalence and characteristics of heart failure clinics in Denmark—design of the Danish heart failure clinics network. Eur. J. Heart Fail. 7, 283–284 (2005)PubMedCrossRefGoogle Scholar
  12. 12.
    C. Kistorp, J. Faber, S. Galatius, F. Gustafsson, J. Frystyk, A. Flyvbjerg, P. Hildebrandt, Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure. Circulation 112, 1756–1762 (2005)PubMedCrossRefGoogle Scholar
  13. 13.
    M.A. Laskey, Dual-energy X-ray absorptiometry and body composition. Nutrition 12, 45–51 (1996)PubMedCrossRefGoogle Scholar
  14. 14.
    M. Packer, A.J. Coats, M.B. Fowler, H.A. Katus, H. Krum, P. Mohacsi, J.L. Rouleau, M. Tendera, A. Castaigne, E.B. Roecker, M.K. Schultz, D.L. DeMets, Effect of carvedilol on survival in severe chronic heart failure. N. Engl. J. Med. 344, 1651–1658 (2001)PubMedCrossRefGoogle Scholar
  15. 15.
    W.J. Evans, J.E. Morley, J. Argiles, C. Bales, V. Baracos, D. Guttridge, A. Jatoi, K. Kalantar-Zadeh, H. Lochs, G. Mantovani, D. Marks, W.E. Mitch, M. Muscaritoli, A. Najand, P. Ponikowski, F.F. Rossi, M. Schambelan, A. Schols, M. Schuster, D. Thomas, R. Wolfe, S.D. Anker, Cachexia: a new definition. Clin. Nutr. 27, 793–799 (2008)PubMedCrossRefGoogle Scholar
  16. 16.
    M.A. Pfeffer, K. Swedberg, C.B. Granger, P. Held, J.J. McMurray, E.L. Michelson, B. Olofsson, J. Ostergren, S. Yusuf, S. Pocock, Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-overall programme. Lancet 362, 759–766 (2003)PubMedCrossRefGoogle Scholar
  17. 17.
    M.J. Toth, S.S. Gottlieb, M.L. Fisher, E.T. Poehlman, Skeletal muscle atrophy and peak oxygen consumption in heart failure. Am. J. Cardiol. 79, 1267–1269 (1997)PubMedCrossRefGoogle Scholar
  18. 18.
    H.S. Von, M. Lainscak, W. Doehner, P. Ponikowski, G. Rosano, J. Jordan, P. Rozentryt, M. Rauchhaus, R. Karpov, V. Tkachuk, Y. Parfyonova, A.Y. Zaritskey, E.V. Shlyakhto, J.G. Cleland, S.D. Anker, Diabetes mellitus, cachexia and obesity in heart failure: rationale and design of the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). J. Cachex. Sarcopenia. Muscle 1, 187–194 (2010)CrossRefGoogle Scholar
  19. 19.
    M.R. Hoenig, Hypothesis: myostatin is a mediator of cardiac cachexia. Int. J. Cardiol. 124, 131–133 (2008)PubMedCrossRefGoogle Scholar
  20. 20.
    N. Mangner, Y. Matsuo, G. Schuler, V. Adams, Cachexia in chronic heart failure: endocrine determinants and treatment perspectives. Endocrine (2012)Google Scholar
  21. 21.
    I. George, L.T. Bish, G. Kamalakkannan, C.M. Petrilli, M.C. Oz, Y. Naka, H.L. Sweeney, S. Maybaum, Myostatin activation in patients with advanced heart failure and after mechanical unloading. Eur. J. Heart Fail. 12, 444–453 (2010)PubMedCrossRefGoogle Scholar
  22. 22.
    D. Gruson, S.A. Ahn, J.M. Ketelslegers, M.F. Rousseau, Increased plasma myostatin in heart failure. Eur. J. Heart Fail. 13, 734–736 (2011)PubMedCrossRefGoogle Scholar
  23. 23.
    E. Zamora, R. Simo, J. Lupon, A. Galan, A. Urrutia, B. Gonzalez, D. Mas, V. Valle, Serum myostatin levels in chronic heart failure. Rev. Esp. Cardiol. 63, 992–996 (2010)PubMedCrossRefGoogle Scholar
  24. 24.
    H.Q. Han, W.E. Mitch, Targeting the myostatin signaling pathway to treat muscle wasting diseases. Curr. Opin. Support. Palliat. Care 5, 334–341 (2011)PubMedGoogle Scholar
  25. 25.
    P. Dessi-Fulgheri, R. Sarzani, A. Rappelli, Role of the natriuretic peptide system in lipogenesis/lipolysis. Nutr. Metab Cardiovasc. Dis. 13, 244–249 (2003)PubMedCrossRefGoogle Scholar
  26. 26.
    P.R. Kalra, S. Tigas, Regulation of lipolysis: natriuretic peptides and the development of cachexia. Int. J. Cardiol. 85, 125–132 (2002)PubMedCrossRefGoogle Scholar
  27. 27.
    M. Lafontan, C. Moro, M. Berlan, F. Crampes, C. Sengenes, J. Galitzky, Control of lipolysis by natriuretic peptides and cyclic GMP. Trends Endocrinol. Metab. 19, 130–137 (2008)PubMedCrossRefGoogle Scholar
  28. 28.
    J. Polak, M. Kotrc, Z. Wedellova, A. Jabor, I. Malek, J. Kautzner, L. Kazdova, V. Melenovsky, Lipolytic effects of B-type natriuretic peptide 1-32 in adipose tissue of heart failure patients compared with healthy controls. J. Am. Coll. Cardiol. 58, 1119–1125 (6-9-2011)Google Scholar
  29. 29.
    S.R. Das, M.H. Drazner, D.L. Dries, G.L. Vega, H.G. Stanek, S.M. Abdullah, R.M. Canham, A.K. Chung, D. Leonard, F.H. Wians Jr, J.A. de Lemos, Impact of body mass and body composition on circulating levels of natriuretic peptides: results from the Dallas Heart Study. Circulation 112, 2163–2168 (2005)PubMedCrossRefGoogle Scholar
  30. 30.
    J.P. Araujo, P. Lourenco, F. Rocha-Goncalves, A. Ferreira, P. Bettencourt, Adiponectin is increased in cardiac cachexia irrespective of body mass index. Eur. J. Heart Fail. 11, 567–572 (2009)PubMedCrossRefGoogle Scholar
  31. 31.
    M.B. McEntegart, B. Awede, M.C. Petrie, N. Sattar, F.G. Dunn, N.G. MacFarlane, J.J. McMurray, Increase in serum adiponectin concentration in patients with heart failure and cachexia: relationship with leptin, other cytokines, and B-type natriuretic peptide. Eur. Heart J. 28, 829–835 (2007)PubMedCrossRefGoogle Scholar
  32. 32.
    B. Schautz, W. Later, M. Heller, A. Peters, M.J. Muller, A. Bosy-Westphal. Impact of age on leptin and adiponectin independent of adiposity. Br. J. Nutr. 1–8 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Heidi Marie Christensen
    • 1
    • 2
    • 3
  • Caroline Kistorp
    • 1
  • Morten Schou
    • 4
  • Niels Keller
    • 2
  • Bo Zerahn
    • 5
  • Jan Frystyk
    • 6
    • 7
  • Peter Schwarz
    • 8
    • 9
  • Jens Faber
    • 1
    • 9
  1. 1.Department of EndocrinologyHerlev University HospitalHerlevDenmark
  2. 2.Department of CardiologyHerlev University HospitalHerlevDenmark
  3. 3.FrederiksbergDenmark
  4. 4.Department of CardiologyRigshospitalet, University Hospital of CopenhagenCopenhagenDenmark
  5. 5.Department of Clinical Physiology and Nuclear MedicineHerlev University HospitalHerlevDenmark
  6. 6.Medical Research Laboratories, Clinical Institute of MedicineAarhus UniversityAarhusDenmark
  7. 7.Department of Endocrinology and Internal MedicineAarhus University HospitalAarhusDenmark
  8. 8.Department of MedicineGlostrup University HospitalGlostrupDenmark
  9. 9.Faculty of Health SciencesCopenhagen UniversityCopenhagenDenmark

Personalised recommendations