, Volume 44, Issue 1, pp 87–98 | Cite as

Rosiglitazone protects against palmitate-induced pancreatic beta-cell death by activation of autophagy via 5′-AMP-activated protein kinase modulation

  • Jie Wu
  • Jun-jie Wu
  • Lin-jun Yang
  • Li-xin Wei
  • Da-jin Zou
Original Article


Promoting beta-cell survival is crucial for the prevention of beta-cell failure in diabetes. Thiazolidinediones, a widely used drug to improve insulin sensitivity in clinical practice, is found to have a protective effect on islet beta-cell. To date, the mechanism underlying the protective role of thiazolidinedione on beta-cell survival remain largely unknown. Activation of autophagy was detected by transmission electron microscopy, western blot, and GFP-LC3 transfection. Cell viability was examined by WST-8. Cell apoptosis was demonstrated by DAPI and Annexin V/PI staining. Colony formation assay was used to detect long-term cell viability. We demonstrated that rosiglitazone-treated beta-cells were more resistant to palmitate-induced apoptosis. The conversion of LC3-I to LC3-II and accumulated autophagosomes were found to be upregulated in rosiglitazone-treated cells. Inhibition of autophagy augmented palmitate-induced apoptosis with rosiglitazone treatment, suggesting that autophagy plays an important role in the survival function of rosiglitazone on beta-cells. Furthermore, we showed that rosiglitazone could induce AMP-activated protein kinase (AMPK) phosphorylation and reduce p70S6 kinase phosphorylation. Inhibition of AMPK impaired autophagy activation and enhanced palmitate-induced apoptosis during rosiglitazone treatment. These findings reveal that rosiglitazone-induced autophagy contributes to its protective function on beta-cells during palmitate treatment.


Rosiglitazone Autophagy Palmitate AMPK 



AMP-activated protein kinase


Transmission electron microscopy








Peroxisome proliferator-activated receptor-γ


Microtubule associated protein 1 light chain 3


4′,6′-Diamidino-2-phenylindole dihydrochloride


Mitogen-activated protein kinases



This project was supported by the Special Funds for National Natural Science Foundation of China (Grant No. 81070619), the Commission of Science and Technology of Shanghai Municipality (No. 08411967100).

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of the manuscript entitled.

Supplementary material

12020_2012_9826_MOESM1_ESM.doc (95 kb)
Supplementary material 1 (DOC 95 kb)


  1. 1.
    M.Y. Donath, P.A. Halban, Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia 47(3), 581–589 (2004)PubMedCrossRefGoogle Scholar
  2. 2.
    I.W. Campbell, S. Mariz, Beta-cell preservation with thiazolidinediones. Diabetes Res. Clin. Pract. 76(2), 163–176 (2007)PubMedCrossRefGoogle Scholar
  3. 3.
    L.L. Baggio, D.J. Drucker, Therapeutic approaches to preserve islet mass in type 2 diabetes. Annu. Rev. Med. 57, 265–281 (2006)PubMedCrossRefGoogle Scholar
  4. 4.
    B. Levine, D.J. Klionsky, Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6(4), 463–477 (2004)PubMedCrossRefGoogle Scholar
  5. 5.
    B. Levine, G. Kroemer, Autophagy in the pathogenesis of disease. Cell 132(1), 27–42 (2008)PubMedCrossRefGoogle Scholar
  6. 6.
    F. Reggiori, D.J. Klionsky, Autophagy in the eukaryotic cell. Eukaryot. Cell 1(1), 11–21 (2002)PubMedCrossRefGoogle Scholar
  7. 7.
    D.J. Klionsky, H. Abeliovich, P. Agostinis, D.K. Agrawal, G. Aliev, D.S. Askew, M. Baba, E.H. Baehrecke, B.A. Bahr, A. Ballabio, B.A. Bamber, D.C. Bassham, E. Bergamini, X. Bi, M. Biard-Piechaczyk, J.S. Blum, D.E. Bredesen, J.L. Brodsky, J.H. Brumell, U.T. Brunk, W. Bursch, N. Camougrand, E. Cebollero, F. Cecconi, Y. Chen, L.S. Chin, A. Choi, C.T. Chu, J. Chung, P.G. Clarke, R.S. Clark, S.G. Clarke, C. Clave, J.L. Cleveland, P. Codogno, M.I. Colombo, A. Coto-Montes, J.M. Cregg, A.M. Cuervo, J. Debnath, F. Demarchi, P.B. Dennis, P.A. Dennis, V. Deretic, R.J. Devenish, F. Di Sano, J.F. Dice, M. Difiglia, S. Dinesh-Kumar, C.W. Distelhorst, M. Djavaheri-Mergny, F.C. Dorsey, W. Droge, M. Dron, W.A. Dunn Jr, M. Duszenko, N.T. Eissa, Z. Elazar, A. Esclatine, E.L. Eskelinen, L. Fesus, K.D. Finley, J.M. Fuentes, J. Fueyo, K. Fujisaki, B. Galliot, F.B. Gao, D.A. Gewirtz, S.B. Gibson, A. Gohla, A.L. Goldberg, R. Gonzalez, C. Gonzalez-Estevez, S. Gorski, R.A. Gottlieb, D. Haussinger, Y.W. He, K. Heidenreich, J.A. Hill, M. Hoyer-Hansen, X. Hu, W.P. Huang, A. Iwasaki, M. Jaattela, W.T. Jackson, X. Jiang, S. Jin, T. Johansen, J.U. Jung, M. Kadowaki, C. Kang, A. Kelekar, D.H. Kessel, J.A. Kiel, H.P. Kim, A. Kimchi, T.J. Kinsella, K. Kiselyov, K. Kitamoto, E. Knecht, M. Komatsu, E. Kominami, S. Kondo, A.L. Kovacs, G. Kroemer, C.Y. Kuan, R. Kumar, M. Kundu, J. Landry, M. Laporte, W. Le, H.Y. Lei, M.J. Lenardo, B. Levine, A. Lieberman, K.L. Lim, F.C. Lin, W. Liou, L.F. Liu, G. Lopez-Berestein, C. Lopez-Otin, B. Lu, K.F. Macleod, W. Malorni, W. Martinet, K. Matsuoka, J. Mautner, A.J. Meijer, A. Melendez, P. Michels, G. Miotto, W.P. Mistiaen, N. Mizushima, B. Mograbi, I. Monastyrska, M.N. Moore, P.I. Moreira, Y. Moriyasu, T. Motyl, C. Munz, L.O. Murphy, N.I. Naqvi, T.P. Neufeld, I. Nishino, R.A. Nixon, T. Noda, B. Nurnberg, M. Ogawa, N.L. Oleinick, L.J. Olsen, B. Ozpolat, S. Paglin, G.E. Palmer, I. Papassideri, M. Parkes, D.H. Perlmutter, G. Perry, M. Piacentini, R. Pinkas-Kramarski, M. Prescott, T. Proikas-Cezanne, N. Raben, A. Rami, F. Reggiori, B. Rohrer, D.C. Rubinsztein, K.M. Ryan, J. Sadoshima, H. Sakagami, Y. Sakai, M. Sandri, C. Sasakawa, M. Sass, C. Schneider, P.O. Seglen, O. Seleverstov, J. Settleman, J.J. Shacka, I.M. Shapiro, A. Sibirny, E.C. Silva-Zacarin, H.U. Simon, C. Simone, A. Simonsen, M.A. Smith, K. Spanel-Borowski, V. Srinivas, M. Steeves, H. Stenmark, P.E. Stromhaug, C.S. Subauste, S. Sugimoto, D. Sulzer, T. Suzuki, M.S. Swanson, I. Tabas, F. Takeshita, N.J. Talbot, Z. Talloczy, K. Tanaka, I. Tanida, G.S. Taylor, J.P. Taylor, A. Terman, G. Tettamanti, C.B. Thompson, M. Thumm, A.M. Tolkovsky, S.A. Tooze, R. Truant, L.V. Tumanovska, Y. Uchiyama, T. Ueno, N.L. Uzcategui, I. van der Klei, E.C. Vaquero, T. Vellai, M.W. Vogel, H.G. Wang, P. Webster, J.W. Wiley, Z. Xi, G. Xiao, J. Yahalom, J.M. Yang, G. Yap, X.M. Yin, T. Yoshimori, L. Yu, Z. Yue, M. Yuzaki, O. Zabirnyk, X. Zheng, X. Zhu, R.L. Deter, Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4(2), 151–175 (2008)PubMedGoogle Scholar
  8. 8.
    S.W. Yu, S.H. Baek, R.T. Brennan, C.J. Bradley, S.K. Park, Y.S. Lee, E.J. Jun, K.J. Lookingland, E.K. Kim, H. Lee, J.L. Goudreau, S.W. Kim, Autophagic death of adult hippocampal neural stem cells following insulin withdrawal. Stem Cells 26(10), 2602–2610 (2008)PubMedCrossRefGoogle Scholar
  9. 9.
    K. Sato, K. Tsuchihara, S. Fujii, M. Sugiyama, T. Goya, Y. Atomi, T. Ueno, A. Ochiai, H. Esumi, Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res. 67(20), 9677–9684 (2007)PubMedCrossRefGoogle Scholar
  10. 10.
    P. Codogno, A.J. Meijer, Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ. 12(Suppl 2), 1509–1518 (2005)PubMedCrossRefGoogle Scholar
  11. 11.
    E. Corcelle, N. Djerbi, M. Mari, M. Nebout, C. Fiorini, P. Fenichel, P. Hofman, P. Poujeol, B. Mograbi, Control of the autophagy maturation step by the MAPK ERK and p38: lessons from environmental carcinogens. Autophagy 3(1), 57–59 (2007)PubMedGoogle Scholar
  12. 12.
    K.Y. Hur, H.S. Jung, M.S. Lee, Role of autophagy in beta-cell function and mass. Diabetes Obes. Metab. 12(Suppl 2), 20–26 (2010)PubMedCrossRefGoogle Scholar
  13. 13.
    G. Las, O.S. Shirihai, The role of autophagy in beta-cell lipotoxicity and type 2 diabetes. Diabetes Obes. Metab. 12(Suppl 2), 15–19 (2010)PubMedCrossRefGoogle Scholar
  14. 14.
    J. Zhou, W. Zhang, B. Liang, M.C. Casimiro, D. Whitaker-Menezes, M. Wang, M.P. Lisanti, S. Lanza-Jacoby, R.G. Pestell, C. Wang, PPARgamma activation induces autophagy in breast cancer cells. Int. J. Biochem. Cell Biol. 41(11), 2334–2342 (2009)PubMedCrossRefGoogle Scholar
  15. 15.
    J. Yan, H. Yang, G. Wang, L. Sun, Y. Zhou, Y. Guo, Z. Xi, X. Jiang, Autophagy augmented by troglitazone is independent of EGFR transactivation and correlated with AMP-activated protein kinase signaling. Autophagy 6(1), 67–73 (2010)PubMedCrossRefGoogle Scholar
  16. 16.
    E. Karaskov, C. Scott, L. Zhang, T. Teodoro, M. Ravazzola, A. Volchuk, Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis. Endocrinology 147(7), 3398–3407 (2006)PubMedCrossRefGoogle Scholar
  17. 17.
    W. El-Assaad, J. Buteau, M.L. Peyot, C. Nolan, R. Roduit, S. Hardy, E. Joly, G. Dbaibo, L. Rosenberg, M. Prentki, Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death. Endocrinology 144(9), 4154–4163 (2003)PubMedCrossRefGoogle Scholar
  18. 18.
    C. Bauvy, P. Gane, S. Arico, P. Codogno, E. Ogier-Denis, Autophagy delays sulindac sulfide-induced apoptosis in the human intestinal colon cancer cell line HT-29. Exp. Cell Res. 268(2), 139–149 (2001)PubMedCrossRefGoogle Scholar
  19. 19.
    K. Komiya, T. Uchida, T. Ueno, M. Koike, H. Abe, T. Hirose, R. Kawamori, Y. Uchiyama, E. Kominami, Y. Fujitani, H. Watada, Free fatty acids stimulate autophagy in pancreatic beta-cells via JNK pathway. Biochem. Biophys. Res. Commun. 401(4), 561–567 (2010)PubMedCrossRefGoogle Scholar
  20. 20.
    R.K. Amaravadi, D. Yu, J.J. Lum, T. Bui, M.A. Christophorou, G.I. Evan, A. Thomas-Tikhonenko, C.B. Thompson, Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117(2), 326–336 (2007)PubMedCrossRefGoogle Scholar
  21. 21.
    V.R. Solomon, H. Lee, Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur. J. Pharmacol. 625(1–3), 220–233 (2009)PubMedCrossRefGoogle Scholar
  22. 22.
    B. Ravikumar, C. Vacher, Z. Berger, J.E. Davies, S. Luo, L.G. Oroz, F. Scaravilli, D.F. Easton, R. Duden, C.J. O’Kane, D.C. Rubinsztein, Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36(6), 585–595 (2004)PubMedCrossRefGoogle Scholar
  23. 23.
    Z. Feng, H. Zhang, A.J. Levine, S. Jin, The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA 102(23), 8204–8209 (2005)PubMedCrossRefGoogle Scholar
  24. 24.
    D.T. Finegood, M.D. McArthur, D. Kojwang, M.J. Thomas, B.G. Topp, T. Leonard, R.E. Buckingham, Beta-cell mass dynamics in Zucker diabetic fatty rats. Rosiglitazone prevents the rise in net cell death. Diabetes 50(5), 1021–1029 (2001)PubMedCrossRefGoogle Scholar
  25. 25.
    J.W. Kim, J.H. Yang, H.S. Park, C. Sun, S.H. Lee, J.H. Cho, C.W. Yang, K.H. Yoon, Rosiglitazone protects the pancreatic beta-cell death induced by cyclosporine A. Biochem. Biophys. Res. Commun. 390(3), 763–768 (2009)PubMedCrossRefGoogle Scholar
  26. 26.
    B.H. Chung, C. Li, B.K. Sun, S.W. Lim, K.O. Ahn, J.H. Yang, Y.H. Choi, K.H. Yoon, A. Sugawara, S. Ito, J. Kim, C.W. Yang, Rosiglitazone protects against cyclosporine-induced pancreatic and renal injury in rats. Am. J. Transplant. 5(8), 1856–1867 (2005)PubMedCrossRefGoogle Scholar
  27. 27.
    C.Y. Lin, T. Gurlo, L. Haataja, W.A. Hsueh, P.C. Butler, Activation of peroxisome proliferator-activated receptor-gamma by rosiglitazone protects human islet cells against human islet amyloid polypeptide toxicity by a phosphatidylinositol 3′-kinase-dependent pathway. J. Clin. Endocrinol. Metab. 90(12), 6678–6686 (2005)PubMedCrossRefGoogle Scholar
  28. 28.
    C. Ebato, T. Uchida, M. Arakawa, M. Komatsu, T. Ueno, K. Komiya, K. Azuma, T. Hirose, K. Tanaka, E. Kominami, R. Kawamori, Y. Fujitani, H. Watada, Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 8(4), 325–332 (2008)PubMedCrossRefGoogle Scholar
  29. 29.
    S.E. Choi, S.M. Lee, Y.J. Lee, L.J. Li, S.J. Lee, J.H. Lee, Y. Kim, H.S. Jun, K.W. Lee, Y. Kang, Protective role of autophagy in palmitate-induced INS-1 beta-cell death. Endocrinology 150(1), 126–134 (2009)PubMedCrossRefGoogle Scholar
  30. 30.
    R. Scherz-Shouval, Z. Elazar, Regulation of autophagy by ROS: physiology and pathology. Trends Biochem. Sci. 36(1), 30–38 (2011)PubMedCrossRefGoogle Scholar
  31. 31.
    W.X. Ding, H.M. Ni, W. Gao, T. Yoshimori, D.B. Stolz, D. Ron, X.M. Yin, Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am. J. Pathol. 171(2), 513–524 (2007)PubMedCrossRefGoogle Scholar
  32. 32.
    M. Cnop, M. Igoillo-Esteve, D.A. Cunha, L. Ladriere, D.L. Eizirik, An update on lipotoxic endoplasmic reticulum stress in pancreatic beta-cells. Biochem. Soc. Trans. 36(Pt 5), 909–915 (2008)PubMedCrossRefGoogle Scholar
  33. 33.
    A.J. Molina, J.D. Wikstrom, L. Stiles, G. Las, H. Mohamed, A. Elorza, G. Walzer, G. Twig, S. Katz, B.E. Corkey, O.S. Shirihai, Mitochondrial networking protects beta-cells from nutrient-induced apoptosis. Diabetes 58(10), 2303–2315 (2009)PubMedCrossRefGoogle Scholar
  34. 34.
    P. Schrauwen, M.K. Hesselink, Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. Diabetes 53(6), 1412–1417 (2004)PubMedCrossRefGoogle Scholar
  35. 35.
    K. Morino, K.F. Petersen, G.I. Shulman, Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 55(Suppl 2), S9–S15 (2006)PubMedCrossRefGoogle Scholar
  36. 36.
    M. Qatanani, M.A. Lazar, Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. 21(12), 1443–1455 (2007)PubMedCrossRefGoogle Scholar
  37. 37.
    M. Masini, M. Bugliani, R. Lupi, S. del Guerra, U. Boggi, F. Filipponi, L. Marselli, P. Masiello, P. Marchetti, Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia 52(6), 1083–1086 (2009)PubMedCrossRefGoogle Scholar
  38. 38.
    H.Y. Xiong, X.L. Guo, X.X. Bu, S.S. Zhang, N.N. Ma, J.R. Song, F. Hu, S.F. Tao, K. Sun, R. Li, M.C. Wu, L.X. Wei, Autophagic cell death induced by 5-FU in Bax or PUMA deficient human colon cancer cell. Cancer Lett. 288(1), 68–74 (2010)Google Scholar
  39. 39.
    L. Yu, A. Alva, H. Su, P. Dutt, E. Freundt, S. Welsh, E.H. Baehrecke, M.J. Lenardo, Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304(5676), 1500–1502 (2004)Google Scholar
  40. 40.
    G. Kroemer, B. Levine, Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell Biol. 9(12), 1004–1010 (2008)Google Scholar
  41. 41.
    C.H. Jung, S.H. Ro, J. Cao, N.M. Otto, D.H. Kim, mTOR regulation of autophagy. FEBS Lett. 584(7), 1287–1295 (2010)PubMedCrossRefGoogle Scholar
  42. 42.
    D. Han, B. Yang, L.K. Olson, A. Greenstein, S.H. Baek, K.J. Claycombe, J.L. Goudreau, S.W. Yu, E.K. Kim, Activation of autophagy through modulation of 5′-AMP-activated protein kinase protects pancreatic beta-cells from high glucose. Biochem J 425(3), 541–551 (2010)PubMedCrossRefGoogle Scholar
  43. 43.
    M. Stumvoll, Thiazolidinediones—some recent developments. Expert Opin. Investig. Drugs 12(7), 1179–1187 (2003)PubMedCrossRefGoogle Scholar
  44. 44.
    M. Jiang, S. Fernandez, W.G. Jerome, Y. He, X. Yu, H. Cai, B. Boone, Y. Yi, M.A. Magnuson, P. Roy-Burman, R.J. Matusik, S.B. Shappell, S.W. Hayward, Disruption of PPARgamma signaling results in mouse prostatic intraepithelial neoplasia involving active autophagy. Cell Death Differ. 17(3), 469–481 (2010)PubMedCrossRefGoogle Scholar
  45. 45.
    D.F. Mahmood, I. Jguirim-Souissi, H. el Khadija, N. Blondeau, V. Diderot, S. Amrani, M.N. Slimane, T. Syrovets, T. Simmet, M. Rouis, Peroxisome proliferator-activated receptor gamma induces apoptosis and inhibits autophagy of human monocyte-derived macrophages via induction of cathepsin L: potential role in atherosclerosis. J. Biol. Chem. 286(33), 28858–28866 (2011)PubMedCrossRefGoogle Scholar
  46. 46.
    L. Cerquetti, C. Sampaoli, D. Amendola, B. Bucci, L. Masuelli, R. Marchese, S. Misiti, A. De Venanzi, M. Poggi, V. Toscano, A. Stigliano, Rosiglitazone induces autophagy in H295R and cell cycle deregulation in SW13 adrenocortical cancer cells. Exp. Cell Res. 317(10), 1397–1410 (2011)PubMedCrossRefGoogle Scholar
  47. 47.
    L.G. Fryer, A. Parbu-Patel, D. Carling, The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J. Biol. Chem. 277(28), 25226–25232 (2002)PubMedCrossRefGoogle Scholar
  48. 48.
    D.H. van Raalte, M. Diamant, Glucolipotoxicity and beta cells in type 2 diabetes mellitus: target for durable therapy? Diabetes Res. Clin. Pract. 93(Suppl 1), S37–005346 (2011)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Jie Wu
    • 1
    • 2
  • Jun-jie Wu
    • 3
  • Lin-jun Yang
    • 4
  • Li-xin Wei
    • 5
  • Da-jin Zou
    • 1
  1. 1.Department of Endocrinology, Chang Hai HospitalThe Second Military Medical UniversityShanghaiPeople’s Republic of China
  2. 2.Department of Endocrinology, Tong Ji HospitalTong Ji UniversityShanghaiPeople’s Republic of China
  3. 3.National Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life SciencesFudan UniversityShanghaiPeople’s Republic of China
  4. 4.Department of Oncology, Chang Hai HospitalThe Second Military Medical UniversityShanghaiPeople’s Republic of China
  5. 5.Department of Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery HospitalThe Second Military Medical UniversityShanghaiPeople’s Republic of China

Personalised recommendations