, Volume 43, Issue 2, pp 376–386

Administration of ghrelin improves inflammation, oxidative stress, and apoptosis during and after non-alcoholic fatty liver disease development

  • Yan Li
  • Jie Hai
  • Lake Li
  • Xuehui Chen
  • Hua Peng
  • Meng Cao
  • Qinggui Zhang
Original Article


We aim to investigate the preventive and therapeutic effects of ghrelin on a rat NAFLD model and possible underlying mechanism. Sprague–Dawley rats were fed with high-fat diet for 8 weeks to induce NAFLD. A group of rats were also treated with ghrelin throughout the NAFLD induction. After 8 weeks, rats were sacrificed for liver injury measurements. Rats with NAFLD showed obvious histological changes including necrosis and inflammation foci, elevated serum enzyme (ALT and AST) levels, dysregulated hepatic lipid metabolism, increased formation of oxidative stress, and lipid peroxidation markers, up-regulated levels of pro-inflammatory cytokines and apoptotic cells in the liver. Treatment of ghrelin improved liver injury through counter-acting those events. The improvement of ghrelin was accompanied with a restoration of LKB1/AMPK and PI3 K/Akt pathways. Ghrelin treatment alone did not influence the healthy rat liver. In addition, “therapeutic” ghrelin administration (2 weeks) after the establishment of early NAFLD symptoms (4 weeks) in rats further proved the beneficial effects of ghrelin. In conclusion, administration of ghrelin could attenuate NAFLD-induced liver injury, oxidative stress, inflammation, and apoptosis partly through the action of LKB1/AMPK and PI3 K/Akt pathways.


NAFLD Ghrelin Liver injury AMPK 



Alanine aminotransferase


AMP-activated protein kinase


Aspartate aminotransferase


Cytochrome P450 2E1


Enzyme-linked immunosorbent assay


Growth hormone






Non-alcoholic fatty liver disease


Patatin-like phospholipase domain-containing protein 3


Tumor necrosis factor alpha


Terminal deoxynucleotidyl transferase dUTP-nick end labeling


  1. 1.
    A.E. Reid, Nonalcoholic steatohepatitis. Gastroenterology 121, 710–723 (2001)PubMedCrossRefGoogle Scholar
  2. 2.
    J.K. Dowman, J.W. Tomlinson, P.N. Newsome, Systematic review: the diagnosis and staging of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Aliment. Pharmacol. Ther. 33, 525–540 (2011)PubMedCrossRefGoogle Scholar
  3. 3.
    E.E. Powell, W.G. Cooksley, R. Hanson, J. Searle, J.W. Halliday, L.W. Powell, The natural history of nonalcoholic steatohepatitis: a follow-up study of forty-two patients for up to 21 years. Hepatology 11, 74–80 (1990)PubMedCrossRefGoogle Scholar
  4. 4.
    M.R. Teli, O.F. James, A.D. Burt, M.K. Bennett, C.P. Day, The natural history of nonalcoholic fatty liver: a follow-up study. Hepatology 22, 1714–1719 (1995)PubMedCrossRefGoogle Scholar
  5. 5.
    R.C. Harmon, D.G. Tiniakos, C.K. Argo, Inflammation in nonalcoholic steatohepatitis. Expert. Rev. Gastroenterol. Hepatol. 5, 189–200 (2011)PubMedCrossRefGoogle Scholar
  6. 6.
    N. Alkhouri, C. Carter-Kent, A.E. Feldstein, Apoptosis in nonalcoholic fatty liver disease: diagnostic and therapeutic implications. Expert. Rev. Gastroenterol. Hepatol. 5, 201–212 (2011)PubMedCrossRefGoogle Scholar
  7. 7.
    G.H. Koek, P.R. Liedorp, A. Bast, The role of oxidative stress in non-alcoholic steatohepatitis. Clin. Chim. Acta 412, 1297–1305 (2011)PubMedCrossRefGoogle Scholar
  8. 8.
    M. Pan, Y.L. Song, J.M. Xu, H.Z. Gan, Melatonin ameliorates nonalcoholic fatty liver induced by high-fat diet in rats. J. Pineal Res. 41, 79–84 (2006)PubMedCrossRefGoogle Scholar
  9. 9.
    A. Inui, A. Asakawa, C.Y. Bowers, G. Mantovani, A. Laviano, M.M. Meguid, M. Fujimiya, Ghrelin, appetite, and gastric motility: the emerging role of the stomach as an endocrine organ. FASEB J. 18, 439–456 (2004)PubMedCrossRefGoogle Scholar
  10. 10.
    M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsuo, K. Kangawa, Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660 (1999)PubMedCrossRefGoogle Scholar
  11. 11.
    T.R. Castañeda, J. Tong, R. Datta, M. Culler, M.H. Tschöp, Ghrelin in the regulation of body weight and metabolism. Front. Neuroendocrinol. 31, 44–60 (2010)PubMedCrossRefGoogle Scholar
  12. 12.
    D.E. Cummings, D.S. Weigle, R.S. Frayo, P.A. Breen, M.K. Ma, E.P. Dellinger, J.Q. Purnell, Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N. Engl. J. Med. 346, 1623–1630 (2002)PubMedCrossRefGoogle Scholar
  13. 13.
    S.M. Pöykkö, E. Kellokoski, S. Hörkkö, H. Kauma, Y.A. Kesäniemi, O. Ukkola, Low plasma ghrelin is associated with insulin resistance, hypertension, and the prevalence of type 2 diabetes. Diabetes 52, 2546–2553 (2003)PubMedCrossRefGoogle Scholar
  14. 14.
    J. Tong, R.L. Prigeon, H.W. Davis, M. Bidlingmaier, S.E. Kahn, D.E. Cummings, M.H. Tschöp, D. D’Alessio, Ghrelin suppresses glucose-stimulated insulin secretion and deteriorates glucose tolerance in healthy humans. Diabetes 59, 2145–2151 (2010)PubMedCrossRefGoogle Scholar
  15. 15.
    T. Waseem, M. Duxbury, H. Ito, Ghrelin ameliorates TNF-α induced antiproliferative and pro-apoptotic effects and promotes intestinal epithelial restitution. J. Am. Coll. Surg. 199, 16 (2004)CrossRefGoogle Scholar
  16. 16.
    T. Waseem, M. Duxbury, H. Ito, S.W. Ashley, M.K. Robinson, Exogenous ghrelin modulates release of pro-inflammatory and anti-inflammatory cytokines in LPS-stimulated macrophages through distinct signaling pathways. Surgery 143, 334–342 (2008)PubMedCrossRefGoogle Scholar
  17. 17.
    E. Gonzalez-Rey, A. Chorny, M. Delgado, Therapeutic action of ghrelin in a mouse model of colitis. Gastroenterology 130, 1707–1720 (2006)PubMedCrossRefGoogle Scholar
  18. 18.
    R. Wu, W. Dong, Y. Ji, M. Zhou, C.P. Marini, T.S. Ravikumar, P. Wang, Orexigenic hormone ghrelin attenuates local and remote organ injury after intestinal ischemia-reperfusion. PLoS ONE 3, e2026 (2008)PubMedCrossRefGoogle Scholar
  19. 19.
    S.O. Işeri, G. Sener, B. Saglam, F. Ercan, N. Gedik, B.C. Yeğen, Ghrelin alleviates biliary obstruction-induced chronic hepatic injury in rats. Regul Pept 146, 73–79 (2008)PubMedCrossRefGoogle Scholar
  20. 20.
    D.E. Kleiner, E.M. Brunt, M. Van Natta, C. Behling, M.J. Contos, O.W. Cummings, L.D. Ferrell, Y.C. Liu, M.S. Torbenson, A. Unalp-Arida, M. Yeh, A.J. McCullough, A.J. Sanyal, Nonalcoholic Steatohepatitis Clinical Research Network, Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005)PubMedCrossRefGoogle Scholar
  21. 21.
    J. Aubert, K. Begriche, L. Knockaert, M.A. Robin, B. Fromenty, Increased expression of cytochrome P450 2E1 in nonalcoholic fatty liver disease: mechanisms and pathophysiological role. Clin. Res. Hepatol. Gastroenterol. 35, 630–637 (2011)PubMedCrossRefGoogle Scholar
  22. 22.
    G.S. Salvesen, Caspases: opening the boxes and interpreting the arrows. Cell Death Differ. 9, 3–5 (2002)PubMedCrossRefGoogle Scholar
  23. 23.
    S. Ghavami, M. Hashemi, S.R. Ande, B. Yeganeh, W. Xiao, M. Eshraghi, C.J. Bus, K. Kadkhoda, E. Wiechec, A.J. Halayko, M. Los, Apoptosis and cancer: mutations within caspase genes. J. Med. Genet. 46, 497–510 (2009)PubMedCrossRefGoogle Scholar
  24. 24.
    W.W. Winder, D.G. Hardie, AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am. J. Physiol. 277, E1–E10 (1999)PubMedGoogle Scholar
  25. 25.
    J.W. Han, X.R. Zhan, X.Y. Li, B. Xia, Y.Y. Wang, J. Zhang, B.X. Li, Impaired PI3 K/Akt signal pathway and hepatocellular injury in high-fat fed rats. World J. Gastroenterol. 28, 6111–6118 (2010)CrossRefGoogle Scholar
  26. 26.
    S.K. Panchal, H. Poudyal, T.V. Arumugam, L. Brown, Rutin attenuates metabolic changes, nonalcoholic steatohepatitis, and cardiovascular remodeling in high-carbohydrate, high-fat diet-fed rats. J. Nutr. 141, 1062–1069 (2011)PubMedCrossRefGoogle Scholar
  27. 27.
    Z. Song, I. Deaciuc, Z. Zhou, M. Song, T. Chen, D. Hill, C.J. McClain, Involvement of AMP-activated protein kinase in beneficial effects of betaine on high-sucrose diet-induced hepatic steatosis. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G894–G902 (2007)PubMedCrossRefGoogle Scholar
  28. 28.
    H.J. Park, D.A. DiNatale, M.Y. Chung, Y.K. Park, J.Y. Lee, S.I. Koo, M. O’Connor, J.E. Manautou, R.S. Bruno, Green tea extract attenuates hepatic steatosis by decreasing adipose lipogenesis and enhancing hepatic antioxidant defenses in ob/ob mice. J. Nutr. Biochem. 22, 393–400 (2011)PubMedCrossRefGoogle Scholar
  29. 29.
    J. Ozer, M. Ratner, M. Shaw, W. Bailey, S. Schomaker, The current state of serum biomarkers of hepatotoxicity. Toxicology 245, 194–205 (2008)PubMedCrossRefGoogle Scholar
  30. 30.
    S. Seki, T. Kitada, T. Yamada, H. Sakaguchi, K. Nakatani, K. Wakasa, In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases. J. Hepatol. 37, 56–62 (2002)PubMedCrossRefGoogle Scholar
  31. 31.
    N. Chalasani, M.A. Deeg, D.W. Crabb, Systemic levels of lipid peroxidation and its metabolic and dietary correlates in patients with nonalcoholic steatohepatitis. Am. J. Gastroenterol. 99, 1497–1502 (2004)PubMedCrossRefGoogle Scholar
  32. 32.
    M.D. Weltman, G.C. Farrell, C. Liddle, Increased hepatocyte CYP2E1 expression in a rat nutritional model of hepatic steatosis with inflammation. Gastroenterology 111, 1645–1653 (1996)PubMedCrossRefGoogle Scholar
  33. 33.
    C.P. Day, From fat to inflammation. Gastroenterology 2006(130), 207–210 (2006)CrossRefGoogle Scholar
  34. 34.
    A.E. Feldstein, A. Canbay, P. Angulo, M. Taniai, L.J. Burgart, K.D. Lindor, G.J. Gores, Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 125, 437–443 (2003)PubMedCrossRefGoogle Scholar
  35. 35.
    M. Moreno, J.F. Chaves, P. Sancho-Bru, F. Ramalho, L.N. Ramalho, M.L. Mansego, C. Ivorra, M. Dominguez, L. Conde, C. Millán, M. Marí, J. Colmenero, J.J. Lozano, P. Jares, J. Vidal, X. Forns, V. Arroyo, J. Caballería, P. Ginès, R. Bataller, Ghrelin attenuates hepatocellular injury and liver fibrogenesis in rodents and influences fibrosis progression in humans. Hepatology 51, 974–985 (2010)PubMedCrossRefGoogle Scholar
  36. 36.
    M.J. Sanders, P.O. Grondin, B.D. Hegarty, M.A. Snowden, D. Carling, Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem. J. 403, 139–148 (2007)PubMedCrossRefGoogle Scholar
  37. 37.
    M.S. Lee, D. Kim, K. Jo, J.K. Hwang, Nordihydroguaiaretic acid protects against high-fat diet-induced fatty liver by activating AMP-activated protein kinase in obese mice. Biochem. Biophys. Res. Commun. 401, 92–97 (2010)PubMedCrossRefGoogle Scholar
  38. 38.
    J. Dufour, P. Clavien, Signaling pathways in liver diseases, 2nd edn. (Springer, Heidelberg, 2010)CrossRefGoogle Scholar
  39. 39.
    A. Chorny, P. Anderson, E. Gonzalez-Rey, M. Delgado, Ghrelin protects against experimental sepsis by inhibiting high-mobility group box 1 release and by killing bacteria. J. Immunol. 2008(180), 8369–8377 (2008)Google Scholar
  40. 40.
    O. Kasımay, S.O. Işeri, A. Barlas, D. Bangir, C. Yeğen, S. Arbak, B.C. Yeğen, Ghrelin ameliorates pancreaticobiliary inflammation and associated remote organ injury in rats. Hepatol. Res. 36, 11–19 (2006)PubMedCrossRefGoogle Scholar
  41. 41.
    C.X. Huang, M.J. Yuan, H. Huang, G. Wu, Y. Liu, S.B. Yu, H.T. Li, T. Wang, Ghrelin inhibits post-infarct myocardial remodeling and improves cardiac function through anti-inflammation effect. Peptides 30, 2286–2291 (2009)PubMedCrossRefGoogle Scholar
  42. 42.
    E. Cetin, M. Kanbur, N. Cetin, G. Eraslan, A. Atasever, Hepatoprotective effect of ghrelin on carbon tetrachloride-induced acute liver injury in rats. Regul Pept 171, 1–5 (2011)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Yan Li
    • 1
  • Jie Hai
    • 1
  • Lake Li
    • 1
  • Xuehui Chen
    • 1
  • Hua Peng
    • 1
  • Meng Cao
    • 1
  • Qinggui Zhang
    • 1
  1. 1.Department of Endocrinology, First Affiliated HospitalXinxiang Medical UniversityXinxiang CityChina

Personalised recommendations