Endocrine

, Volume 42, Issue 3, pp 653–657 | Cite as

Thyroid function and stress hormones in children with stress hyperglycemia

  • Mohammad Reza Bordbar
  • Reza Taj-aldini
  • Zohre Karamizadeh
  • Sezaneh Haghpanah
  • Mehran Karimi
  • Gholam Hossein Omrani
Original Article

Abstract

The purpose of the study is to determine the prevalence of stress hyperglycemia and to investigate how thyroid and stress hormones alter during stress hyperglycemia in children admitted to pediatric emergency wards. A prospective cross-sectional study was conducted in children, less than 19 years old, who were admitted to pediatric emergency wards of Nemazee and Dastgheib Hospitals, Shiraz, Southern Iran. Those patients taking steroids, beta-agonists or intravenously administered glucose before venipuncture, and patients with diabetes mellitus (DM) or thyroid diseases were excluded. Children with blood glucose ≥150 mg/dL during admission were regarded as cases. The controls were age- and- sex- matched, euglycemic children. Stress hormones including cortisol, insulin, growth hormone, and prolactin were measured, and thyroid function was tested with a radioimmunoassay (RIA) method in all cases and controls. The resuts showed that among 1,054 screened children, 39 cases (3.7 %) had stress hyperglycemia and 89 controls were included in the study. The occurrence of hyperglycemia was independent of sex, but it occurred mostly in children under 6 years old. Hyperglycemia occurred more frequently in patients with a positive family history of DM (odds ratio = 3.2, 95 % CI = 1.3–7.9, and P = 0.009). There were no significant differences between cases and controls regarding any hormones except higher cortisol, and lower total T3 and T4 in cases compared with controls. Neither of cases developed diabetes in the 24-month follow-up period. These findings led us to the conclusion that stress hyperglycemia is occasionally seen in critically ill patients. Among the stress hormones measured, only cortisol increased during hyperglycemia. It seems that hyperglycemia is not an important risk factor for future diabetes.

Keywords

Diabetes Hyperglycemia Stress hormones Thyroid function 

Abbreviations

BG

Blood glucose

CI

Confidence interval

DM

Diabetes mellitus

FT3

Free T3

FT4

Free T4

GH

Growth hormone

NTIS

Non thyroidal illness syndrome

OGT

Oral glucose tolerance test

RIA

Radioimmunoassay

SES

Sick euthyroid syndrome

SPSS

Statistical package for the social sciences

TRH

Thyrotropin-releasing hormone

TSH

Thyroid stimulating hormone

Notes

Acknowledgments

The authors would like to express their special thanks to Dr. H. Tabesh for carrying out the statistical analysis, Mrs. M. Farahmandi for typing the manuscript, and K. Shashok (Author AID in the Eastern Mediterranean) and Sh. Parand of the Hematology Research Center, for English editing the manuscript. This manuscript is relevant to the thesis of Reza Taj-aldini with project number 86-3714.

Conflict of interest

None of the authors has financial disclosures or any conflict of interest to be declared.

References

  1. 1.
    D.M. Bhisitkul, A.L. Morrow, A.I. Vinik, J. Shults, J.C. Lavland, R. Rohn, Prevalence of stress hyperglycemia among patients attending a pediatric emergency department. J. Pediatr. 124, 547–551 (1994)PubMedCrossRefGoogle Scholar
  2. 2.
    S. Samiullah, R. Qasim, S. Imran, J. Mukhtair, Frequency of stress hyperglycemia and its’ influence on the outcome of patients with spontaneous intracerebral hemorrhage. J. Pak. Med. Assoc. 60(8), 660–663 (2010)PubMedGoogle Scholar
  3. 3.
    J. Mesquite, A. Varela, J.L. Medina, Trauma and the endocrine system. Endocrin. Nutr. 57(10), 492–499 (2010)CrossRefGoogle Scholar
  4. 4.
    K.Y. Carmen Wong, V. Wong, D.J. Ho, D.J. Torpy, M. McLean, N.W. Cheung, High cortisol levels in hyperglycemic myocardial infarct patients signify stress hyperglycemia and predict subsequent normalization of glucose tolerance. Clin. Endocrinol. (Oxf) 72(2), 189–195 (2010)CrossRefGoogle Scholar
  5. 5.
    S.L. Weiss, J. Alexander, M.S.D. Agus, Extreme stress hyperglycemia during acute illness in a pediatric emergency department. Pediatr. Emer. Care 26, 626–632 (2010)CrossRefGoogle Scholar
  6. 6.
    G. Velerio, A. Franzese, E. Carlin, P. Pecile, R. Perini, A. Tenore, High prevalence of stress hyperglycemia in children with febrile seizures and traumatic injuries. Acta. Pediatrica. 90(6), 618–622 (2001)CrossRefGoogle Scholar
  7. 7.
    P. Gupta, G. Natarajan, K.N. Agarulal, Transient hyperglycemia in acute childhood illnesses: to attend or ignore? Indian J. Pediatr. 64(2), 205–210 (1997)PubMedCrossRefGoogle Scholar
  8. 8.
    A. Ronan, A.K. Azad, O. Rahman, R.E. Philips, M.L. Bennish, Hyperglycemia during childhood diarrhea. J. Pediatr. 130(1), 45–51 (1997)PubMedCrossRefGoogle Scholar
  9. 9.
    W.K. Yu, W.Q. Li, N. Li, J.S. Li, Influence of acute hyperglycemia in human sepsis on inflammatory cytokine and counterregulatory hormone concentrations. World J. Gastroenterol. 9(8), 1824–1827 (2003)PubMedGoogle Scholar
  10. 10.
    U.G. Kyle, J.A. Coss Bu, C.E. Kennedy, L.S. Jefferson, Organ dysfunction is associated with hyperglycemia in critically ill children. Intensive Care Med. 36, 312–320 (2010)PubMedCrossRefGoogle Scholar
  11. 11.
    T. Trimarchi, Endocrine problems in critically ill children. AACN Clin. Issues 17(1), 66–78 (2006)PubMedCrossRefGoogle Scholar
  12. 12.
    R. Lodha, S. Vivekanandhan, M. Sarthi, S. Arun, S.K. Kabra, Thyroid function in children with sepsis and septic shock. Acta. Pediatr. 96(3), 406–409 (2007)CrossRefGoogle Scholar
  13. 13.
    J.J. Verhoeven, J.B. Brand, M.M. Van de Polder, K.F. Joosten, Management of hyperglycemia in the pediatric intensive care unit; implementation of a glucose control protocol. Pediatr. Crit. Care Med. 10(6), 648–652 (2009)PubMedCrossRefGoogle Scholar
  14. 14.
    B. Poddar, Treating hyperglycemia in the critically ill child: is there enough evidence? Indian Pediatr. 48(7), 531–536 (2011)PubMedCrossRefGoogle Scholar
  15. 15.
    C.M. Preissig, M.R. Rigby, Hyperglycemia results from beta-cell dysfunction in critically ill children with respiratory and cardiovascular failure: a prospective observational study. Crit Care 13(1), R27 (2009). doi:  10.1186/cc7732
  16. 16.
    S.C. Verbruggen, K.F.M. Joosten, L. Castillo, J.B. Van Goudoever, Insulin therapy in the pediatric intensive care unit. Clin. Nutr. 26, 677–690 (2007)PubMedCrossRefGoogle Scholar
  17. 17.
    L. Clark, C. Preissig, M.R. Rigby, F. Bowyer, Endocrine issues in the pediatric intensive care unit. Pediatr. Clin. North Am. 55, 805–833 (2008)PubMedCrossRefGoogle Scholar
  18. 18.
    T. Kotulak, H. Riha, M. Haluzik, Hyperglycemia and its control in the critically ill patient. Cas. Lek. Cesk. 150(1), 20–23 (2011)PubMedGoogle Scholar
  19. 19.
    N.D. Kruyt, D.J. Van Westerloo, J.H. Devries, Stress-induced hyper glycemid in healthy bungee jumpers without diabetes due to decreased pancreatic ß-cell function and increased insulin resistance. Diabetes Technol. Ther. 14(4), 311–314 (2012)PubMedCrossRefGoogle Scholar
  20. 20.
    M. Falciglia, Causes and consequences of hyperglycemia in critical illness. Curr. Opin. Clin. Nutr. Metab. Care 10, 498–503 (2007)PubMedCrossRefGoogle Scholar
  21. 21.
    E.V. Faustino, M. Apkon, Persistent hyperglycemia in critically ill children. J. Pediatr. 146, 30–34 (2005)PubMedCrossRefGoogle Scholar
  22. 22.
    V. Srinivasan, P.C. Spinella, H.R. Drott, C.L. Roth, M.A. Helfaer, V. Nadkarni, Association of timing, duration and intensity of hyperglycemia with intensive care unit mortality in critically ill children. Pediatr. Crit. Care Med. 5(4), 329–336 (2004)PubMedCrossRefGoogle Scholar
  23. 23.
    S.J. Finney, C. Zekveld, A. Elia, T.W. Evans, Glucose control and mortality in critically ill patients. JAMA 290(15), 2041–2047 (2003)PubMedCrossRefGoogle Scholar
  24. 24.
    S. Yendamuri, G.J. Fulda, G.H. Tinkoff, Admission hyperglycemia as a prognostic indicator in trauma. J. Trauma 55(1), 33–38 (2003)PubMedCrossRefGoogle Scholar
  25. 25.
    J. Rybka, Glycemia control in critically ill patients is justified and effective. Vnitr. Lek. 56(9 Suppl), 977–987 (2010)PubMedGoogle Scholar
  26. 26.
    P.E. Marik, Glycemic control in critically ill patients: what to do post NICE-SUGAR? World J. Gastrointest. Surg. 1(1), 3–5 (2009)PubMedCrossRefGoogle Scholar
  27. 27.
    K.A. Wintergerst, B. Buckingham, L. Ganndrud, B.J. Wong, S. Kache, D.M. Wilson, Association of hypoglycemia, hyperglycemia, and glucose variability with morbidity and death in the pediatric intensive care unit. Pediatrics 118, 173–179 (2006)PubMedCrossRefGoogle Scholar
  28. 28.
    H. Karamifar, S. Mehranbod, Prevalence of stress hyperglycemia among patients attending to the neonatal and pediatric emergency wards of Shiraz University of Medical Sciences. J Kerman Univ. Med. Sci. 5(4), 171–177 (1998)Google Scholar
  29. 29.
    D.M. Bhisitkul, A.I. Vinik, A.L. Morrow, J.X. She, J. Shults, A.C. Powers, N.K. Maclaren, Prediabetic markers in children with stress hyperglycemia. Arch. Pediatr. Adolesc. Med. 150(9), 936–941 (1996)PubMedCrossRefGoogle Scholar
  30. 30.
    N. Shehadeh, A. On, I. Kessel, R. Perlman, L. Even, T. Naveh, L. Soloveichik, A. Etzioni, Stress hyperglycemia and the risk for the development of type 1 diabetes. J. Pediatr. Endocrinol. Metab. 10(3), 283–286 (1997)PubMedCrossRefGoogle Scholar
  31. 31.
    T. Oron, G. Gat-Yablonski, L. Lazar, M. Phillip, Y. Gozlan, Stress hyperglycemia: a sign of familial diabetes in children. Pediatrics 128(6), e1614–e1617 (2011)Google Scholar
  32. 32.
    R. Lorini, A. Alibrandi, L. Vitali, C. Klersy, M. Martinetti, C. Betterele, G. D’Annunzio, E. Bonifacio, Risk of type 1 diabetes development in children with incidental hyperglycemia. Diabetes Care 24, 1210–1216 (2001)PubMedCrossRefGoogle Scholar
  33. 33.
    F. Vankooten, N. Hoogerbrugge, P. Naarding, P.J. Koudstael, Hyperglycemia in the acute phase of stroke is not caused by stress. Stroke 24, 1129–1132 (1993)CrossRefGoogle Scholar
  34. 34.
    D.F. Heath, Glucose, insulin and other plasma metabolites shortly after injury. J. Accid. Emerg. Med. 11, 67–77 (1994)PubMedCrossRefGoogle Scholar
  35. 35.
    S. Sam, T.C. Corbridge, B. Mokhlesi, A.P. Comellas, M.E. Molitch, Cortisol levels and mortality in severe sepsis. Clin. Endocrinol. (Oxf) 60, 29–35 (2004)CrossRefGoogle Scholar
  36. 36.
    J.S. Rand, E. Kinnaird, A. Baglioni, J. Blackshow, J. Priest, Acute stress hyperglycemia in cats is associated with struggling and increased concentrations of lactate and norepinephrine. J. Vet. Intern. Med. 16(2), 123–132 (2002)PubMedCrossRefGoogle Scholar
  37. 37.
    R.P. Peters, Y. Debaveye, E. Fliers, T.J. Visser, Changes within the thyroid axis during critical illness. Crit. Care Clin. 22(1), 41–51 (2006)CrossRefGoogle Scholar
  38. 38.
    L. Mebis, Y. Debveye, T.J. Visser, G. Van den Berghe, Changes within the thyroid axis during the course of critical illness. Endocrinol. Metab. Clin. N. Am. 35, 807–821 (2006)CrossRefGoogle Scholar
  39. 39.
    S.D. Marks, Nonthyroidal illness syndrome in children. Endocrine 36, 355–367 (2009)PubMedCrossRefGoogle Scholar
  40. 40.
    F. Hemmati, N. Pishva, Evaluation of thyroid status of infants in the intensive care setting. Singapore Med. J. 50(9), 875–878 (2009)PubMedGoogle Scholar
  41. 41.
    L. Mebis, G. Van den Berghe, Thyroid axis function in critical illness. Best Pract. Res. Clin. Endocrinol. Metab. 25, 745–757 (2011)PubMedCrossRefGoogle Scholar
  42. 42.
    J.C. Suvarna, C.N. Fande, Serum thyroid hormone profile in critically ill children. Indian J. Pediatr. 76(12), 1217–1221 (2009)PubMedCrossRefGoogle Scholar
  43. 43.
    J.J. Díez, P. Iglesias, Subclinical hyperthyroidism in patients with type 2 diabetes. Endocrine (2012). doi: 10.1007/s12020-012-9621-3
  44. 44.
    V. Lambadiari, P. Mitrou, E. Maratou, A.E. Raptis, N. Tountas, S.A. Raptis, G. Dimitiriadis, Thyroid hormones are positively associated with insulin resistance early in the development of type 2 diabetes. Endocrine 39(1), 28–32 (2011)PubMedCrossRefGoogle Scholar
  45. 45.
    E. Zoidis, C. Ghirlanda-Keller, C. Schmid, Triiodothyronine stimulates glucose transport in bone cells. Endocrine 41, 501–511 (2012)PubMedCrossRefGoogle Scholar
  46. 46.
    G. Van den Berghe, P. Wouters, F. Weekers, C. Verwaest, F. Bruyninckx, M. Schetz, D. Vlasselaers, P. Ferdinande, P. Lauwers, R. Bouillon, Intensive insulin therapy in critically ill patients. N. Engl. J. Med. 345, 1359–1367 (2001)PubMedCrossRefGoogle Scholar
  47. 47.
    S. Finfer, D.R. Chittock, S.Y. Su, D. Blair, D. Foster, V. Dhingra, R. Bellomo, D. Cook, P. Dodek, W.R. Henderson, P.C. Hébert, S. Heritier, D.K. Heyland, C. McArthur, E. McDonald, I. Mitchell, J.A. Myburgh, R. Norton, J. Potter, B.G. Robinson, J.J. Ronco, Intensive versus conventional glucose control in critically ill patients. N. Engl. J. Med. 360, 1283–1297 (2009)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mohammad Reza Bordbar
    • 1
    • 2
  • Reza Taj-aldini
    • 2
  • Zohre Karamizadeh
    • 2
  • Sezaneh Haghpanah
    • 1
  • Mehran Karimi
    • 1
  • Gholam Hossein Omrani
    • 3
  1. 1.Hematology Research CenterShiraz University of Medical SciencesShirazIran
  2. 2.Department of Pediatrics, Nemazee HospitalShiraz University of Medical SciencesShirazIran
  3. 3.Endocrinology Research Center, Department of Internal MedicineNemazee Hospital, Shiraz University of Medical SciencesShirazIran

Personalised recommendations