Advertisement

Endocrine

, Volume 43, Issue 1, pp 12–21 | Cite as

Atrogin-1, MuRF-1, and sarcopenia

  • Jonathan P. Gumucio
  • Christopher L. Mendias
Review

Abstract

Sarcopenia is one of the leading causes of disability in the elderly. Despite the growing prevalence of sarcopenia, the molecular mechanisms that control aging-related changes in muscle mass are not fully understood. The ubiquitin proteasome system is one of the major pathways that regulate muscle protein degradation, and this system plays a central role in controlling muscle size. Atrogin-1 and MuRF-1 are two E3 ubiquitin ligases that are important regulators of ubiquitin-mediated protein degradation in skeletal muscle. In this review, we will discuss: (i) aging-related changes to skeletal muscle structure and function; (ii) the regulation of protein synthesis and protein degradation by IGF-1, TGF-β, and myostatin, with emphasis on the control of atrogin-1 and MuRF-1 expression; and (iii) the potential for modulating atrogin-1 and MuRF-1 expression to treat or prevent sarcopenia.

Keywords

Atrogin-1 IGF-1 MuRF-1 Myostatin Sarcopenia TGF-β 

Notes

Acknowledgments

This work was supported by grant AG024824 from the National Institute on Aging. The authors declare they have no conflict of interest.

References

  1. 1.
    I.H. Rosenberg, Summary comments. Am. J. Clin. Nutr. 50(5), 1231–1233 (1989)Google Scholar
  2. 2.
    R.A. Fielding, B. Vellas, W.J. Evans, S. Bhasin, J.E. Morley, A.B. Newman, G. Abellan van Kan, S. Andrieu, J. Bauer, D. Breuille, T. Cederholm, J. Chandler, C. De Meynard, L. Donini, T. Harris, A. Kannt, F. Keime Guibert, G. Onder, D. Papanicolaou, Y. Rolland, D. Rooks, C. Sieber, E. Souhami, S. Verlaan, M. Zamboni, Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 12(4), 249–256 (2011). doi: 10.1016/j.jamda.2011.01.003 PubMedCrossRefGoogle Scholar
  3. 3.
    I. Janssen, The epidemiology of sarcopenia. Clin. Geriatr. Med. 27(3), 355–363 (2011). doi: 10.1016/j.cger.2011.03.004 PubMedCrossRefGoogle Scholar
  4. 4.
    C.J. Evans, C.-F. Chiou, K.A. Fitzgerald, W.J. Evans, B.R. Ferrell, W. Dale, L.P. Fried, S.R. Gandra, B. Dennee-Sommers, D.L. Patrick, Development of a new patient-reported outcome measure in sarcopenia. J. Am. Med. Dir. Assoc. 12(3), 226–233 (2011). doi: 10.1016/j.jamda.2010.09.010 PubMedCrossRefGoogle Scholar
  5. 5.
    I. Janssen, D.S. Shepard, P.T. Katzmarzyk, R. Roubenoff, The healthcare costs of sarcopenia in the United States. J. Am. Geriatr. Soc. 52(1), 80–85 (2004)PubMedCrossRefGoogle Scholar
  6. 6.
    J.E. Morley, Sarcopenia: diagnosis and treatment. J. Nutr. Health Aging 12(7), 452–456 (2008)PubMedCrossRefGoogle Scholar
  7. 7.
    J.A. Faulkner, C.S. Davis, C.L. Mendias, S.V. Brooks, The aging of elite male athletes: age-related changes in performance and skeletal muscle structure and function. Clin. J. Sport Med. 18(6), 501–507 (2008). doi: 10.1097/JSM.0b013e3181845f1c PubMedCrossRefGoogle Scholar
  8. 8.
    I. Janssen, S.B. Heymsfield, Z.M. Wang, R. Ross, Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 89(1), 81–88 (2000)PubMedGoogle Scholar
  9. 9.
    J. Lexell, Human aging, muscle mass, and fiber type composition. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 50, 11–16 (1995)Google Scholar
  10. 10.
    G.A. Power, B.H. Dalton, D.G. Behm, A.A. Vandervoort, T.J. Doherty, C.L. Rice, Motor unit number estimates in masters runners: use it or lose it? Med. Sci. Sports Exerc. 42(9), 1644–1650 (2010). doi: 10.1249/MSS.0b013e3181d6f9e9 PubMedCrossRefGoogle Scholar
  11. 11.
    S. Trappe, P. Gallagher, M. Harber, J. Carrithers, J. Fluckey, T. Trappe, Single muscle fibre contractile properties in young and old men and women. J. Physiol. 552(Pt 1), 47–58 (2003). doi: 10.1113/jphysiol.2003.044966 PubMedCrossRefGoogle Scholar
  12. 12.
    D.R. Claflin, L.M. Larkin, P.S. Cederna, J.F. Horowitz, N.B. Alexander, N.M. Cole, A.T. Galecki, S. Chen, L.V. Nyquist, B.M. Carlson, J.A. Faulkner, J.A. Ashton-Miller, Effects of high- and low-velocity resistance training on the contractile properties of skeletal muscle fibers from young and older humans. J. Appl. Physiol. 111(4), 1021–1030 (2011). doi: 10.1152/japplphysiol.01119.2010 PubMedCrossRefGoogle Scholar
  13. 13.
    J. Lexell, C.C. Taylor, M. Sjostrom, What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J. Neurol. Sci. 84(2–3), 275–294 (1988)PubMedCrossRefGoogle Scholar
  14. 14.
    F. Favier, H. Benoit, D. Freyssenet, Cellular and molecular events controlling skeletal muscle mass in response to altered use. Pflügers Archiv. 456(3), 587–600 (2008). doi: 10.1007/s00424-007-0423-z PubMedCrossRefGoogle Scholar
  15. 15.
    T.J. Hawke, D.J. Garry, Myogenic satellite cells: physiology to molecular biology. J. Appl. Physiol. 91(2), 534–551 (2001)PubMedGoogle Scholar
  16. 16.
    I.M. Conboy, T.A. Rando, Aging, stem cells and tissue regeneration: lessons from muscle. Cell Cycle 4(3), 407–410 (2005)PubMedCrossRefGoogle Scholar
  17. 17.
    F. Kadi, N. Charifi, C. Denis, J. Lexell, Satellite cells and myonuclei in young and elderly women and men. Muscle Nerve 29(1), 120–127 (2004). doi: 10.1002/mus.10510 PubMedCrossRefGoogle Scholar
  18. 18.
    B.M. Carlson, J.A. Faulkner, Muscle transplantation between young and old rats: age of host determines recovery. Am. J. Physiol. 256(6 Pt 1), C1262–C1266 (1989)PubMedGoogle Scholar
  19. 19.
    I.M. Conboy, M.J. Conboy, A.J. Wagers, E.R. Girma, I.L. Weissman, T.A. Rando, Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433(7027), 760–764 (2005). doi: 10.1038/nature03260 PubMedCrossRefGoogle Scholar
  20. 20.
    V. Mouly, A. Aamiri, A. Bigot, R.N. Cooper, S. Di Donna, D. Furling, T. Gidaro, V. Jacquemin, K. Mamchaoui, E. Negroni, S. Périé, V. Renault, S.D. Silva-Barbosa, G.S. Butler-Browne, The mitotic clock in skeletal muscle regeneration, disease and cell mediated gene therapy. Acta Physiol. Scand. 184(1), 3–15 (2005). doi: 10.1111/j.1365-201X.2005.01417.x PubMedCrossRefGoogle Scholar
  21. 21.
    R.M. Reznick, H. Zong, J. Li, K. Morino, I.K. Moore, H.J. Yu, Z.X. Liu, J. Dong, K.J. Mustard, S.A. Hawley, D. Befroy, M. Pypaert, D.G. Hardie, L.H. Young, G.I. Shulman, Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab. 5(2), 151–156 (2007). doi: 10.1016/j.cmet.2007.01.008 PubMedCrossRefGoogle Scholar
  22. 22.
    U.T. Brunk, A. Terman, The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur. J. Biochem. 269(8), 1996–2002 (2002)PubMedCrossRefGoogle Scholar
  23. 23.
    E. Marzetti, J.M. Lawler, A. Hiona, T. Manini, A.Y. Seo, C. Leeuwenburgh, Modulation of age-induced apoptotic signaling and cellular remodeling by exercise and calorie restriction in skeletal muscle. Free Radic. Biol. Med. 44(2), 160–168 (2008). doi: 10.1016/j.freeradbiomed.2007.05.028 PubMedCrossRefGoogle Scholar
  24. 24.
    E. Marzetti, J.C.Y. Hwang, H.A. Lees, S.E. Wohlgemuth, E.E. Dupont-Versteegden, C.S. Carter, R. Bernabei, C. Leeuwenburgh, Mitochondrial death effectors: relevance to sarcopenia and disuse muscle atrophy. Biochim. Biophys. Acta 1800(3), 235–244 (2010). doi: 10.1016/j.bbagen.2009.05.007 PubMedCrossRefGoogle Scholar
  25. 25.
    A. Musaro, K. McCullagh, A. Paul, L. Houghton, G. Dobrowolny, M. Molinaro, E.R. Barton, H.L. Sweeney, N. Rosenthal, Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat. Genet. 27(2), 195–200 (2001). doi: 10.1038/84839 PubMedCrossRefGoogle Scholar
  26. 26.
    M.D. Mavalli, D.J. DiGirolamo, Y. Fan, R.C. Riddle, K.S. Campbell, T. van Groen, S.J. Frank, M.A. Sperling, K.A. Esser, M.M. Bamman, T.L. Clemens, Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice. J. Clin. Investig. 120(11), 4007–4020 (2010). doi: 10.1172/JCI42447 PubMedCrossRefGoogle Scholar
  27. 27.
    Mozzetti Marone, D. Ritis, Scambia Pierelli, Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample. Biol Proced Online 3, 19–25 (2001). doi: 10.1251/bpo20 PubMedCrossRefGoogle Scholar
  28. 28.
    S. Schiaffino, C. Mammucari, Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet. Muscle 1(1), 4 (2011). doi: 10.1186/2044-5040-1-4 PubMedCrossRefGoogle Scholar
  29. 29.
    M. Miyazaki, J.J. McCarthy, K.A. Esser, Insulin like growth factor-1-induced phosphorylation and altered distribution of tuberous sclerosis complex (TSC)1/TSC2 in C2C12 myotubes. FEBS J. 277(9), 2180–2191 (2010). doi: 10.1111/j.1742-4658.2010.07635.x PubMedCrossRefGoogle Scholar
  30. 30.
    M. Andjelkovic, D.R. Alessi, R. Meier, A. Fernandez, N.J. Lamb, M. Frech, P. Cron, P. Cohen, J.M. Lucocq, B.A. Hemmings, Role of translocation in the activation and function of protein kinase B. J. Biol. Chem. 272(50), 31515–31524 (1997)PubMedCrossRefGoogle Scholar
  31. 31.
    I. Vivanco, C.L. Sawyers, The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat. Rev. Cancer 2(7), 489–501 (2002). doi: 10.1038/nrc839 PubMedCrossRefGoogle Scholar
  32. 32.
    G. Goldspink, Mechanical signals, IGF-I gene splicing, and muscle adaptation. Physiology 20, 232–238 (2005). doi: 10.1152/physiol.00004.2005 PubMedCrossRefGoogle Scholar
  33. 33.
    R.W. Matheny, B.C. Nindl, M.L. Adamo, Minireview: mechano-growth factor: a putative product of IGF-I gene expression involved in tissue repair and regeneration. Endocrinology 151(3), 865–875 (2010). doi: 10.1210/en.2009-1217 PubMedCrossRefGoogle Scholar
  34. 34.
    M. Vinciguerra, A. Musarò, N. Rosenthal, Regulation of muscle atrophy in aging and disease. Adv. Exp. Med. Biol. 694, 211–233 (2010)PubMedCrossRefGoogle Scholar
  35. 35.
    S.C. Bodine, E. Latres, S. Baumhueter, V.K. Lai, L. Nunez, B.A. Clarke, W.T. Poueymirou, F.J. Panaro, E. Na, K. Dharmarajan, Z.Q. Pan, D.M. Valenzuela, T.M. DeChiara, T.N. Stitt, G.D. Yancopoulos, D.J. Glass, Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294(5547), 1704–1708 (2001). doi: 10.1126/science.1065874 PubMedCrossRefGoogle Scholar
  36. 36.
    C. Rommel, S.C. Bodine, B.A. Clarke, R. Rossman, L. Nunez, T.N. Stitt, G.D. Yancopoulos, D.J. Glass, Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat. Cell Biol. 3(11), 1009–1013 (2001). doi: 10.1038/ncb1101-1009 PubMedCrossRefGoogle Scholar
  37. 37.
    M. Sandri, Signaling in muscle atrophy and hypertrophy. Physiology 23, 160–170 (2008). doi: 10.1152/physiol.00041.2007 PubMedCrossRefGoogle Scholar
  38. 38.
    Y.-H. Song, M. Godard, Y. Li, S.R. Richmond, N. Rosenthal, P. Delafontaine, Insulin-like growth factor I-mediated skeletal muscle hypertrophy is characterized by increased mTOR-p70S6K signaling without increased Akt phosphorylation. J. Investig. Med. 53(3), 135–142 (2005)PubMedCrossRefGoogle Scholar
  39. 39.
    R.A. Frost, C.H. Lang, mTor signaling in skeletal muscle during sepsis and inflammation: where does it all go wrong? Physiology 26(2), 83–96 (2011). doi: 10.1152/physiol.00044.2010 PubMedCrossRefGoogle Scholar
  40. 40.
    K. Inoki, Y. Li, T. Zhu, J. Wu, K.L. Guan, TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4(9), 648–657 (2002). doi: 10.1038/ncb839 PubMedCrossRefGoogle Scholar
  41. 41.
    B. Raught, F. Peiretti, A.C. Gingras, M. Livingstone, D. Shahbazian, G.L. Mayeur, R.D. Polakiewicz, N. Sonenberg, J.W. Hershey, Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J. 23(8), 1761–1769 (2004). doi: 10.1038/sj.emboj.7600193 PubMedCrossRefGoogle Scholar
  42. 42.
    R. Zoncu, A. Efeyan, D.M. Sabatini, mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12(1), 21–35 (2011). doi: 10.1038/nrm3025 PubMedCrossRefGoogle Scholar
  43. 43.
    K. Hara, K. Yonezawa, M.T. Kozlowski, T. Sugimoto, K. Andrabi, Q.P. Weng, M. Kasuga, I. Nishimoto, J. Avruch, Regulation of eIF-4E BP1 phosphorylation by mTOR. J. Biol. Chem. 272(42), 26457–26463 (1997)PubMedCrossRefGoogle Scholar
  44. 44.
    Y. Izumiya, T. Hopkins, C. Morris, K. Sato, L. Zeng, J. Viereck, J.A. Hamilton, N. Ouchi, N.K. LeBrasseur, K. Walsh, Fast/Glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice. Cell Metab. 7(2), 159–172 (2008). doi: 10.1016/j.cmet.2007.11.003 PubMedCrossRefGoogle Scholar
  45. 45.
    G. Pallafacchina, E. Calabria, A.L. Serrano, J.M. Kalhovde, S. Schiaffino, A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc. Natl. Acad. Sci. USA 99(14), 9213–9218 (2002). doi: 10.1073/pnas.142166599 PubMedCrossRefGoogle Scholar
  46. 46.
    M. Miyazaki, K.A. Esser, Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophy in animals. J. Appl. Physiol. 106(4), 1367–1373 (2009). doi: 10.1152/japplphysiol.91355.2008 PubMedCrossRefGoogle Scholar
  47. 47.
    E. Marzetti, G. Privitera, V. Simili, S.E. Wohlgemuth, L. Aulisa, M. Pahor, C. Leeuwenburgh, Multiple pathways to the same end: mechanisms of myonuclear apoptosis in sarcopenia of aging. Scientific World J. 10, 340–349 (2010). doi: 10.1100/tsw.2010.27 CrossRefGoogle Scholar
  48. 48.
    T.W. Buford, S.D. Anton, A.R. Judge, E. Marzetti, S.E. Wohlgemuth, C.S. Carter, C. Leeuwenburgh, M. Pahor, T.M. Manini, Models of accelerated sarcopenia: critical pieces for solving the puzzle of age-related muscle atrophy. Ageing Res. Rev. 9(4), 369–383 (2010). doi: 10.1016/j.arr.2010.04.004 PubMedCrossRefGoogle Scholar
  49. 49.
    A.C. McPherron, A.M. Lawler, S.J. Lee, Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387(6628), 83–90 (1997). doi: 10.1038/387083a0 PubMedCrossRefGoogle Scholar
  50. 50.
    C.L. Mendias, J.E. Marcin, D.R. Calerdon, J.A. Faulkner, Contractile properties of EDL and soleus muscles of myostatin-deficient mice. J. Appl. Physiol. 101(3), 898–905 (2006). doi: 10.1152/japplphysiol.00126.2006 PubMedCrossRefGoogle Scholar
  51. 51.
    B.A. Gentry, J.A. Ferreira, C.L. Phillips, M. Brown, Hindlimb skeletal muscle function in myostatin-deficient mice. Muscle Nerve 43(1), 49–57 (2011). doi: 10.1002/mus.21796 PubMedCrossRefGoogle Scholar
  52. 52.
    T.A. Zimmers, M.V. Davies, L.G. Koniaris, P. Haynes, A.F. Esquela, K.N. Tomkinson, A.C. McPherron, N.M. Wolfman, S.-J. Lee, Induction of cachexia in mice by systemically administered myostatin. Science 296(5572), 1486–1488 (2002). doi: 10.1126/science.1069525 PubMedCrossRefGoogle Scholar
  53. 53.
    C.L. Mendias, J.P. Gumucio, M.E. Davis, C.W. Bromley, C.S. Davis, S.V. Brooks, Transforming growth factor-beta induces skeletal muscle atrophy and fibrosis through the induction of atrogin-1 and scleraxis. Muscle Nerve 45(1), 55–59 (2012). doi: 10.1002/mus.22232 PubMedCrossRefGoogle Scholar
  54. 54.
    S.J. Lee, Y.S. Lee, T.A. Zimmers, A. Soleimani, M.M. Matzuk, K. Tsuchida, R.D. Cohn, E.R. Barton, Regulation of muscle mass by follistatin and activins. Mol. Endocrinol. 24(10), 1998–2008 (2010). doi: 10.1210/me.2010-0127 PubMedCrossRefGoogle Scholar
  55. 55.
    S.J. Lee, A.C. McPherron, Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. USA 98(16), 9306–9311 (2001). doi: 10.1073/pnas.151270098 PubMedCrossRefGoogle Scholar
  56. 56.
    B. Philip, Z. Lu, Y. Gao, Regulation of GDF-8 signaling by the p38 MAPK. Cell. Signal. 17(3), 365–375 (2005). doi: 10.1016/j.cellsig.2004.08.003 PubMedCrossRefGoogle Scholar
  57. 57.
    R. Sartori, G. Milan, M. Patron, C. Mammucari, B. Blaauw, R. Abraham, M. Sandri, Smad2 and 3 transcription factors control muscle mass in adulthood. Am. J. Physiol. Cell Physiol. 296(6), C1248–C1257 (2009). doi: 10.1152/ajpcell.00104.2009 PubMedCrossRefGoogle Scholar
  58. 58.
    Y. Shi, J. Massagué, Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6), 685–700 (2003)PubMedCrossRefGoogle Scholar
  59. 59.
    L. Yu, M.C. Hébert, Y.E. Zhang, TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J. 21(14), 3749–3759 (2002). doi: 10.1093/emboj/cdf366 PubMedCrossRefGoogle Scholar
  60. 60.
    X. Zhu, S. Topouzis, L.-F. Liang, R.L. Stotish, Myostatin signaling through Smad2, Smad3 and Smad4 is regulated by the inhibitory Smad7 by a negative feedback mechanism. Cytokine 26(6), 262–272 (2004). doi: 10.1016/j.cyto.2004.03.007 PubMedCrossRefGoogle Scholar
  61. 61.
    H.D. Kollias, J.C. McDermott, Transforming growth factor-beta and myostatin signaling in skeletal muscle. J. Appl. Physiol. 104(3), 579–587 (2008). doi: 10.1152/japplphysiol.01091.2007 PubMedCrossRefGoogle Scholar
  62. 62.
    R.R. Gomis, C. Alarcón, W. He, Q. Wang, J. Seoane, A. Lash, J. Massagué, A FoxO-Smad synexpression group in human keratinocytes. Proc. Natl. Acad. Sci. USA 103(34), 12747–12752 (2006). doi: 10.1073/pnas.0605333103 PubMedCrossRefGoogle Scholar
  63. 63.
    J. Seoane, H.-V. Le, L. Shen, S.A. Anderson, J. Massagué, Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117(2), 211–223 (2004)PubMedCrossRefGoogle Scholar
  64. 64.
    T. Zarubin, J. Han, Activation and signaling of the p38 MAP kinase pathway. Cell Res. 15(1), 11–18 (2005). doi: 10.1038/sj.cr.7290257 PubMedCrossRefGoogle Scholar
  65. 65.
    A. Amirouche, A.-C. Durieux, S. Banzet, N. Koulmann, R. Bonnefoy, C. Mouret, X. Bigard, A. Peinnequin, D. Freyssenet, Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology 150(1), 286–294 (2009). doi: 10.1210/en.2008-0959 PubMedCrossRefGoogle Scholar
  66. 66.
    C. McFarlane, E. Plummer, M. Thomas, A. Hennebry, M. Ashby, N. Ling, H. Smith, M. Sharma, R. Kambadur, Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J. Cell. Physiol. 209(2), 501–514 (2006). doi: 10.1002/jcp.20757 PubMedCrossRefGoogle Scholar
  67. 67.
    A.U. Trendelenburg, A. Meyer, D. Rohner, J. Boyle, S. Hatakeyama, D.J. Glass, Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am. J. Physiol. Cell Physiol. 296(6), C1258–C1270 (2009). doi: 10.1152/ajpcell.00105.2009 PubMedCrossRefGoogle Scholar
  68. 68.
    W. Yang, Y. Zhang, Y. Li, Z. Wu, D. Zhu, Myostatin induces cyclin D1 degradation to cause cell cycle arrest through a phosphatidylinositol 3-kinase/AKT/GSK-3 beta pathway and is antagonized by insulin-like growth factor 1. J. Biol. Chem. 282(6), 3799–3808 (2007). doi: 10.1074/jbc.M610185200 PubMedCrossRefGoogle Scholar
  69. 69.
    M.D. Gomes, S.H. Lecker, R.T. Jagoe, A. Navon, A.L. Goldberg, Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc. Natl. Acad. Sci. USA 98(25), 14440–14445 (2001). doi: 10.1073/pnas.251541198 PubMedCrossRefGoogle Scholar
  70. 70.
    S. Lokireddy, C. McFarlane, X. Ge, H. Zhang, S.K. Sze, M. Sharma, R. Kambadur, Myostatin induces degradation of sarcomeric proteins through a Smad3 signaling mechanism during skeletal muscle wasting. Mol. Endocrinol. 25(11), 1936–1949 (2011). doi: 10.1210/me.2011-1124 PubMedCrossRefGoogle Scholar
  71. 71.
    C.L. Mendias, J.P. Gumucio, E.B. Lynch, Mechanical loading and TGF-beta change the expression of multiple miRNAs in tendon fibroblasts. J. Appl. Physiol. (2012). doi: 10.1152/japplphysiol.00301.2012 PubMedGoogle Scholar
  72. 72.
    C.L. Mendias, E. Kayupov, J.R. Bradley, S.V. Brooks, D.R. Claflin, Decreased specific force and power production of muscle fibers from myostatin-deficient mice are associated with a suppression of protein degradation. J. Appl. Physiol. 111(1), 185–191 (2011). doi: 10.1152/japplphysiol.00126.2011 PubMedCrossRefGoogle Scholar
  73. 73.
    J.M. Sacheck, J.-P.K. Hyatt, A. Raffaello, R.T. Jagoe, R.R. Roy, V.R. Edgerton, S.H. Lecker, A.L. Goldberg, Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. FASEB J. 21(1), 140–155 (2007). doi: 10.1096/fj.06-6604com PubMedCrossRefGoogle Scholar
  74. 74.
    Y.-P. Li, Y. Chen, J. John, J. Moylan, B. Jin, D.L. Mann, M.B. Reid, TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J. 19(3), 362–370 (2005). doi: 10.1096/fj.04-2364com PubMedCrossRefGoogle Scholar
  75. 75.
    J.M. McClung, A.R. Judge, S.K. Powers, Z. Yan, p38 MAPK links oxidative stress to autophagy-related gene expression in cachectic muscle wasting. Am. J. Physiol. Cell Physiol. 298(3), C542–C549 (2010). doi: 10.1152/ajpcell.00192.2009 PubMedCrossRefGoogle Scholar
  76. 76.
    T.J. McLoughlin, S.M. Smith, A.D. DeLong, H. Wang, T.G. Unterman, K.A. Esser, FoxO1 induces apoptosis in skeletal myotubes in a DNA-binding-dependent manner. Am. J. Physiol. Cell Physiol. 297(3), C548–C555 (2009). doi: 10.1152/ajpcell.00502.2008 PubMedCrossRefGoogle Scholar
  77. 77.
    S.M. Senf, S.L. Dodd, A.R. Judge, FOXO signaling is required for disuse muscle atrophy and is directly regulated by Hsp70. Am. J. Physiol. Cell Physiol. 298(1), C38–C45 (2010). doi: 10.1152/ajpcell.00315.2009 PubMedCrossRefGoogle Scholar
  78. 78.
    T.N. Stitt, D. Drujan, B.A. Clarke, F. Panaro, Y. Timofeyva, W.O. Kline, M. Gonzalez, G.D. Yancopoulos, D.J. Glass, The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol. Cell 14(3), 395–403 (2004)PubMedCrossRefGoogle Scholar
  79. 79.
    A.R. Conery, Y. Cao, E.A. Thompson, C.M. Townsend, T.C. Ko, K. Luo, Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. Nat. Cell Biol. 6(4), 366–372 (2004)PubMedCrossRefGoogle Scholar
  80. 80.
    F. Haddad, G.R. Adams, Aging-sensitive cellular and molecular mechanisms associated with skeletal muscle hypertrophy. J. Appl. Physiol. 100(4), 1188–1203 (2006). doi: 10.1152/japplphysiol.01227.2005 PubMedCrossRefGoogle Scholar
  81. 81.
    S. Clavel, A.-S. Coldefy, E. Kurkdjian, J. Salles, I. Margaritis, B. Derijard, Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up-regulated in aged rat Tibialis Anterior muscle. Mech. Ageing Dev. 127(10), 794–801 (2006). doi: 10.1016/j.mad.2006.07.005 PubMedCrossRefGoogle Scholar
  82. 82.
    E. Edström, M. Altun, M. Hägglund, B. Ulfhake, Atrogin-1/MAFbx and MuRF1 are downregulated in aging-related loss of skeletal muscle. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 61(7), 663–674 (2006)CrossRefGoogle Scholar
  83. 83.
    J.A. Rahnert, Q. Luo, E.M. Balog, A.J. Sokoloff, T.J. Burkholder, Changes in growth-related kinases in head, neck and limb muscles with age. Exp. Gerontol. 46(4), 282–291 (2011). doi: 10.1016/j.exger.2010.11.004 PubMedCrossRefGoogle Scholar
  84. 84.
    M. Gaugler, A. Brown, E. Merrell, M. DiSanto-Rose, J.A. Rathmacher, T.H. Reynolds, PKB signaling and atrogene expression in skeletal muscle of aged mice. J. Appl. Physiol. 111(1), 192–199 (2011). doi: 10.1152/japplphysiol.00175.2011 PubMedCrossRefGoogle Scholar
  85. 85.
    S.R. Kimball, J.P. O'Malley, J.C. Anthony, S.J. Crozier, L.S. Jefferson, Assessment of biomarkers of protein anabolism in skeletal muscle during the life span of the rat: sarcopenia despite elevated protein synthesis. Am. J. Physiol. Endocrinol. Metab. 287(4), E772–E780 (2004). doi: 10.1152/ajpendo.00535.2003 PubMedCrossRefGoogle Scholar
  86. 86.
    A. Chalé-Rush, E.P. Morris, T.L. Kendall, N.E. Brooks, R.A. Fielding, Effects of chronic overload on muscle hypertrophy and mTOR signaling in young adult and aged rats. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 64(12), 1232–1239 (2009). doi: 10.1093/gerona/glp146 CrossRefGoogle Scholar
  87. 87.
    K.G. O’Connor, J.D. Tobin, S.M. Harman, C.C. Plato, T.A. Roy, S.S. Sherman, M.R. Blackman, Serum levels of insulin-like growth factor-I are related to age and not to body composition in healthy women and men. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 53(3), M176–M182 (1998)CrossRefGoogle Scholar
  88. 88.
    M. Hameed, R.W. Orrell, M. Cobbold, G. Goldspink, S.D.R. Harridge, Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance exercise. J. Physiol. 547(Pt 1), 247–254 (2003). doi: 10.1113/jphysiol.2002.032136 PubMedCrossRefGoogle Scholar
  89. 89.
    B. Léger, W. Derave, K. De Bock, P. Hespel, A.P. Russell, Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation. Rejuvenation Res. 11(1), 163B–175B (2008). doi: 10.1089/rej.2007.0588 CrossRefGoogle Scholar
  90. 90.
    C. Guillet, M. Prod’homme, M. Balage, P. Gachon, C. Giraudet, L. Morin, J. Grizard, Y. Boirie, Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans. FASEB J. 18(13), 1586–1587 (2004). doi: 10.1096/fj.03-1341fje PubMedGoogle Scholar
  91. 91.
    M.J. Drummond, H.C. Dreyer, B. Pennings, C.S. Fry, S. Dhanani, E.L. Dillon, M. Sheffield-Moore, E. Volpi, B.B. Rasmussen, Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging. J. Appl. Physiol. 104(5), 1452–1461 (2008). doi: 10.1152/japplphysiol.00021.2008 PubMedCrossRefGoogle Scholar
  92. 92.
    M.E. Carlson, M.J. Conboy, M. Hsu, L. Barchas, J. Jeong, A. Agrawal, A.J. Mikels, S. Agrawal, D.V. Schaffer, I.M. Conboy, Relative roles of TGF-beta1 and Wnt in the systemic regulation and aging of satellite cell responses. Aging Cell 8(6), 676–689 (2009). doi: 10.1111/j.1474-9726.2009.00517.x PubMedCrossRefGoogle Scholar
  93. 93.
    M.E. Carlson, M. Hsu, I.M. Conboy, Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature 454(7203), 528–532 (2008). doi: 10.1038/nature07034 PubMedCrossRefGoogle Scholar
  94. 94.
    M. Altun, H.C. Besche, H.S. Overkleeft, R. Piccirillo, M.J. Edelmann, B.M. Kessler, A.L. Goldberg, B. Ulfhake, Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway. J. Biol. Chem. 285(51), 39597–39608 (2010). doi: 10.1074/jbc.M110.129718 PubMedCrossRefGoogle Scholar
  95. 95.
    M. Bossola, F. Pacelli, P. Costelli, A. Tortorelli, F. Rosa, G.B. Doglietto, Proteasome activities in the rectus abdominis muscle of young and older individuals. Biogerontology 9(4), 261–268 (2008). doi: 10.1007/s10522-008-9135-9 PubMedCrossRefGoogle Scholar
  96. 96.
    D. Cai, K.K.H. Lee, M. Li, M.K. Tang, K.M. Chan, Ubiquitin expression is up-regulated in human and rat skeletal muscles during aging. Arch. Biochem. Biophys. 425(1), 42–50 (2004). doi: 10.1016/j.abb.2004.02.027 PubMedCrossRefGoogle Scholar
  97. 97.
    A. Ratkevicius, A. Joyson, I. Selmer, T. Dhanani, C. Grierson, A.M. Tommasi, A. Devries, P. Rauchhaus, D. Crowther, S. Alesci, P. Yaworsky, F. Gilbert, T.W. Redpath, J. Brady, K.C.H. Fearon, D.M. Reid, C.A. Greig, H. Wackerhage, Serum concentrations of myostatin and myostatin-interacting proteins do not differ between young and sarcopenic elderly men. J. Gerontol. Ser. A Biol. Sci. Med. Sci. (2011). doi: 10.1093/gerona/glr025 Google Scholar
  98. 98.
    U. Raue, D. Slivka, B. Jemiolo, C. Hollon, S. Trappe, Proteolytic gene expression differs at rest and after resistance exercise between young and old women. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 62(12), 1407–1412 (2007)CrossRefGoogle Scholar
  99. 99.
    S.A. Whitman, M.J. Wacker, S.R. Richmond, M.P. Godard, Contributions of the ubiquitin-proteasome pathway and apoptosis to human skeletal muscle wasting with age. Pflügers Archiv. 450(6), 437–446 (2005). doi: 10.1007/s00424-005-1473-8 PubMedCrossRefGoogle Scholar
  100. 100.
    L. Di Luigi, F. Romanelli, P. Sgrò, A. Lenzi, Andrological aspects of physical exercise and sport medicine. Endocrine (2012). doi: 10.1007/s12020-012-9655-6 PubMedGoogle Scholar
  101. 101.
    S.C. Forbes, J.P. Little, D.G. Candow, Exercise and nutritional interventions for improving aging muscle health. Endocrine (2012). doi: 10.1007/s12020-012-9676-1 PubMedGoogle Scholar
  102. 102.
    C.K. Liu, R.A. Fielding, Exercise as an intervention for frailty. Clin. Geriatr. Med. 27(1), 101–110 (2011). doi: 10.1016/j.cger.2010.08.001 PubMedCrossRefGoogle Scholar
  103. 103.
    C.S. Fry, M.J. Drummond, E.L. Glynn, J.M. Dickinson, D.M. Gundermann, K.L. Timmerman, D.K. Walker, S. Dhanani, E. Volpi, B.B. Rasmussen, Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skelet. Muscle 1(1), 11 (2011). doi: 10.1186/2044-5040-1-11 PubMedCrossRefGoogle Scholar
  104. 104.
    U. Raue, D. Slivka, B. Jemiolo, C. Hollon, S. Trappe, Myogenic gene expression at rest and after a bout of resistance exercise in young (18–30 yr) and old (80–89 yr) women. J. Appl. Physiol. 101(1), 53–59 (2006). doi: 10.1152/japplphysiol.01616.2005 PubMedCrossRefGoogle Scholar
  105. 105.
    S. Trappe, M. Godard, P. Gallagher, C. Carroll, G. Rowden, D. Porter, Resistance training improves single muscle fiber contractile function in older women. Am. J. Physiol. Cell Physiol. 281(2), C398–C406 (2001)PubMedGoogle Scholar
  106. 106.
    S. Trappe, D. Williamson, M. Godard, D. Porter, G. Rowden, D. Costill, Effect of resistance training on single muscle fiber contractile function in older men. J. Appl. Physiol. 89(1), 143–152 (2000)PubMedGoogle Scholar
  107. 107.
    D.L. Williamson, U. Raue, D.R. Slivka, S. Trappe, Resistance exercise, skeletal muscle FOXO3A, and 85-year-old women. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 65(4), 335–343 (2010). doi: 10.1093/gerona/glq005 CrossRefGoogle Scholar
  108. 108.
    A.R. Konopka, M.D. Douglass, L.A. Kaminsky, B. Jemiolo, T.A. Trappe, S. Trappe, M.P. Harber, Molecular adaptations to aerobic exercise training in skeletal muscle of older women. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 65(11), 1201–1207 (2010). doi: 10.1093/gerona/glq109 CrossRefGoogle Scholar
  109. 109.
    A.R. Konopka, T.A. Trappe, B. Jemiolo, S.W. Trappe, M.P. Harber, Myosin heavy chain plasticity in aging skeletal muscle with aerobic exercise training. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 66(8), 835–841 (2011). doi: 10.1093/gerona/glr088 CrossRefGoogle Scholar
  110. 110.
    K.L. Bennell, R.S. Hinman, A review of the clinical evidence for exercise in osteoarthritis of the hip and knee. J. Sci. Med. Sport 14(1), 4–9 (2011). doi: 10.1016/j.jsams.2010.08.002 PubMedCrossRefGoogle Scholar
  111. 111.
    M.A. Williams, W.L. Haskell, P.A. Ades, E.A. Amsterdam, V. Bittner, B.A. Franklin, M. Gulanick, S.T. Laing, K.J. Stewart, Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation 116(5), 572–584 (2007). doi: 10.1161/CIRCULATIONAHA.107.185214 PubMedCrossRefGoogle Scholar
  112. 112.
    G.E. Butterfield, J. Thompson, M.J. Rennie, R. Marcus, R.L. Hintz, A.R. Hoffman, Effect of rhGH and rhIGF-I treatment on protein utilization in elderly women. Am. J. Physiol. 272(1 Pt 1), E94–E99 (1997)PubMedGoogle Scholar
  113. 113.
    N. Lebrasseur, T. Schelhorn, B. Bernardo, P. Cosgrove, P. Loria, T. Brown, Myostatin inhibition enhances the effects of exercise on performance and metabolic outcomes in aged mice. J. Gerontol. Ser. A Biol. Sci. Med. Sci. (2009). doi: 10.1093/gerona/glp068 Google Scholar
  114. 114.
    K.T. Murphy, R. Koopman, T. Naim, B. Léger, J. Trieu, C. Ibebunjo, G.S. Lynch, Antibody-directed myostatin inhibition in 21-mo-old mice reveals novel roles for myostatin signaling in skeletal muscle structure and function. FASEB J. 24(11), 4433–4442 (2010). doi: 10.1096/fj.10-159608 PubMedCrossRefGoogle Scholar
  115. 115.
    R.D. Cohn, C. van Erp, J.P. Habashi, A.A. Soleimani, E.C. Klein, M.T. Lisi, M. Gamradt, C.M. ap Rhys, T.M. Holm, B.L. Loeys, F. Ramirez, D.P. Judge, C.W. Ward, H.C. Dietz, Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states. Nat. Med. 13(2), 204–210 (2007). doi: 10.1038/nm1536 PubMedCrossRefGoogle Scholar
  116. 116.
    T.N. Burks, E. Andres-Mateos, R. Marx, R. Mejias, C. van Erp, J.L. Simmers, J.D. Walston, C.W. Ward, R.D. Cohn, Losartan restores skeletal muscle remodeling and protects against disuse atrophy in sarcopenia. Sci. Transl. Med. 3(82), 82ra37 (2011). doi: 10.1126/scitranslmed.3002227 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Departments of Orthopaedic Surgery and Molecular & Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations