Advertisement

Endocrine

, Volume 42, Issue 2, pp 272–277 | Cite as

Testosterone and heart failure

  • Maurizio Volterrani
  • Giuseppe Rosano
  • Ferdinando Iellamo
Review

Abstract

Testosterone deficiency is a generalized phenomenon seen in the course of chronic heart failure (CHF). Reduction in circulating testosterone level is a predictor of deterioration of functional capacity over time, underscoring the role of testosterone deficiency in CHF. Anabolic hormones are determinants of exercise capacity and circulating levels of anabolic hormones strongly determine muscle mass and strength. Testosterone deficiency is involved in the pathophysiology of CHF, contributing to some features of this syndrome, such as the reduced muscle mass, abnormal energy handling, fatigue, dyspnea and, finally, cachexia. This review summarizes current knowledge on the role of testosterone deficiency in the pathophysiology of CHF, gaining insights from the potential implications of testosterone as supplementation therapy.

Keywords

Heart failure Testosterone Exercise capacity Muscular function 

Notes

Disclosure

None.

References

  1. 1.
    S.D. Anker, T.P. Chua, P. Ponikowski et al., Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation 96, 526–534 (1997)PubMedCrossRefGoogle Scholar
  2. 2.
    Y. Moriyama, H. Yasue, M. Yoshimura et al., The plasma levels of dehydroepiandrosterone sulfate are decreased in patients with chronic heart failure in proportion to the severity. J. Clin. Endocrinol. Metab. 85, 1834–1840 (2000)PubMedCrossRefGoogle Scholar
  3. 3.
    P.E. Kontoleon, M.I. Anastasiou-Nana, P.D. Papapetrou et al., Hormonal profile in patients with congestive heart failure. Int. J. Cardiol. 87, 179–183 (2003)PubMedCrossRefGoogle Scholar
  4. 4.
    P.J. Pugh, R.D. Jones, J.N. West, T.H. Jones, K.S. Channer, Testosterone treatment for men with chronic heart failure. Heart 90, 446–447 (2004)PubMedCrossRefGoogle Scholar
  5. 5.
    C.J. Malkin, T.H. Jones, K.S. Channer, Testosterone in chronic heart failure. Front. Horm. Res. 37, 183–196 (2009)PubMedCrossRefGoogle Scholar
  6. 6.
    S.D. Anker, A.L. Clark, M. Kemp, C. Salsbury, M.M. Teixeira, P.G. Hellewell, A.J. Coats, Tumor necrosis factor and steroid metabolism in chronic heart failure: possible relation to muscle wasting. J. Am. Coll. Cardiol. 30, 997–1001 (1997)PubMedCrossRefGoogle Scholar
  7. 7.
    E.A. Jankowska, B. Biel, J. Majda et al., Anabolic deficiency in men with chronic heart failure prevalence and detrimental impact on survival. Circulation 114, 1829–1837 (2006)PubMedCrossRefGoogle Scholar
  8. 8.
    E.A. Jankowska, G. Gerasimos Filippatos, B. Ponikowska et al., Reduction in circulating testosterone relates to exercise capacity in men with chronic heart failure. J. Cardiac Fail. 15, 442–450 (2009)CrossRefGoogle Scholar
  9. 9.
    N. Pitteloud, V.K. Mootha, A.A. Dwyer et al., Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men. Diabetes Care 28, 1636–1642 (2005)PubMedCrossRefGoogle Scholar
  10. 10.
    M. Izquierdo, K. Hakkinen, A. Anton et al., Maximal strength and power, endurance performance, and serum hormones in middle-aged and elderly men. Med. Sci. Sports Exerc. 33, 1577–1587 (2001)PubMedCrossRefGoogle Scholar
  11. 11.
    Z.R. Haydar, M.R. Blackman, J.D. Tobin, J.G. Wright, J.L. Fleg, The relationship between aerobic exercise capacity and circulating IGF1 levels in healthy men and women. J. Am. Geriatr. Soc. 48, 139–145 (2000)PubMedGoogle Scholar
  12. 12.
    F. Hartgens, H. Kuipers, J.A. Wijnen, H.A. Keizer, Body composition, cardiovascular risk factors and liver function in long-term androgenic–anabolic steroids using body builders three months after drug withdrawal. Int. J. Sports Med. 17, 429–433 (1996)PubMedCrossRefGoogle Scholar
  13. 13.
    I. Sinha-Hikim, J. Artaza, L. Woodhouse et al., Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy. Am. J. Physiol. 283, 154–164 (2002)Google Scholar
  14. 14.
    T.W. Storer, L. Magliano, L. Woodhouse et al., Testosterone dose-dependently increases maximal voluntary strength and leg power, but does not affect fatigability or specific tension. J. Clin. Endocrinol. Metab. 88, 1478–1485 (2003)PubMedCrossRefGoogle Scholar
  15. 15.
    R. Wolfe, A. Ferrando, M. Sheffield-Moore, R. Urban, Testosterone and muscle protein metabolism. Mayo Clin. Proc. 75(Suppl), S55–S60 (2000)PubMedGoogle Scholar
  16. 16.
    A.A. Ferrando, M. Sheffield-Moore, C.W. Yeckel et al., Testosterone administration to older men improves muscle function: molecular and physiological mechanisms. Am. J. Physiol. Endocrinol. Metab. 282, E601–E607 (2002)PubMedGoogle Scholar
  17. 17.
    F. Kadi, Cellular and molecular mechanisms responsible for the action of testosterone on human skeletal muscle. A basis for illegal performance enhancement. Br. J. Pharmacol. 154, 522–528 (2008)PubMedCrossRefGoogle Scholar
  18. 18.
    R. Hambrecht, E. Fiehn, J. Yu et al., Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure. J. Am. Coll. Cardiol. 29, 1067–1073 (1997)PubMedCrossRefGoogle Scholar
  19. 19.
    A.J. Coats, A.L. Clark, M. Piepoli, M. Volterrani, P.A. Poole-Wilson, Symptoms and quality of life in heart failure: the muscle hypothesis. Br. Heart J. 72, S36–S39 (1994)PubMedCrossRefGoogle Scholar
  20. 20.
    M.F. Piepoli, A. Kaczmarek, D.P. Francis et al., Reduced peripheral skeletal muscle mass and abnormal reflex physiology in chronic heart failure. Circulation 114, 126–134 (2006)PubMedCrossRefGoogle Scholar
  21. 21.
    M. Piepoli, A.L. Clark, M. Volterrani, S. Adamopoulos, P. Sleight, A.J. Coats, Contribution of muscle afferents to the hemodynamic, autonomic, and ventilatory responses to exercise in patients with chronic heart failure: effects of physical training. Circulation 93, 940–952 (1996)PubMedCrossRefGoogle Scholar
  22. 22.
    F. Iellamo, J.A. Sala-Mercado, M. Ichinose et al., Spontaneous baroreflex control of heart rate during exercise and muscle metaboreflex activation in heart failure. Am. J. Physiol. Heart Circ. Physiol. 293, H1929–H1936 (2007)PubMedCrossRefGoogle Scholar
  23. 23.
    S.D. Anker, P. Ponikowski, S. Varney et al., Wasting as independent risk factor for mortality in chronic heart failure. Lancet 349, 1050–1053 (1997)PubMedCrossRefGoogle Scholar
  24. 24.
    P.P. Ponikowski, T.P. Chua, D.P. Francis et al., Muscle ergoreceptor overactivity reflects deterioration in clinical status and cardiorespiratory reflex control in chronic heart failure. Circulation 104, 2324–2330 (2001)PubMedCrossRefGoogle Scholar
  25. 25.
    M.F. Piepoli, A.C. Scott, A. Capucci, A.J. Coats, Skeletal muscle training in chronic heart failure. Acta Physiol. Scand. 171, 295–303 (2001)PubMedCrossRefGoogle Scholar
  26. 26.
    G. Caminiti, M. Volterrani, F. Iellamo et al., Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a double-blind, placebo-controlled, randomized study. J. Am. Coll. Cardiol. 54, 919–927 (2009)PubMedCrossRefGoogle Scholar
  27. 27.
    M. Czesla, G. Mehlhorn, D. Fritzsche, G. Asmussen, Cardiomyoplasty-improvement of muscle fibre type transformation by anabolic steroid. J. Mol. Cell Cardiol. 29, 2989–2996 (1997)PubMedCrossRefGoogle Scholar
  28. 28.
    I. Ustünel, G. Akkoyunlu, R. Demir, The effect of testosterone on gastrocnemius muscle fibres in growing and adult male and female rats: a histochemical, morphometric and ultrastructural study. Anat. Histol. Embryol. 32, 70–79 (2003)PubMedCrossRefGoogle Scholar
  29. 29.
    C.J. Malkin, P.J. Pugh, J.N. West, E.J.R. Van Beek, T.H. Jones, K.S. Channer, Testosterone therapy in men with moderate severity heart failure: a double-blind randomized placebo controlled trial. Eur. Heart J. 27, 57–64 (2006)PubMedCrossRefGoogle Scholar
  30. 30.
    A.M. Traish, F. Saad, R.J. Feeley, A. Guay, The dark side of testosterone review deficiency: III: cardiovascular disease. J. Androl. 30, 477–494 (2009)PubMedCrossRefGoogle Scholar
  31. 31.
    T. Montalcini, G. Gorgone, C. Gazzaruso, G. Sesti, F. Perticone, A. Pujia, Endogenous testosterone and endothelial function in postmenopausal women. Coron. Artery Dis. 18, 9–13 (2007)PubMedCrossRefGoogle Scholar
  32. 32.
    K. Saltiki, G. Papageorgiou, P. Voidonikola et al., Endogenous estrogen levels are associated with endothelial function in males independently of lipid levels. Endocrine 37, 329–335 (2010)PubMedCrossRefGoogle Scholar
  33. 33.
    P.J. Pugh, T.H. Jones, K.S. Channer, Acute haemodynamic effects of testosterone in men with chronic heart failure. Eur. Heart J. 24, 909–915 (2003)PubMedCrossRefGoogle Scholar
  34. 34.
    K. Swedberg, J. Cleland, H. Dargie et al., Guidelines on the diagnosis and treatment of chronic heart failure: executive summary (update 2005). The task force for the diagnosis and treatment of chronic heart failure of the European Society of Cardiology. Eur. Heart J. 26, 1115–1140 (2005)PubMedCrossRefGoogle Scholar
  35. 35.
    J.L. Fleg, I.L. Pina, G.J. Balady et al., Assessment of functional capacity in clinical and research applications. An advisory from the Committee on Exercise, Rehabilitation and Prevention, Council on Clinical Cardiology, American Heart Association. Circulation 102, 1591–1597 (2000)PubMedCrossRefGoogle Scholar
  36. 36.
    D. Francis, W. Shamin, L.C. Davies et al., Cardiopulmonary exercise testing for prognosis in chronic heart failure: continuous and independent prognostic value from VE/VCO2 slope and peak VO2. Eur. Heart J. 21, 154–161 (2000)PubMedCrossRefGoogle Scholar
  37. 37.
    R. Arena, J. Myers, J. Abella, Development of a ventilatory classification system in patients with heart failure. Circulation 115, 2410–2417 (2007)PubMedCrossRefGoogle Scholar
  38. 38.
    R. Martin-Du Pan, Androgen deficiency in women: indications and risks of treatment with testosterone or DHEA. Rev. Med. Suisse 3, 792–796 (2007)PubMedGoogle Scholar
  39. 39.
    T. Montalcini, V. Migliaccio, Y. Ferro, C. Gazzaruso, A. Pujia, Androgens for postmenopausal women’s health? Endocrine (2012). doi: 10.1007/s12020-012-9692-1
  40. 40.
    K. Miller, B. Biller, C. Beauregard et al., Effects of testosterone replacement in androgen-deficient women with hypopituitarism: a randomized, double-blind, placebo-controlled study. J. Clin. Endocrinol. Metab. 91, 1683–1690 (2006)PubMedCrossRefGoogle Scholar
  41. 41.
    K.K. Miller, B.M.K. Biller, A. Schaub et al., Effects of testosterone therapy on cardiovascular risk markers in androgen-deficient women with hypopituitarism. J. Clin. Endocrinol. Metab. 92, 2474–2479 (2007)PubMedCrossRefGoogle Scholar
  42. 42.
    F. Iellamo, M. Volterrani, G. Caminiti et al., Testosterone therapy in women with chronic heart failure: a pilot double-blind randomized placebo controlled study. J. Am. Coll. Cardiol. 56, 1310–1316 (2010)PubMedCrossRefGoogle Scholar
  43. 43.
    J. Shifren, G. Braunstein, J. Simon et al., Transdermal testosterone treatment in women with impaired sexual function after oophorectomy. N. Engl. J. Med. 343, 682–688 (2000)PubMedCrossRefGoogle Scholar
  44. 44.
    G. Wittert, I. Chapman, M. Haren, S. Mackintosh, P. Coates, J. Morley, Oral testosterone supplementation increases muscle and decreases fat mass in healthy elderly males with low-normal gonadal status. J Gerontol Biol Sci Med Sci 58, 618–625 (2003)CrossRefGoogle Scholar
  45. 45.
    C.J. Malkin, T.H. Jones, K.S. Channer, The effect of testosterone on insulin sensitivity in men with heart failure. Eur. J. Heart Fail. 9, 44–50 (2007)PubMedCrossRefGoogle Scholar
  46. 46.
    S. von Haehling, W. Doehner, S.D. Anker, Nutrition, metabolism, and the complex pathophysiology of cachexia in chronic heart failure. Cardiovasc. Res. 73, 298–309 (2007)CrossRefGoogle Scholar
  47. 47.
    J.W. Swan, S.D. Anker, C. Walton et al., Insulin resistance in chronic heart failure: relation to severity and etiology of heart failure. J. Am. Coll. Cardiol. 30, 527–532 (1997)PubMedCrossRefGoogle Scholar
  48. 48.
    E. Ingelsson, J. Sundstrom, J. Amlov, B. Zethelius, L. Lind, Insulin resistance and risk of congestive heart failure. JAMA 294, 334–341 (2005)PubMedCrossRefGoogle Scholar
  49. 49.
    N. Suskin, R.S. McKelvie, R.J. Burns et al., Glucose and insulin abnormalities relate to functional capacity in patients with congestive heart failure. Eur. Heart J. 21, 1368–1375 (2000)PubMedCrossRefGoogle Scholar
  50. 50.
    W. Doehner, D. Gathercole, M. Cicoira et al., Reduced glucose transporter GLUT4 in skeletal muscle predicts insulin resistance in non-diabetic chronic heart failure patients independently of body composition. Int. J. Cardiol. 138, 19–24 (2010)PubMedCrossRefGoogle Scholar
  51. 51.
    A. Holmäng, P. Björntorp, The effects of testosterone on insulin sensitivity in male rats. Acta Physiol. Scand. 146, 505–510 (1992)PubMedCrossRefGoogle Scholar
  52. 52.
    D. Kapoor, E. Goodwin, K.S. Channer, T.H. Jones, Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur. J. Endocr. 154, 899–906 (2006)CrossRefGoogle Scholar
  53. 53.
    A. Mortara, M.T. La Rovere, G.D. Pinna et al., Arterial baroreflex modulation of heart rate in chronic heart failure. Clinical and hemodynamic correlates and prognostic implications. Circulation 96, 3450–3458 (1997)PubMedCrossRefGoogle Scholar
  54. 54.
    R.B. Simerly, C. Chang, M. Muramatsu, L.W. Swanson, Distribution of androgen and estrogen mRNA-containing cells in the rat brain: an in situ hybridization study. J. Comp. Neurol. 294, 76–95 (1990)PubMedCrossRefGoogle Scholar
  55. 55.
    G.R. Ward, A.A. Abdel-Rahman, Orchiectomy or androgen receptor blockade attenuates baroreflex-mediated bradycardia in conscious rats. BMC Pharmacol. 6, 2 (2006)PubMedCrossRefGoogle Scholar
  56. 56.
    F. Altamirano, C. Oyarce, P. Silva et al., Testosterone induces cardiomyocyte hypertrophy through mammalian target of rapamycin complex 1 pathway. J. Endocrinol. 202, 299–307 (2009)PubMedCrossRefGoogle Scholar
  57. 57.
    T. Papamitsou, D. Barlaggiannis, V. Papaliagkas, E. Kotadinou, M. Dermentzopoulou-Theodoridou, Testosterone-induced hypertrophy, fibrosis and apoptosis of cardiac cells: an ultrastructural and immunohistochemical study. Med. Sci. Monit. 17, 266–273 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Maurizio Volterrani
    • 1
  • Giuseppe Rosano
    • 1
  • Ferdinando Iellamo
    • 1
    • 2
  1. 1.Cardiovascular Research Unit, Department of Medical Sciences, Centre for Clinical and Basic ResearchIstituto di Ricovero e Cura a Carattere Scientifico San Raffaele PisanaRomeItaly
  2. 2.Department of Internal MedicineUniversity Tor VergataRomeItaly

Personalised recommendations