, Volume 43, Issue 1, pp 22–32 | Cite as

Proton pump inhibitors: impact on glucose metabolism



Diabetes mellitus is a complex chronic disease associated with an absolute insulin deficiency in type 1 diabetes (T1D) and a progressive deterioration of β-cell function in type 2 diabetes (T2D). T2D pathophysiology has numerous defects including incretin deficiency/resistance. Gastrin has demonstrated to be an islet growth factor (like glucagon-like peptide-1, epidermal growth factor, transforming growth factor-α,…) and be able to restore a functional β-cell mass in diabetic animals. This hormone is likely to stimulate insulin secretion during an ordinary protein-rich meal, this is, to have an incretin-like effect. Proton pump inhibitors (PPIs) can raise serum gastrin concentration significantly and therefore, affect to glucose metabolism through promoting β-cell regeneration/expansion and also enhancing insulin secretion. The present paper aims to review studies concerning the effect of PPIs on glucose metabolism. Several research groups have recently explored the potential role of this class of drugs on glycemic control, mainly in T2D. The results show antidiabetic properties for the PPIs with a global glucose-lowering power around 0.6–0.7 % points of HbA1c, but the level of evidence for the available literature is still not high. If these data start to become demonstrated in the ongoing clinical trials, PPIs could become a new antidiabetic agent with a good and safe profile for T2D and even useful for T1D, particularly in the area of islet transplantation to preserve β-cell mass.


Proton pump inhibitors Diabetes Treatment Incretins 


  1. 1.
    International Diabetes Federation. Diabetes and impaired glucose tolerance: global burden: prevalence and projections, 2010 and 2030. International Diabetes Federation Website. http://www.idf.org/diabetesatlas/5e/the-global-burden (2011). Accessed 9 Apr 2012
  2. 2.
    J.E. Shaw, R.A. Sicree, P.Z. Zimmet, Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 87, 4–14 (2010)PubMedCrossRefGoogle Scholar
  3. 3.
    R.A. Defronzo, Banting lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58, 773–795 (2009)PubMedCrossRefGoogle Scholar
  4. 4.
    Menéndez Torre E., Lafita Tejedor F.J., Artola Menéndez S., Millán Núñez-Cortés J., Alonso García Á., Puig Domingo M. et al. Working Group for Consensus and Clinical Guidelines of the Spanish Diabetes Society. Recommendations for the pharmacological treatment of hyperglycemia in type 2 diabetes. Endocrinol. Nutr. 58, 112–120 (2011)Google Scholar
  5. 5.
    G. Dockray, R. Dimaline, A. Varro, Gastrin: old hormone, new functions. Pflugers Arch. 449, 344–355 (2005)PubMedCrossRefGoogle Scholar
  6. 6.
    I. Rooman, J. Lardon, L. Bouwens, Gastrin stimulates β-cell neogenesis and increases islet mass from transdifferentiated but not from normal exocrine pancreas tissue. Diabetes 51, 686–690 (2002)PubMedCrossRefGoogle Scholar
  7. 7.
    W.L. Suarez-Pinzon, Y. Yan, R. Power, S.J. Brand, A. Rabinovitch, Combination therapy with epidermal growth factor and gastrin increases β-cell mass and reverses hyperglycemia in diabetic NOD mice. Diabetes 54, 2596–2601 (2005)PubMedCrossRefGoogle Scholar
  8. 8.
    W.L. Suarez-Pinzon, J.R. Lakey, S.J. Brand, A. Rabinovitch, Combination therapy with epidermal growth factor and gastrin induces neogenesis of human islet β-cells from pancreatic duct cells and an increase in functional β-cell mass. J. Clin. Endocrinol. Metab. 90, 3401–3409 (2005)PubMedCrossRefGoogle Scholar
  9. 9.
    E. Sheen, G. Triadafilopoulos, Adverse effects of long-term proton pump inhibitor therapy. Dig. Dis. Sci. 56, 931–950 (2011)PubMedCrossRefGoogle Scholar
  10. 10.
    M.S. McDonagh, S. Carson, S. Thakurta, Drug Class Review: Proton Pump Inhibitors. Final Report Update 5 (Oregon Health and Science University, Portland, 2009)Google Scholar
  11. 11.
    I.N. Mefford, E.U. Wade, Proton pump inhibitors as a treatment method for type II diabetes. Med. Hypotheses 73, 29–32 (2009)PubMedCrossRefGoogle Scholar
  12. 12.
    D. Boj-Carceller, P. Bocos-Terraz, M. Moreno-Vernis, A. Sanz-Paris, P. Trincado-Aznar, R. Albero-Gamboa, Are proton pump inhibitors a new antidiabetic drug? A cross sectional study. World J. Diabetes 2, 217–220 (2011)PubMedCrossRefGoogle Scholar
  13. 13.
    K.D. Hove, K. Færch, T.B. Bödvarsdóttir, A.E. Karlsen, J.S. Petersen, A. Vaag, Treatment with a proton pump inhibitor improves glycaemic control in type 2 diabetic patients—a retrospective analysis. Diabetes Res. Clin. Pract. 90, e72–e74 (2010)PubMedCrossRefGoogle Scholar
  14. 14.
    N. Parikh, C.W. Howden, The safety of drugs used in acid-related disorders and functional gastrointestinal disorders. Gastroenterol. Clin. N. Am. 39, 529–542 (2010)CrossRefGoogle Scholar
  15. 15.
    M. Robinson, Review article: the pharmacodynamics and pharmacokinetics of proton pump inhibitors—overview and clinical implications. Aliment. Pharmacol. Ther. 20, 1–10 (2004)PubMedCrossRefGoogle Scholar
  16. 16.
    M.M. Wolfe, A.H. Soll, The physiology of gastric acid secretion. N. Engl. J. Med. 319, 1707–1715 (1988)PubMedCrossRefGoogle Scholar
  17. 17.
    M.M. Wolfe, G. Sachs, Acid suppression: optimizing therapy for gastroduodenal ulcer healing, gastroesophageal reflux disease, and stress-related erosive syndrome. Gastroenterology 118, S9–S31 (2000)PubMedCrossRefGoogle Scholar
  18. 18.
    J. Horn, Review article: relationship between the metabolism and efficacy of proton pump inhibitors-focus on rabeprazole. Aliment. Pharmacol. Ther. 20, 11–19 (2004)PubMedCrossRefGoogle Scholar
  19. 19.
    R.W. Harrison, K.W. Mahaffey, Clopidogrel and PPI interaction: clinically relevant or not? Curr. Cardiol. Rep. 14, 49–58 (2012)PubMedCrossRefGoogle Scholar
  20. 20.
    A.S. Raghunath, C. O’Morain, R.C. McLoughlin, Review article: the long-term use of proton-pump inhibitors. Aliment. Pharmacol. Ther. 22, 55–63 (2005)PubMedCrossRefGoogle Scholar
  21. 21.
    A.B. Thomson, M.D. Sauve, N. Kassam, H. Kamitakahara, Safety of the long-term use of proton pump inhibitors. World J. Gastroenterol. 16, 2323–2330 (2010)PubMedCrossRefGoogle Scholar
  22. 22.
    J. Chen, Y.C. Yuan, G.I. Leontiadis, C.W. Howden, Recent safety concerns with proton pump inhibitors. J. Clin. Gastroenterol. 46, 93–114 (2012)PubMedCrossRefGoogle Scholar
  23. 23.
    S.P. Marcuard, L. Albernaz, P.G. Khazanie, Omeprazole therapy causes malabsorption of cyanocobalamin (vitamin B12). Ann. Intern. Med. 120, 211–215 (1994)PubMedGoogle Scholar
  24. 24.
    E.C. Klinkenberg-Knol, F. Nelis, J. Dent, P. Snel, B. Mitchell, P. Prichard et al., Long-term omeprazole treatment in resistant gastroesophageal reflux disease: efficacy, safety, and influence on gastric mucosa. Gastroenterology 118, 661–669 (2000)PubMedCrossRefGoogle Scholar
  25. 25.
    R.A. Gregory, H.J. Tracy, J.I. Harris, M.J. Runswick, S. Moore, G.W. Kenner et al., Minigastrin; corrected structure and synthesis. Hoppe Seylers Z. Physiol. Chem. 360, 73–80 (1979)PubMedCrossRefGoogle Scholar
  26. 26.
    M.D. Burkitt, A. Varro, D.M. Pritchard, Importance of gastrin in the pathogenesis and treatment of gastric tumors. World J. Gastroenterol. 15, 1–16 (2009)PubMedCrossRefGoogle Scholar
  27. 27.
    S.J. Brand, B.N. Andersen, J.F. Rehfeld, Complete tyrosine-o-sulphation of gastrin in neonatal rat pancreas. Nature 6, 456–458 (1984)CrossRefGoogle Scholar
  28. 28.
    D. Chen, C.M. Zhao, R. Håkanson, L.C. Samuelson, J.F. Rehfeld, L. Friis-Hansen, Altered control of gastric acid secretion in gastrin-cholecystokinin double mutant mice. Gastroenterology 126, 476–487 (2004)PubMedCrossRefGoogle Scholar
  29. 29.
    C. Saillan-Barreau, M. Dufresne, P. Clerc, D. Sanchez, H. Corominola, C. Moriscot et al., Evidence for a functional role of the cholecystokinin-B/gastrin receptor in the human fetal and adult pancreas. Diabetes 48, 2015–2021 (1999)PubMedCrossRefGoogle Scholar
  30. 30.
    I. Rooman, J. Lardon, D. Flamez, F. Schuit, L. Bouwens, Mitogenic effect of gastrin and expression of gastrin receptors in duct-like cells of rat pancreas. Gastroenterology 121, 940–949 (2001)PubMedCrossRefGoogle Scholar
  31. 31.
    J.F. Rehfeld, Incretin physiology beyond glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide: cholecystokinin and gastrin peptides. Acta Physiol. (Oxf). 201, 405–411 (2011)CrossRefGoogle Scholar
  32. 32.
    J. Dupre, J.D. Curtis, R.H. Unger, R.W. Waddell, J.C. Beck, Effects of secretin, pancreozymin, or gastrin on the response of the endocrine pancreas to administration of glucose or arginine in man. J. Clin. Invest. 48, 745–757 (1969)PubMedCrossRefGoogle Scholar
  33. 33.
    A. Kaneto, Y. Tasaka, K. Kosaka, K. Nakao, Stimulation of insulin secretion by the C-terminal tetrapeptide amide of gastrin. Endocrinology 84, 1098–1106 (1969)PubMedCrossRefGoogle Scholar
  34. 34.
    H. Ohgawara, Y. Mizuno, Y. Tasaka, K. Kosaka, Effect of the C-terminal tetrapeptide amide of gastrin on insulin secretion in man. J. Clin. Endocrinol. Metab. 29, 1261–1262 (1969)PubMedCrossRefGoogle Scholar
  35. 35.
    J.F. Rehfeld, F. Stadil, The effect of gastrin on basal- and glucose-stimulated insulin secretion in man. J. Clin. Invest. 52, 1415–1426 (1973)PubMedCrossRefGoogle Scholar
  36. 36.
    W.L. Suarez-Pinzon, R.F. Power, Y. Yan, C. Wasserfall, M. Atkinson, A. Rabinovitch, Combination therapy with glucagon-like peptide-1 and gastrin restores normoglycemia in diabetic NOD mice. Diabetes 57, 3281–3288 (2008)PubMedCrossRefGoogle Scholar
  37. 37.
    S.Y. Song, M. Gannon, M.K. Washington, C.R. Scoggins, I.M. Meszoely, J.R. Goldenring et al., Expansion of PDX-1-expressing pancreatic epithelium and islet neogenesis in transgenic mice overexpressing transforming growth factor α. Gastroenterology 117, 1416–1426 (1999)PubMedCrossRefGoogle Scholar
  38. 38.
    K. Yamamoto, J. Miyagawa, M. Waguri, R. Sasada, K. Igarashi, M. Li et al., Recombinant human betacellulin promotes the neogenesis of β-cells and ameliorates glucose intolerance in mice with diabetes induced by selective alloxan perfusion. Diabetes 49, 2021–2027 (2000)PubMedCrossRefGoogle Scholar
  39. 39.
    C. Cras-Meneur, L. Elghazi, P. Czernichow, R. Scharfmann, Epidermal growth factor increases undifferentiated pancreatic embryonic cells in vitro: a balance between proliferation and differentiation. Diabetes 50, 1571–1579 (2001)PubMedCrossRefGoogle Scholar
  40. 40.
    M.L. Krakowski, M.R. Kritzik, E.M. Jones, T. Krachl, J. Lee, M. Arnush et al., Transgenic expression of epidermal growth factor and keratinocyte growth factor in β-cells results in substantial morphological changes. J. Endocrinol. 162, 167–175 (1999)PubMedCrossRefGoogle Scholar
  41. 41.
    G. Xu, D.A. Stoffers, J.F. Habener, S. Bonner-Weir, Exendin-4 stimulates both β-cell replication and neogenesis, resulting in increased β-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48, 2270–2276 (1999)PubMedCrossRefGoogle Scholar
  42. 42.
    R.N. Wang, G. Klöppel, L. Bouwens, Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia 38, 1405–1411 (1995)PubMedCrossRefGoogle Scholar
  43. 43.
    R.N. Wang, J.F. Rehfeld, F.C. Nielsen, G. Klöppel, Expression of gastrin and transforming growth factor-alpha during duct to islet cell differentiation in the pancreas of duct-ligated adult rats. Diabetologia 40, 887–893 (1997)PubMedCrossRefGoogle Scholar
  44. 44.
    I. Rooman, L. Bouwens, Islet neogenesis in the regeneration model of rat pancreatic duct ligation requires endogenous gastrin action via CCK2 receptors. Diabetologia 45(Suppl. 2), A26 (2002)Google Scholar
  45. 45.
    G. Xu, S. Sumi, M. Koike, K. Tanigawa, Y. Nio, K. Tamura, Role of endogenous hypergastrinemia in regenerating endocrine pancreas after partial pancreatectomy. Dig. Dis. Sci. 41, 2433–2439 (1996)PubMedCrossRefGoogle Scholar
  46. 46.
    E.P. Sandgren, N.C. Luetteke, R.D. Palmiter, R.L. Brinster, D.C. Lee, Overexpression of TGF alpha in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell 61, 1121–1135 (1990)PubMedCrossRefGoogle Scholar
  47. 47.
    T.C. Wang, S. Bonner-Weir, P.S. Oates, M. Chulak, B. Simon, G.T. Merlino et al., Pancreatic gastrin stimulates islet differentiation of transforming growth factor alpha-induced ductular precursor cells. J. Clin. Invest. 92, 1349–1356 (1993)PubMedCrossRefGoogle Scholar
  48. 48.
    S.J. Brand, S. Tagerud, P. Lambert, S.G. Magil, K. Tartarkiewicz, K. Doiron et al., Pharmacological treatment of chronic diabetes by stimulating pancreatic β-cell regeneration with systemic co-administration of EGF and gastrin. Pharmacol. Toxicol. 91, 414–420 (2002)PubMedCrossRefGoogle Scholar
  49. 49.
    I. Rooman, L. Bouwens, Combined gastrin and epidermal growth factor treatment induces islet regeneration and restores normoglycemia in C57BL6/J mice treated with alloxan. Diabetologia 47, 259–265 (2004)PubMedCrossRefGoogle Scholar
  50. 50.
    P.L. Brubaker, D.J. Drucker, Minireview: glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 145, 2653–2659 (2004)PubMedCrossRefGoogle Scholar
  51. 51.
    A. Bulotta, L. Farilla, H. Hui, R. Perfetti, The role of GLP-1 in the regulation of islet cell mass. Cell Biochem. Biophys. 40, 65–78 (2004)PubMedCrossRefGoogle Scholar
  52. 52.
    W.L. Suarez-Pinzon, J.R. Lakey, A. Rabinovitch, Combination therapy with glucagon-like peptide-1 and gastrin induces beta-cell neogenesis from pancreatic duct cells in human islets transplanted in immunodeficient diabetic mice. Cell Transplant. 17, 631–640 (2008)PubMedCrossRefGoogle Scholar
  53. 53.
    W.L. Suarez-Pinzon, G.S. Cembrowski, A. Rabinovitch, Combination therapy with a dipeptidyl peptidase-4 inhibitor and a proton pump inhibitor restores normoglycaemia in non-obese diabetic mice. Diabetologia 52, 1680–1682 (2009)PubMedCrossRefGoogle Scholar
  54. 54.
    W.L. Suarez-Pinzon, A. Rabinovitch, Combination therapy with a dipeptidyl peptidase-4 inhibitor and a proton pump inhibitor induces β-cell neogenesis from adult human pancreatic duct cells implanted in immunodeficient mice. Cell Transplant. 20, 1343–1349 (2011)PubMedCrossRefGoogle Scholar
  55. 55.
    T.B. Bödvarsdóttir, K.D. Hove, C.F. Gotfredsen, L. Pridal, A. Vaag, A.E. Karlsen, J.S. Petersen, Treatment with a proton pump inhibitor improves glycaemic control in Psammomys obesus, a model of type 2 diabetes. Diabetologia 53, 2220–2223 (2010)PubMedCrossRefGoogle Scholar
  56. 56.
    L. Bouwens, I. Rooman, Regulation of pancreatic beta-cell mass. Physiol. Rev. 85, 1255–1270 (2005)PubMedCrossRefGoogle Scholar
  57. 57.
    A.C. Hauge-Evans, A.J. King, D. Carmignac, C.C. Richardson, I.C. Robinson, M.J. Low et al., Somatostatin secreted by islet delta-cells fulfills multiple roles as a paracrine regulator of islet function. Diabetes 58, 403–411 (2009)PubMedCrossRefGoogle Scholar
  58. 58.
    M. Sumii, K. Sumii, A. Tari, M. Yoshihara, K. Haruma, G. Kaji-yama, Regulation of antral peptides by administration of omeprazole to healthy men. Am. J. Gastroenterol. 89, 2033–2037 (1994)PubMedGoogle Scholar
  59. 59.
    S.J. Brand, D. Stone, Reciprocal regulation of antral gastrin and somatostatin gene expression by omeprazole-induced achlorhydria. J. Clin. Invest. 82, 1059–1066 (1988)PubMedCrossRefGoogle Scholar
  60. 60.
    F. Katagiri, S. Inoue, H. Itoh, M. Takeyama, Omeprazole raises somatostatin and motilin in human plasma. Biol. Pharm. Bull. 28, 370–373 (2005)PubMedCrossRefGoogle Scholar
  61. 61.
    B. Stoschus, G. Hamscher, S. Ikonomou, G. Partoulas, C. Eberle, T. Sauerbruch et al., Effect of omeprazole treatment on plasma concentrations of the gastric peptides, xenin, gastrin and somatostatin, and of pepsinogen. J. Pept. Res. 52, 27–33 (1998)PubMedCrossRefGoogle Scholar
  62. 62.
    A. Shulkes, M. Read, Regulation of somatostatin secretion by gastrin- and acid-dependent mechanisms. Endocrinology 129, 2329–2334 (1991)PubMedCrossRefGoogle Scholar
  63. 63.
    M.A. Read, D.M. Read, M. Kapuscinski, A. Shulkes, Achlorhydria induced changes in gastrin, somatostatin, H+/K(+)-ATPase and carbonic anhydrase in the sheep. Regul. Pept. 40, 13–27 (1992)PubMedCrossRefGoogle Scholar
  64. 64.
    A. Theodoraki, B. Khoo, A. Hamda, F. Grillo, T. Meyer, P.M. Bou-loux, Malignant somatostatinoma presenting with diabetic ketoacidosis and inhibitory syndrome: pathophysiologic considerations. Endocr. Pract. 16, 835–837 (2010)PubMedCrossRefGoogle Scholar
  65. 65.
    E. Resmini, F. Minuto, A. Colao, D. Ferone, Secondary diabetes associated with principal endocrinopathies: the impact of new treatment modalities. Acta Diabetol. 46, 85–95 (2009)PubMedCrossRefGoogle Scholar
  66. 66.
    G. Mazziotti, I. Floriani, S. Bonadonna, V. Torri, P. Chanson, A. Giustina, Effects of somatostatin analogs on glucose homeostasis: a metaanalysis of acromegaly studies. J. Clin. Endocrinol. Metab. 94, 1500–1508 (2009)PubMedCrossRefGoogle Scholar
  67. 67.
    S. Melmed, A. Colao, A. Barkan, M. Molitch, A.B. Grossman, D. Kleinberg et al., Guidelines for acromegaly management: an update. J. Clin. Endocrinol. Metab. 94, 1509–1517 (2009)PubMedCrossRefGoogle Scholar
  68. 68.
    B.O. Boehm, The therapeutic potential of somatostatin receptor ligands in the treatment of obesity and diabetes. Expert Opin. Investig. Drugs 12, 1501–1509 (2003)PubMedCrossRefGoogle Scholar
  69. 69.
    T. Tzotzas, K. Papazisis, P. Perros, G.E. Krassas, Use of somatostatin analogues in obesity. Drugs 68, 1963–1973 (2008)PubMedCrossRefGoogle Scholar
  70. 70.
    B.O. Boehm, R.H. Lustig, Use of somatostatin receptor ligands in obesity and diabetic complications. Best Pract. Res. Clin. Gastroenterol. 16, 493–509 (2002)PubMedCrossRefGoogle Scholar
  71. 71.
    B.E. Dunning, J.E. Gerich, The role of alpha-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications. Endocr. Rev. 28, 253–283 (2007)PubMedCrossRefGoogle Scholar
  72. 72.
    L. Yang, S.C. Berk, S.P. Rohrer, R.T. Mosley, L. Guo, D.J. Underwood et al., Synthesis and biological activities of potent peptidomimetics selective for somatostatin receptor subtype 2. Proc. Natl. Acad. Sci. USA 95, 10836–10841 (1998)PubMedCrossRefGoogle Scholar
  73. 73.
    K. Cejvan, D.H. Coy, S. Efendic, Intra-islet somatostatin regulates glucagon release via type 2 somatostatin receptors in rats. Diabetes 52, 1176–1181 (2003)PubMedCrossRefGoogle Scholar
  74. 74.
    S. Moldovan, A. Atiya, T.E. Adrian, R.M. Kleinman, K. Lloyd, K. Olthoff et al., Somatostatin inhibits B-cell secretion via a subtype-2 somatostatin receptor in the isolated perfused human pancreas. J. Surg. Res. 59, 85–90 (1995)PubMedCrossRefGoogle Scholar
  75. 75.
    M. Sanaka, T. Yamamoto, Y. Kuyama, Effects of proton pump inhibitors on gastric emptying: a systematic review. Dig. Dis. Sci. 55, 2431–2440 (2010)PubMedCrossRefGoogle Scholar
  76. 76.
    M.A. Crouch, I.N. Mefford, E.U. Wade, Proton pump inhibitor therapy associated with lower glycosylated hemoglobin levels in type 2 diabetes. J. Am. Board Fam. Med. 25, 50–54 (2012)PubMedCrossRefGoogle Scholar
  77. 77.
    B.T. Batuwitage, J.G. Kingham, N.E. Morgan, R.L. Bartlett, Inappropriate prescribing of proton pump inhibitors in primary care. Postgrad. Med. J. 83, 66–68 (2007)PubMedCrossRefGoogle Scholar
  78. 78.
    M. Eccles, J. Grimshaw, M. Campbell, C. Ramsay, Research designs for studies evaluating the effectiveness of change and improvement strategies. Qual. Saf. Health Care 12, 47–52 (2003)PubMedCrossRefGoogle Scholar
  79. 79.
    Steno Diabetes Center. The effect of nexium and probiotics on insulin secretion and cardiovascular risk factors in patients with type 2 diabetes. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). http://clinicaltrials.gov/show/NCT00699426NLMIdentifier:NCT00699426 (2000). Accessed 6 June 2012
  80. 80.
    City of Hope Medical Center. Plasm gastrin concentrations in response to nexium administration in healthy volunteers. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). http://clinicaltrials.gov/show/NCT01135472NLMIdentifier:NCT01135472 (2000). Accessed 6 June 2012
  81. 81.
    Sanford Health. Combination therapy with sitagliptin and lansoprazole to restore pancreatic β cell function in recent-onset type 1 diabetes. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). http://clinicaltrials.gov/show/NCT01155284NLMIdentifier:NCT01155284 (2000). Accessed 6 June 2012
  82. 82.
    National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Novel therapy combining regenerative stimuli immunomodulation to preserve β cell function in new onset type 1 diabetes. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). http://clinicaltrials.gov/show/NCT00837759NLMIdentifierNCT00837759 (2000). Accessed 6 June 2012
  83. 83.
    Coordinación de Investigación en Salud, Mexico. Effect of pantoprazole on insulin secretion in patients with type 2 diabetes. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). http://clinicaltrials.gov/show/NCT01541735NLMIdentifier:NCT01541735 (2000). Accessed 8 June 2012
  84. 84.
    University of Alberta. Pilot study of safety and efficacy of combined use of dipeptidyl-peptidase inhibitor (sitagliptin) and proton pump inhibitor (pantoprazole) to prevent β -cell apoptosis and promote islet regeneration in islet transplant recipients with early graft dysfunction. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). http://clinicaltrials.gov/show/NCT00768651NLMIdentifier:NCT00768651 (2000). Accessed 8 June 2012
  85. 85.
    A.B. Hill, The environment and disease: association or causation? Proc. R. Soc. Med. 58, 295–300 (1965)PubMedGoogle Scholar
  86. 86.
    H.G. Peach, N.E. Barnett, Helicobacter pylori infection and fasting plasma glucose concentration. J. Clin. Pathol. 54, 466–469 (2001)PubMedCrossRefGoogle Scholar
  87. 87.
    S.E. Inzucchi, R.M. Bergenstal, J.B. Buse, M. Diamant, E. Ferrannini, M. Nauck et al., Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 35, 1364–1379 (2012)PubMedCrossRefGoogle Scholar
  88. 88.
    D. Boj-Carceller, J. Playán-Usón, P. Trincado-Aznar, F.J. Acha-Pérez, R. Albero-Gamboa. Proton pump inhibitors for the treatment of diabetes mellitus? Av Diabetol 26, 45–46 (2010) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Endocrinology and Nutrition UnitHospital Miguel Servet, Paseo Isabel La Católica, 1-3ZaragozaSpain

Personalised recommendations