, Volume 43, Issue 3, pp 643–650 | Cite as

Age-related changes in body composition and their relationship with bone mineral density decreasing rates in central south Chinese postmenopausal women

  • Hongbing Zhang
  • Xiangping Chai
  • Shuang Li
  • Zhimin Zhang
  • Lingqing Yuan
  • Hui Xie
  • Houde Zhou
  • Xiyu Wu
  • Zhifeng ShengEmail author
  • Eryuan Liao
Original Article


The purpose of this work is to investigate the age-related changes in body composition and their relationship with bone mineral density decreasing rates (BDR) in central south Chinese postmenopausal women. BDR is the percentage of bone mineral density (BMD) decreasing value relative to the peak bone mass. A cross-sectional study was conducted on 779 healthy postmenopausal women, aged 50–77. Lumbar spine, total hip, and femoral neck BMD and body composition were measured by dual-energy X-ray absorptiometry. In women under 65, lean mass levels showed a stable downward trend, and were significantly higher than those of the 65–70 and >70 age groups; however, the fat mass levels showed no significant difference between the age groups. After controlling for age, age at menopause, and height, both fat mass and lean mass positively correlated with BDR at the lumbar1–4 spine, the femoral neck and the total hip. When BDR at the lumbar1–4 spine was used as the dependent variable, a higher R 2 change and partial R 2 were seen in fat mass than the age, age at menopause or lean mass, indicating that fat mass was the most significant determinant of BDR at this site. When BDR at the femoral neck or total hip was used as the dependent variable, respectively, lean mass was a more significant determinant than that of fat mass. We found that with advancing age, lean mass begins to decrease in women aged over 65 years, but fat mass levels show no significant difference between the age groups. Both fat mass and lean mass positively correlate with BDR, with site-specific differences. Fat mass is the most significant determinant of BDR at the lumbar spine, whereas lean mass is the most significant determinant of BDR at the femoral neck and total hip.


Body composition Fat mass Lean mass BDR 



This work was supported grants from the National Nature Science Foundation of China (No. 81000361, No. 81070246), the Ministry of Education of People’s Republic of China (No. 20090162120050), the Natural Science Foundation of Hunan Province, China (No. 2009RS3014), the Chinese Postdoctoral Foundation (No. 20090461010, No. 201003512) and the Science Foundation of Central Higher School Foundation of China (No. 20101220044).

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.


  1. 1.
    G. Mazziotti, J. Bilezikian, E. Canalis, D. Cocchi, A. Giustina, New understanding and treatments for osteoporosis. Endocrine 41(1), 58–69 (2012)PubMedCrossRefGoogle Scholar
  2. 2.
    R.K. McCormick, Osteoporosis: integrating biomarkers and other diagnostic correlates into the management of bone fragility. Altern. Med. Rev. 12, 113–145 (2007)PubMedGoogle Scholar
  3. 3.
    D.W. Bates, D.M. Black, S.R. Cummings, Clinical use of bone densitometry: clinical applications. JAMA 288, 1898–1900 (2002)PubMedCrossRefGoogle Scholar
  4. 4.
    NIH Consensus Development Panel on Osteoporosis Prevention Diagnosis, and Therapy, March 7–29, 2000: highlights of the conference. South Med. J. 94, 569–573 (2001)Google Scholar
  5. 5.
    D.T. Felson, Y. Zhang, M.T. Hannan, J.J. Anderson, Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J. Bone Min. Res. 8, 567–573 (1993)CrossRefGoogle Scholar
  6. 6.
    H.S. Glauber, W.M. Vollmer, M.C. Nevitt, K.E. Ensrud, E.S. Orwoll, Body weight versus body fat distribution, adiposity, and frame size as predictors of bone density. J. Clin. Endocrinol. Metab. 80, 1118–1123 (1995)PubMedCrossRefGoogle Scholar
  7. 7.
    T. Douchi, S. Yamamoto, T. Oki, K. Maruta, R. Kuwahata, H. Yamasaki, Y. Nagata, Difference in the effect of adiposity or bone density between pre- and postmenopausal women. Maturitas 34, 261–266 (2000)PubMedCrossRefGoogle Scholar
  8. 8.
    L.J. Melton III, S.E. Gabriel, C.S. Crowson, A.N. Tosteson, O. Johnell, J.A. Kanis, Cost-equivalence of different osteoporotic fractures. Osteoporos. Int. 14, 383–388 (2003)PubMedCrossRefGoogle Scholar
  9. 9.
    I.R. Reid, Relationships between fat and bone. Osteoporos. Int. 19, 595–606 (2008)PubMedCrossRefGoogle Scholar
  10. 10.
    L.J. Zhao, H. Jiang, C.J. Papasian, D. Maulik, B. Drees, J. Hamilton, H.W. Deng, Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J. Bone Miner. Res. 23, 17–29 (2008)PubMedCrossRefGoogle Scholar
  11. 11.
    J.A. Kanis, L.J. Melton 3rd, C. Christiansen, C.C. Johnston, N. Khaltaev, The diagnosis of osteoporosis. J. Bone Miner. Res. 9, 1137–1141 (1994)PubMedCrossRefGoogle Scholar
  12. 12.
    B.L. Riggs, L.J. Melton 3rd, Involutional osteoporosis. N. Engl. J. Med. 314, 1676–1686 (1986)PubMedCrossRefGoogle Scholar
  13. 13.
    Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am. J. Med. 94, 646–650 (1993)Google Scholar
  14. 14.
    M.E. Arlot, E. Sornay-Rendu, P. Garnero, B. Vey-Marty, P.D. Delmas, Apparent pre- and postmenopausal bone loss evaluated by DXA at different skeletal sites in women: the OFELY cohort. J. Bone Miner. Res. 12, 683–690 (1997)PubMedCrossRefGoogle Scholar
  15. 15.
    S. Gnudi, E. Sitta, N. Fiumi, Relationship between body composition and bone mineral density in women with and without osteoporosis: relative contribution of lean and fat mass. J. Bone Miner. Metab. 25, 326–332 (2007)PubMedCrossRefGoogle Scholar
  16. 16.
    S. Li, R. Wagner, K. Holm, J. Lehotsky, M.J. Zinaman, Relationship between soft tissue body composition and bone mass in perimenopausal women. Maturitas 47, 99–105 (2004)PubMedCrossRefGoogle Scholar
  17. 17.
    X.G. Cheng, D.Z. Yang, Q. Zhou, T.J. Zhuo, H.C. Zhang, J. Xiang, H.F. Wang, P.Z. Ou, J.L. Liu, L. Xu, G.Y. Huang, Q.R. Huang, H.S. Barden, L.S. Weynand, K.G. Faulkner, X.W. Meng, Age-related bone mineral density, bone loss rate, prevalence of osteoporosis, and reference database of women at multiple centers in China. J. Clin. Densitom. 10, 276–284 (2007)PubMedCrossRefGoogle Scholar
  18. 18.
    L.T. Ho-Pham, N.D. Nguyen, T.Q. Lai, T.V. Nguyen, Contributions of lean mass and fat mass to bone mineral density: a study in postmenopausal women. BMC Musculoskelet. Disord. 11, 59 (2010)PubMedCrossRefGoogle Scholar
  19. 19.
    G. Martini, R. Valenti, S. Giovani, R. Nuti, Age-related changed in body composition of healthy and osteoporotic women. Maturitas 27, 25–33 (1997)PubMedCrossRefGoogle Scholar
  20. 20.
    L.H. Cui, M.H. Shin, S.S. Kweon, K.S. Park, Y.H. Lee, E.K. Chung, H.S. Nam, J.S. Choi, Relative contribution of body composition to bone mineral density at different sites in men and women of South Korea. J. Bone Miner. Metab. 25, 165–171 (2007)PubMedCrossRefGoogle Scholar
  21. 21.
    S. Lim, H. Joung, C.S. Shin, H.K. Lee, K.S. Kim, E.K. Shin, H.Y. Kim, M.K. Lim, S.I. Cho, Body composition changes with age have gender-specific impacts on bone mineral density. Bone 35, 792–798 (2004)PubMedCrossRefGoogle Scholar
  22. 22.
    M.K. Karlsson, K.J. Obrant, B.E. Nilsson, O. Johnell, Changes in bone mineral, lean body mass and fat content as measured by dual energy X-ray absorptiometry: a longitudinal study. Calcif. Tissue Int. 66, 97–99 (2000)PubMedCrossRefGoogle Scholar
  23. 23.
    S.H. Cohn, A. Vaswani, I. Zanzi, J.F. Aloia, M.S. Roginsky, K.J. Ellis, Changes in body chemical composition with age measured by total-body neutron activation. Metabolism 25, 85–95 (1976)PubMedCrossRefGoogle Scholar
  24. 24.
    S. Gillette-Guyonnet, F. Nourhashemi, S. Lauque, H. Grandjean, B. Vellas, Body composition and osteoporosis in elderly women. Gerontology 46, 189–193 (2000)PubMedCrossRefGoogle Scholar
  25. 25.
    D. Nakaoka, T. Sugimoto, H. Kaji, M. Kanzawa, S. Yano, M. Yamauchi, T. Sugishita, K. Chihara, Determinants of bone mineral density and spinal fracture risk in postmenopausal Japanese women. Osteoporos. Int. 12, 548–554 (2001)PubMedCrossRefGoogle Scholar
  26. 26.
    R. El Hage, C. Jacob, E. Moussa, R. Baddoura, Relative importance of lean mass and fat mass on bone mineral density in a group of Lebanese postmenopausal women. J. Clin. Densitom. 14, 326–331 (2011)PubMedCrossRefGoogle Scholar
  27. 27.
    M.A. Petit, T.J. Beck, J. Shults, B.S. Zemel, B.J. Foster, M.B. Leonard, Proximal femur bone geometry is appropriately adapted to lean mass in overweight children and adolescents. Bone 36, 568–576 (2005)PubMedCrossRefGoogle Scholar
  28. 28.
    Z. Zhang, X. Shen, H. Zhang, S. Li, H. Zhou, X. Wu, Z. Sheng, E. Liao, The relationship between body composition and fracture risk using the FRAX model in central south Chinese postmenopausal women. Clin. Endocrinol. (Oxf.) 77(4), 524–530 (2012)CrossRefGoogle Scholar
  29. 29.
    J.M. Grodin, P.K. Siiteri, P.C. MacDonald, Source of estrogen production in postmenopausal women. J. Clin. Endocrinol. Metab. 36, 207–214 (1973)PubMedCrossRefGoogle Scholar
  30. 30.
    P.K. Siiteri, Adipose tissue as a source of hormones. Am. J. Clin. Nutr. 45, 277–282 (1987)PubMedGoogle Scholar
  31. 31.
    I.R. Reid, R. Ames, M.C. Evans, S. Sharpe, G. Gamble, J.T. France, T.M. Lim, T.F. Cundy, Determinants of total body and regional bone mineral density in normal postmenopausal women—a key role for fat mass. J. Clin. Endocrinol. Metab. 75, 45–51 (1992)PubMedCrossRefGoogle Scholar
  32. 32.
    T. Kameda, H. Mano, T. Yuasa, Y. Mori, K. Miyazawa, M. Shiokawa, Y. Nakamaru, E. Hiroi, K. Hiura, A. Kameda, N.N. Yang, Y. Hakeda, M. Kumegawa, Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts. J. Exp. Med. 186, 489–495 (1997)PubMedCrossRefGoogle Scholar
  33. 33.
    A.V. Schwartz, Diabetes mellitus: does it affect bone? Calcif. Tissue Int. 73, 515–519 (2003)PubMedCrossRefGoogle Scholar
  34. 34.
    M.D. Kontogianni, U.G. Dafni, J.G. Routsias, F.N. Skopouli, Blood leptin and adiponectin as possible mediators of the relation between fat mass and BMD in perimenopausal women. J. Bone Miner. Res. 19, 546–551 (2004)PubMedCrossRefGoogle Scholar
  35. 35.
    K.M. Thrailkill, C.K. Lumpkin Jr, R.C. Bunn, S.F. Kemp, J.L. Fowlkes, Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am. J. Physiol. Endocrinol. Metab. 289, E735–E745 (2005)PubMedCrossRefGoogle Scholar
  36. 36.
    J. Cornish, I.R. Reid, Effects of amylin and adrenomedullin on the skeleton. J. Musculoskelet. Neuronal. Interact. 2, 15–24 (2001)PubMedGoogle Scholar
  37. 37.
    K. Ağbaht, A. Gürlek, J. Karakaya, M. Bayraktar, Circulating adiponectin represents a biomarker of the association between adiposity and bone mineral density. Endocrine 35, 371–379 (2009)PubMedCrossRefGoogle Scholar
  38. 38.
    F. Elefteriou, S. Takeda, K. Ebihara, J. Magre, N. Patano, C.A. Kim, Y. Ogawa, X. Liu, S.M. Ware, W.J. Craigen, J.J. Robert, C. Vinson, K. Nakao, J. Capeau, G. Karsenty, Serum leptin level is a regulator of bone loss. Proc. Natl. Acad. Sci. USA 9, 3258–3263 (2004)CrossRefGoogle Scholar
  39. 39.
    J.A. Pasco, M.J. Henry, M.A. Kotowicz, G.R. Collier, M.J. Ball, A.M. Ugoni, G.C. Nicholson, Serum leptin levels are associated with bone mass in nonobese women. J. Clin. Endocrinol. Metab. 86, 1884–1887 (2001)PubMedCrossRefGoogle Scholar
  40. 40.
    T. Thomas, B. Burguera, L.J. Melton 3rd, E.J. Atkinson, W.M. O’Fallon, B.L. Riggs, S. Khosla, Role of serum leptin, insulin, and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women. Bone 29, 114–120 (2001)PubMedCrossRefGoogle Scholar
  41. 41.
    L.M. Ritland, D.L. Alekel, O.A. Matvienko, K.B. Hanson, J.W. Stewart, L.N. Hanson, M.B. Reddy, M.D. Van Loan, U. Genschel, Centrally located body fat is related to appetitive hormones in healthy postmenopausal women. Eur. J. Endocrinol. 158, 889–897 (2008)PubMedCrossRefGoogle Scholar
  42. 42.
    K. Oshima, A. Nampei, M. Matsuda, M. Iwaki, A. Fukuhara, J. Hashimoto, H. Yoshikawa, I. Shimomura, Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem. Biophys. Res. Commun. 331, 520–526 (2005)PubMedCrossRefGoogle Scholar
  43. 43.
    I.R. Reid, Relationships among body mass, its components, and bone. Bone 31, 547–555 (2002)PubMedCrossRefGoogle Scholar
  44. 44.
    J.A. Cauley, J. Robbins, Z. Chen, S.R. Cummings, R.D. Jackson, A.Z. LaCroix, M. LeBoff, C.E. Lewis, J. McGowan, J. Neuner, M. Pettinger, M.L. Stefanick, J. Wactawski-Wende, N.B. Watts, Effects of estrogen plus progestin on risk of fracture and bone mineral density: the Women’s Health Initiative randomized trial. JAMA 290, 1729–1738 (2003)PubMedCrossRefGoogle Scholar
  45. 45.
    R. Lindsay, J.C. Gallagher, M. Kleerekoper, J.H. Pickar, Bone response to treatment with lower doses of conjugated estrogens with and without medroxyprogesterone acetate in early postmenopausal women. Osteoporos. Int. 16, 372–379 (2005)PubMedCrossRefGoogle Scholar
  46. 46.
    G. Mazziotti, M. Gola, A. Bianchi, T. Porcelli, A. Giampietro, V. Cimino, M. Doga, C. Gazzaruso, L. De Marinis, A. Giustina, Influence of diabetes mellitus on vertebral fractures in men with acromegaly. Endocrine 40(1), 102–108 (2011)PubMedCrossRefGoogle Scholar
  47. 47.
    C. Torti, G. Mazziotti, P.A. Soldini, E. Focà, R. Maroldi, D. Gotti, G. Carosi, A. Giustina, High prevalence of radiological vertebral fractures in HIV-infected males. Endocrine 41(3), 512–517 (2012)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Hongbing Zhang
    • 1
    • 2
  • Xiangping Chai
    • 3
  • Shuang Li
    • 1
  • Zhimin Zhang
    • 1
  • Lingqing Yuan
    • 1
  • Hui Xie
    • 1
  • Houde Zhou
    • 1
  • Xiyu Wu
    • 1
  • Zhifeng Sheng
    • 1
    Email author
  • Eryuan Liao
    • 1
  1. 1.Institute of Metabolism and Endocrinology, The Second Xiangya HospitalCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Binjiang Hospital, The Second Affiliated HospitalZhejiang UniversityHangzhouPeople’s Republic of China
  3. 3.Department of Emergency, The Second Xiangya HospitalCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations