Endocrine

, Volume 42, Issue 1, pp 52–62 | Cite as

Skeletal and extraskeletal actions of denosumab

  • Kathrin Sinningen
  • Elena Tsourdi
  • Martina Rauner
  • Tilman D. Rachner
  • Christine Hamann
  • Lorenz C. Hofbauer
Review

Abstract

Osteoclasts and osteoblasts define skeletal mass, structure and strength through their respective actions in resorbing and forming bone. This remodeling process is orchestrated by the actions of hormones and growth factors, which regulate a cytokine system comprising the receptor activator of nuclear factor κB ligand (RANKL), its receptor RANK and the soluble decoy receptor osteoprotegerin (OPG). Bone resorption depends on RANKL, which determines osteoclast formation, activity and survival. Importantly, cells of the osteoblastic lineage mainly provide RANKL and therefore, are central in the regulation of osteoclast functions. Catabolic effects of RANKL are inhibited by OPG, a TNF receptor family member that binds RANKL, thereby preventing the activation of its receptor RANK, which is expressed by osteoclast precursors. Because this cytokine network is pivotal for the regulation of bone mass in health and diseases, including osteoporosis, rheumatoid arthritis and malignant bone conditions, it has been successfully used for the generation of a targeted therapy to block osteoclast actions. The clinical approval of denosumab, a fully monoclonal antibody against RANKL, provides a novel option to treat bone diseases with a potent, targeted and reversible inhibitor of bone resorption. Although RANKL is also expressed by endothelial cells, T lymphocytes, synovial fibroblasts and various tumor cells, no meaningful clinical extraskeletal effects have been reported after administration of denosumab. This article summarizes the molecular and cellular basis of the RANKL/RANK/OPG system and presents preclinical and clinical studies on the skeletal actions of denosumab.

Keywords

RANKL RANK OPG Denosumab Osteoporosis Bone metastases 

Notes

Conflict of interest

LCH has received honoraria from Amgen, Merck, Novartis, and Nycomed. KS, ET, MR, TDR and CH have no conflict of interest.

References

  1. 1.
    H. Yasuda, N. Shima, N. Nakagawa, K. Yamaguchi, M. Kinosaki, S. Mochizuki, A. Tomoyasu, K. Yano, M. Goto, A. Murakami, E. Tsuda, T. Morinaga, K. Higashio, N. Udagawa, N. Takahashi, T. Suda, Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl Acad. Sci. USA 95, 3597–3602 (1998)PubMedCrossRefGoogle Scholar
  2. 2.
    L.C. Hofbauer, A.E. Heufelder, Clinical review 114: hot topic. The role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in the pathogenesis and treatment of metabolic bone diseases. J. Clin. Endocrinol. Metab. 85, 2355–2363 (2000)PubMedCrossRefGoogle Scholar
  3. 3.
    P. Collin-Osdoby, Regulation of vascular calcification by osteoclast regulatory factors RANKL and osteoprotegerin. Circ. Res. 95, 1046–1057 (2004)PubMedCrossRefGoogle Scholar
  4. 4.
    G. Silvestrini, P. Ballanti, F. Patacchioli, M. Leopizzi, N. Gualtieri, P. Monnazzi, E. Tremante, D. Sardella, E. Bonucci, Detection of osteoprotegerin (OPG) and its ligand (RANKL) mRNA and protein in femur and tibia of the rat. J. Mol. Histol. 36, 59–67 (2005)PubMedCrossRefGoogle Scholar
  5. 5.
    T. Nakashima, M. Hayashi, T. Fukunaga, K. Kurata, M. Oh-Hora, J.Q. Feng, L.F. Bonewald, T. Kodama, A. Wutz, E.F. Wagner, J.M. Penninger, H. Takayanagi, Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17, 1231–1234 (2011)PubMedCrossRefGoogle Scholar
  6. 6.
    H. Hsu, D.L. Lacey, C.R. Dunstan, I. Solovyev, A. Colombero, E. Timms, H.L. Tan, G. Elliott, M.J. Kelley, I. Sarosi, L. Wang, X.Z. Xia, R. Elliott, L. Chiu, T. Black, S. Scully, C. Capparelli, S. Morony, G. Shimamoto, M.B. Bass, W.J. Boyle, Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl Acad. Sci. USA 96, 3540–3545 (1999)PubMedCrossRefGoogle Scholar
  7. 7.
    J.-K. Min, Y.-M. Kim, Y.-M. Kim, E.-C. Kim, Y.S. Gho, I.-J. Kang, S.-Y. Lee, Y.-Y. Kong, Y.-G. Kwon, Vascular endothelial growth factor up-regulates expression of receptor activator of NF-kappa B (RANK) in endothelial cells. Concomitant increase of angiogenic responses to RANK ligand. J. Biol. Chem. 278, 39548–39557 (2003)PubMedCrossRefGoogle Scholar
  8. 8.
    S. Panizo, A. Cardus, M. Encinas, E. Parisi, P. Valcheva, S. López-Ongil, B. Coll, E. Fernandez, J.M. Valdivielso, RANKL increases vascular smooth muscle cell calcification through a RANK-BMP4-dependent pathway. Circ. Res. 104, 1041–1048 (2009)PubMedCrossRefGoogle Scholar
  9. 9.
    D. Santini, G. Schiavon, B. Vincenzi, L. Gaeta, F. Pantano, A. Russo, C. Ortega, C. Porta, S. Galluzzo, G. Armento, N. La Verde, C. Caroti, I. Treilleux, A. Ruggiero, G. Perrone, R. Addeo, P. Clezardin, A.O. Muda, G. Tonini, Receptor activator of NF-kB (RANK) expression in primary tumors associates with bone metastasis occurrence in breast cancer patients. PLoS ONE 6, e19234 (2011)PubMedCrossRefGoogle Scholar
  10. 10.
    W.C. Dougall, M. Glaccum, K. Charrier, K. Rohrbach, K. Brasel, T. De Smedt, E. Daro, J. Smith, M.E. Tometsko, C.R. Maliszewski, A. Armstrong, V. Shen, S. Bain, D. Cosman, D. Anderson, P.J. Morrissey, J.J. Peschon, J. Schuh, RANK is essential for osteoclast and lymph node development. Genes Dev. 13, 2412–2424 (1999)PubMedCrossRefGoogle Scholar
  11. 11.
    Y.Y. Kong, H. Yoshida, I. Sarosi, H.L. Tan, E. Timms, C. Capparelli, S. Morony, A.J. Oliveira-dos-Santos, G. Van, A. Itie, W. Khoo, A. Wakeham, C.R. Dunstan, D.L. Lacey, T.W. Mak, W.J. Boyle, J.M. Penninger, OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315–323 (1999)PubMedCrossRefGoogle Scholar
  12. 12.
    J.E. Fata, Y.Y. Kong, J. Li, T. Sasaki, J. Irie-Sasaki, R.A. Moorehead, R. Elliott, S. Scully, E.B. Voura, D.L. Lacey, W.J. Boyle, R. Khokha, J.M. Penninger, The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 103, 41–50 (2000)PubMedCrossRefGoogle Scholar
  13. 13.
    L.C. Hofbauer, A.E. Heufelder, Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. J. Mol. Med. 79, 243–253 (2001)PubMedCrossRefGoogle Scholar
  14. 14.
    W.S. Simonet, D.L. Lacey, C.R. Dunstan, M. Kelley, M.S. Chang, R. Lüthy, H.Q. Nguyen, S. Wooden, L. Bennett, T. Boone, G. Shimamoto, M. DeRose, R. Elliott, A. Colombero, H.L. Tan, G. Trail, J. Sullivan, E. Davy, N. Bucay, L. Renshaw-Gegg, T.M. Hughes, D. Hill, W. Pattison, P. Campbell, S. Sander, G. Van, J. Tarpley, P. Derby, R. Lee, W.J. Boyle, Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309–319 (1997)PubMedCrossRefGoogle Scholar
  15. 15.
    T.L. Burgess, Y. Qian, S. Kaufman, B.D. Ring, G. Van, C. Capparelli, M. Kelley, H. Hsu, W.J. Boyle, C.R. Dunstan, S. Hu, D.L. Lacey, The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J. Cell Biol. 145, 527–538 (1999)PubMedCrossRefGoogle Scholar
  16. 16.
    D.L. Lacey, H.L. Tan, J. Lu, S. Kaufman, G. Van, W. Qiu, A. Rattan, S. Scully, F. Fletcher, T. Juan, M. Kelley, T.L. Burgess, W.J. Boyle, A.J. Polverino, Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am. J. Pathol. 157, 435–448 (2000)PubMedCrossRefGoogle Scholar
  17. 17.
    G. Eghbali-Fatourechi, S. Khosla, A. Sanyal, W.J. Boyle, D.L. Lacey, B.L. Riggs, Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J. Clin. Invest. 111, 1221–1230 (2003)PubMedGoogle Scholar
  18. 18.
    C. von Tirpitz, S. Epp, J. Klaus, R. Mason, G. Hawa, N. Brinskelle-Schmal, L.C. Hofbauer, G. Adler, W. Kratzer, M. Reinshagen, Effect of systemic glucocorticoid therapy on bone metabolism and the osteoprotegerin system in patients with active Crohn’s disease. Eur. J. Gastroenterol. 15, 1165–1170 (2003)CrossRefGoogle Scholar
  19. 19.
    H. Mori, R. Kitazawa, S. Mizuki, M. Nose, S. Maeda, S. Kitazawa, RANK ligand, RANK, and OPG expression in type II collagen-induced arthritis mouse. Histochem. Cell Biol. 117, 283–292 (2002)PubMedCrossRefGoogle Scholar
  20. 20.
    T. Standal, C. Seidel, Ø. Hjertner, T. Plesner, R.D. Sanderson, A. Waage, M. Borset, A. Sundan, Osteoprotegerin is bound, internalized, and degraded by multiple myeloma cells. Blood 100, 3002–3007 (2002)PubMedCrossRefGoogle Scholar
  21. 21.
    T. Michigami, M. Ihara-Watanabe, M. Yamazaki, K. Ozono, Receptor activator of nuclear factor kappaB ligand (RANKL) is a key molecule of osteoclast formation for bone metastasis in a newly developed model of human neuroblastoma. Cancer Res. 61, 1637–1644 (2001)PubMedGoogle Scholar
  22. 22.
    W. Lieb, P. Gona, M.G. Larson, J.M. Massaro, I. Lipinska, J.F. Keaney, J. Rong, D. Corey, U. Hoffmann, C.S. Fox, R.S. Vasan, E.J. Benjamin, C.J. O’Donnell, S. Kathiresan, Biomarkers of the osteoprotegerin pathway: clinical correlates, subclinical disease, incident cardiovascular disease, and mortality. Arterioscler. Thromb. Vasc. Biol. 30, 1849–1854 (2010)PubMedCrossRefGoogle Scholar
  23. 23.
    J.-J. Body, P. Greipp, R.E. Coleman, T. Facon, F. Geurs, J.-P. Fermand, J.-L. Harousseau, A. Lipton, X. Mariette, C.D. Williams, A. Nakanishi, D. Holloway, S.W. Martin, C.R. Dunstan, P.J. Bekker, A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer 97, 887–892 (2003)PubMedCrossRefGoogle Scholar
  24. 24.
    L.M. Weiner, Fully human therapeutic monoclonal antibodies. J. Immunother. 29, 1–9 (1997)CrossRefGoogle Scholar
  25. 25.
    P.J. Kostenuik, Osteoprotegerin and RANKL regulate bone resorption, density, geometry and strength. Curr. Opin. Pharmacol. 5, 618–625 (2005)PubMedCrossRefGoogle Scholar
  26. 26.
    Y.Y. Yuan, P.J. Kostenuik, M.S. Ominsky, S. Morony, S. Adamu, D.T. Simionescu, D.M. Basalyga, F.J. Asuncion, T.A. Bateman, Skeletal deterioration induced by RANKL infusion: a model for high-turnover bone disease. Osteoporos. Int. 19, 625–635 (2008)PubMedCrossRefGoogle Scholar
  27. 27.
    S.A.J. Lloyd, Y.Y. Yuan, P.J. Kostenuik, M.S. Ominsky, A.G. Lau, S. Morony, M. Stolina, F.J. Asuncion, T.A. Bateman, Soluble RANKL induces high bone turnover and decreases bone volume, density, and strength in mice. Calcif. Tissue Int. 82, 361–372 (2008)PubMedCrossRefGoogle Scholar
  28. 28.
    S. Kwan Tat, M. Padrines, S. Théoleyre, D. Heymann, Y. Fortun, IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 15, 49–60 (2004)PubMedCrossRefGoogle Scholar
  29. 29.
    C. Capparelli, S. Morony, K. Warmington, S. Adamu, D. Lacey, C.R. Dunstan, B. Stouch, S. Martin, P.J. Kostenuik, Sustained antiresorptive effects after a single treatment with human recombinant osteoprotegerin (OPG): a pharmacodynamic and pharmacokinetic analysis in rats. J. Bone Miner. Res. 18, 852–858 (2003)PubMedCrossRefGoogle Scholar
  30. 30.
    M.S. Ominsky, P.J. Kostenuik, P. Cranmer, S.Y. Smith, J.E. Atkinson, The RANKL inhibitor OPG-Fc increases cortical and trabecular bone mass in young gonad-intact cynomolgus monkeys. Osteoporos. Int. 18, 1073–1082 (2007)PubMedCrossRefGoogle Scholar
  31. 31.
    T. Yoneda, N. Ishimaru, R. Arakaki, M. Kobayashi, T. Izawa, K. Moriyama, Y. Hayashi, Estrogen deficiency accelerates murine autoimmune arthritis associated with receptor activator of nuclear factor-kappa B ligand-mediated osteoclastogenesis. Endocrinology 145, 2384–2391 (2004)PubMedCrossRefGoogle Scholar
  32. 32.
    T. Miyazaki, T. Matsunaga, S. Miyazaki, S. Hokari, T. Komoda, Changes in receptor activator of nuclear factor-kappaB, and its ligand, osteoprotegerin, bone-type alkaline phosphatase, and tartrate-resistant acid phosphatase in ovariectomized rats. J. Cell. Biochem. 93, 503–512 (2004)PubMedCrossRefGoogle Scholar
  33. 33.
    F.-S. Wang, J.-Y. Ko, C.-L. Lin, H.-L. Wu, H.-J. Ke, P.-J. Tai, Knocking down dickkopf-1 alleviates estrogen deficiency induction of bone loss. A histomorphological study in ovariectomized rats. Bone 40, 485–492 (2007)PubMedCrossRefGoogle Scholar
  34. 34.
    T. Ikeda, M. Utsuyama, K. Hirokawa, Expression profiles of receptor activator of nuclear factor kappaB ligand, receptor activator of nuclear factor kappaB, and osteoprotegerin messenger RNA in aged and ovariectomized rat bones. J. Bone Miner. Res. 16, 1416–1425 (2001)PubMedCrossRefGoogle Scholar
  35. 35.
    M.S. Ominsky, X. Li, F.J. Asuncion, M. Barrero, K.S. Warmington, D. Dwyer, M. Stolina, Z. Geng, M. Grisanti, H.-L. Tan, T. Corbin, J. McCabe, W.S. Simonet, H.Z. Ke, P.J. Kostenuik, RANKL inhibition with osteoprotegerin increases bone strength by improving cortical and trabecular bone architecture in ovariectomized rats. J. Bone Miner. Res. 23, 672–682 (2008)PubMedCrossRefGoogle Scholar
  36. 36.
    M. Gunness, E. Orwoll, Early induction of alterations in cancellous and cortical bone histology after orchiectomy in mature rats. J. Bone Miner. Res. 10, 1735–1744 (1995)PubMedCrossRefGoogle Scholar
  37. 37.
    R.S. Weinstein, R.L. Jilka, A.M. Parfitt, S.C. Manolagas, The effects of androgen deficiency on murine bone remodeling and bone mineral density are mediated via cells of the osteoblastic lineage. Endocrinology 138, 4013–4021 (1997)PubMedCrossRefGoogle Scholar
  38. 38.
    D.M. Huber, A.C. Bendixen, P. Pathrose, S. Srivastava, K.M. Dienger, N.K. Shevde, J.W. Pike, Androgens suppress osteoclast formation induced by RANKL and macrophage-colony stimulating factor. Endocrinology 142, 3800–3808 (2001)PubMedCrossRefGoogle Scholar
  39. 39.
    L. Pederson, M. Kremer, J. Judd, D. Pascoe, T.C. Spelsberg, B.L. Riggs, M.J. Oursler, Androgens regulate bone resorption activity of isolated osteoclasts in vitro. Proc. Natl Acad. Sci. USA 96, 505–510 (1999)PubMedCrossRefGoogle Scholar
  40. 40.
    Q. Chen, H. Kaji, M. Kanatani, T. Sugimoto, K. Chihara, Testosterone increases osteoprotegerin mRNA expression in mouse osteoblast cells. Horm. Metab. Res. 36, 674–678 (2004)PubMedCrossRefGoogle Scholar
  41. 41.
    L.C. Hofbauer, K.C. Hicok, D. Chen, S. Khosla, Regulation of osteoprotegerin production by androgens and anti-androgens in human osteoblastic lineage cells. Eur. J. Endocrinol. 147, 269–273 (2002)PubMedCrossRefGoogle Scholar
  42. 42.
    V. Proell, H. Xu, C. Schüler, K. Weber, L.C. Hofbauer, R.G. Erben, Orchiectomy upregulates free soluble RANKL in bone marrow of aged rats. Bone 45, 677–681 (2009)PubMedCrossRefGoogle Scholar
  43. 43.
    X. Li, M.S. Ominsky, M. Stolina, K.S. Warmington, Z. Geng, Q.-T. Niu, F.J. Asuncion, H.-L. Tan, M. Grisanti, D. Dwyer, S. Adamu, H.Z. Ke, W.S. Simonet, P.J. Kostenuik, Increased RANK ligand in bone marrow of orchiectomized rats and prevention of their bone loss by the RANK ligand inhibitor osteoprotegerin. Bone 45, 669–676 (2009)PubMedCrossRefGoogle Scholar
  44. 44.
    R.T. Turner, G.K. Wakley, K.S. Hannon, Differential effects of androgens on cortical bone histomorphometry in gonadectomized male and female rats. J. Orthop. Res. 8, 612–617 (1990)PubMedCrossRefGoogle Scholar
  45. 45.
    E. Romas, O. Bakharevski, D.K. Hards, V. Kartsogiannis, J.M. Quinn, P.F. Ryan, T.J. Martin, M.T. Gillespie, Expression of osteoclast differentiation factor at sites of bone erosion in collagen-induced arthritis. Arthritis Rheum. 43, 821–826 (2000)PubMedCrossRefGoogle Scholar
  46. 46.
    M. Stolina, S. Adamu, M. Ominsky, D. Dwyer, F. Asuncion, Z. Geng, S. Middleton, H. Brown, J. Pretorius, G. Schett, B. Bolon, U. Feige, D. Zack, P.J. Kostenuik, RANKL is a marker and mediator of local and systemic bone loss in two rat models of inflammatory arthritis. J. Bone Miner. Res. 20, 1756–1765 (2005)PubMedCrossRefGoogle Scholar
  47. 47.
    Y.Y. Kong, U. Feige, I. Sarosi, B. Bolon, A. Tafuri, S. Morony, C. Capparelli, J. Li, R. Elliott, S. McCabe, T. Wong, G. Campagnuolo, E. Moran, E.R. Bogoch, G. Van, L.T. Nguyen, P.S. Ohashi, D.L. Lacey, E. Fish, W.J. Boyle, J.M. Penninger, Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402, 304–309 (1999)PubMedCrossRefGoogle Scholar
  48. 48.
    M. Stolina, B. Bolon, S. Middleton, D. Dwyer, H. Brown, D. Duryea, L. Zhu, A. Rohner, J. Pretorius, P. Kostenuik, U. Feige, D. Zack, The evolving systemic and local biomarker milieu at different stages of disease progression in rat adjuvant-induced arthritis. J. Clin. Immunol. 29, 158–174 (2009)PubMedCrossRefGoogle Scholar
  49. 49.
    B. Bolon, G. Campagnuolo, U. Feige, Duration of bone protection by a single osteoprotegerin injection in rats with adjuvant-induced arthritis. Cell. Mol. Life Sci. 59, 1569–1576 (2002)PubMedCrossRefGoogle Scholar
  50. 50.
    M. Stolina, G. Schett, D. Dwyer, S. Vonderfecht, S. Middleton, D. Duryea, E. Pacheco, G. Van, B. Bolon, U. Feige, D. Zack, P. Kostenuik, RANKL inhibition by osteoprotegerin prevents bone loss without affecting local or systemic inflammation parameters in two rat arthritis models: comparison with anti-TNFalpha or anti-IL-1 therapies. Arthritis Res. Ther. 11, R187 (2009)PubMedCrossRefGoogle Scholar
  51. 51.
    G. Schett, S. Middleton, B. Bolon, M. Stolina, H. Brown, L. Zhu, J. Pretorius, D.J. Zack, P. Kostenuik, U. Feige, Additive bone-protective effects of anabolic treatment when used in conjunction with RANKL and tumor necrosis factor inhibition in two rat arthritis models. Arthritis Rheum. 52, 1604–1611 (2005)PubMedCrossRefGoogle Scholar
  52. 52.
    K. Redlich, B. Görtz, S. Hayer, J. Zwerina, N. Doerr, P. Kostenuik, H. Bergmeister, G. Kollias, G. Steiner, J.S. Smolen, G. Schett, Repair of local bone erosions and reversal of systemic bone loss upon therapy with anti-tumor necrosis factor in combination with osteoprotegerin or parathyroid hormone in tumor necrosis factor-mediated arthritis. Am. J. Pathol. 164, 543–555 (2004)PubMedCrossRefGoogle Scholar
  53. 53.
    N. Saidenberg-Kermanac’h, A. Corrado, D. Lemeiter, M.C. deVernejoul, M.C. Boissier, M.E. Cohen-Solal, TNF-alpha antibodies and osteoprotegerin decrease systemic bone loss associated with inflammation through distinct mechanisms in collagen-induced arthritis. Bone 35, 1200–1207 (2004)PubMedCrossRefGoogle Scholar
  54. 54.
    E. Romas, N.A. Sims, D.K. Hards, M. Lindsay, J.W.M. Quinn, P.F.J. Ryan, C.R. Dunstan, T.J. Martin, M.T. Gillespie, Osteoprotegerin reduces osteoclast numbers and prevents bone erosion in collagen-induced arthritis. Am. J. Pathol. 161, 1419–1427 (2002)PubMedCrossRefGoogle Scholar
  55. 55.
    R.S. Weinstein, Clinical practice. Glucocorticoid-induced bone disease. N. Engl. J. Med. 365, 62–70 (2011)PubMedCrossRefGoogle Scholar
  56. 56.
    N.O. Vidal, H. Brändström, K.B. Jonsson, C. Ohlsson, Osteoprotegerin mRNA is expressed in primary human osteoblast-like cells: down-regulation by glucocorticoids. J. Endocrinol. 159, 191–195 (1998)PubMedCrossRefGoogle Scholar
  57. 57.
    L.C. Hofbauer, F. Gori, B.L. Riggs, D.L. Lacey, C.R. Dunstan, T.C. Spelsberg, S. Khosla, Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology 140, 4382–4389 (1999)PubMedCrossRefGoogle Scholar
  58. 58.
    R.S. Weinstein, R.L. Jilka, A.M. Parfitt, S.C. Manolagas, Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J. Clin. Invest. 102, 274–282 (1998)PubMedCrossRefGoogle Scholar
  59. 59.
    S. Ikeda, Y. Morishita, H. Tsutsumi, M. Ito, A. Shiraishi, S. Arita, S. Akahoshi, K. Narusawa, T. Nakamura, Reductions in bone turnover, mineral, and structure associated with mechanical properties of lumbar vertebra and femur in glucocorticoid-treated growing minipigs. Bone 33, 779–787 (2003)PubMedCrossRefGoogle Scholar
  60. 60.
    P. Oelzner, S. Fleissner-Richter, R. Bräuer, G. Hein, G. Wolf, T. Neumann, Combination therapy with dexamethasone and osteoprotegerin protects against arthritis-induced bone alterations in antigen-induced arthritis of the rat. Inflamm. Res. 59, 731–741 (2010)PubMedCrossRefGoogle Scholar
  61. 61.
    P.J. Bekker, D.L. Holloway, A.S. Rasmussen, R. Murphy, S.W. Martin, P.T. Leese, G.B. Holmes, C.R. Dunstan, A.M. DePaoli, A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J. Bone Miner. Res. 19, 1059–1066 (2004)PubMedCrossRefGoogle Scholar
  62. 62.
    M.R. McClung, E.M. Lewiecki, S.B. Cohen, M.A. Bolognese, G.C. Woodson, A.H. Moffett, M. Peacock, P.D. Miller, S.N. Lederman, C.H. Chesnut, D. Lain, A.J. Kivitz, D.L. Holloway, C. Zhang, M.C. Peterson, P.J. Bekker, Denosumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 354, 821–831 (2006)PubMedCrossRefGoogle Scholar
  63. 63.
    E.M. Lewiecki, P.D. Miller, M.R. McClung, S.B. Cohen, M.A. Bolognese, Y. Liu, A. Wang, S. Siddhanti, L.A. Fitzpatrick, A.M.G. Bone, L. Study, Two-year treatment with denosumab (AMG 162) in a randomized phase 2 study of postmenopausal women with low BMD. J. Bone Miner. Res. 22, 1832–1841 (2007)PubMedCrossRefGoogle Scholar
  64. 64.
    P.D. Miller, M.A. Bolognese, E.M. Lewiecki, M.R. McClung, B. Ding, M. Austin, Y. Liu, J. San Martin, Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone 43, 222–229 (2008)PubMedCrossRefGoogle Scholar
  65. 65.
    P.D. Miller, R.B. Wagman, M. Peacock, E.M. Lewiecki, M.A. Bolognese, R.L. Weinstein, B. Ding, J. San Martin, M.R. McClung, Effect of denosumab on bone mineral density and biochemical markers of bone turnover: six-year results of a phase 2 clinical trial. J. Clin. Endocrinol. Metab. 96, 394–402 (2011)PubMedCrossRefGoogle Scholar
  66. 66.
    S. Boonen, S. Ferrari, P.D. Miller, E.F. Eriksen, P.N. Sambrook, J. Compston, I.R. Reid, D. Vanderschueren, F. Cosman, Postmenopausal osteoporosis treatment with antiresorptives: Effects of discontinuation or long-term continuation on bone turnover and fracture risk-a perspective. J. Bone Miner. Res. 27(5), 963–974 (2012)PubMedCrossRefGoogle Scholar
  67. 67.
    G. Mazziotti, J. Bilezikian, E. Canalis, D. Cocchi, A. Giustina, New understanding and treatments for osteoporosis. Endocrine 41(1), 58–69 (2012)PubMedCrossRefGoogle Scholar
  68. 68.
    J. Compston, The use of combination therapy in the treatment of postmenopausal osteoporosis. Endocrine 41(1), 11–18 (2012)PubMedCrossRefGoogle Scholar
  69. 69.
    T.D. Rachner, S. Khosla, L.C. Hofbauer, Osteoporosis: now and the future. Lancet 377(9773), 1276–1287 (2011)PubMedCrossRefGoogle Scholar
  70. 70.
    S.R. Cummings, J. San Martin, M.R. McClung, E.S. Siris, R. Eastell, I.R. Reid, P. Delmas, H.B. Zoog, M. Austin, A. Wang, S. Kutilek, S. Adami, J. Zanchetta, C. Libanati, S. Siddhanti, C. Christiansen, Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 361, 756–765 (2009)PubMedCrossRefGoogle Scholar
  71. 71.
    E.V. McCloskey, H. Johansson, A. Oden, M. Austin, E. Siris, A. Wang, E.M. Lewiecki, R. Lorenc, C. Libanati, J.A. Kanis, Denosumab reduces the risk of osteoporotic fractures in postmenopausal women, particularly in those with moderate to high fracture risk as assessed with FRAX®. J. Bone Miner. Res. (2012). doi: 10.1002/jbmr.1606
  72. 72.
    J.P. Brown, R.L. Prince, C. Deal, R.R. Recker, D.P. Kiel, L.H. de Gregorio, P. Hadji, L.C. Hofbauer, J.M. Alvaro-Gracia, H. Wang, M. Austin, R.B. Wagman, R. Newmark, C. Libanati, J. San Martin, H.G. Bone, Comparison of the effect of denosumab and alendronate on BMD and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, phase 3 trial. J. Bone Miner. Res. 24(1), 153–161 (2009)CrossRefGoogle Scholar
  73. 73.
    S. Papapoulos, R. Chapurlat, C. Libanati, M. Brandi, J. Brown, E. Czerwiński, M.A. Krieg, Z. Man, D. Mellström, S. Radominski, J.Y. Reginster, H. Resch, J. Román, C. Roux, E. Vittinghoff, M. Austin, N. Daizadeh, M. Bradley, A. Grauer, S. Cummings, H. Bone, Five years of denosumab exposure in women with postmenopausal osteoporosis: results from the first two years of the FREEDOM extension. J. Bone Miner. Res. 27(3), 694–701 (2011)CrossRefGoogle Scholar
  74. 74.
    N. Freemantle, S. Satram-Hoang, E.-T. Tang, P. Kaur, D. Macarios, S. Siddhanti, J. Borenstein, D.L. Kendler, Final results of the DAPS (denosumab adherence preference satisfaction) study: a 24-month, randomized, crossover comparison with alendronate in postmenopausal women. Osteoporos. Int. 23(1), 317–326 (2012)PubMedCrossRefGoogle Scholar
  75. 75.
    R.E. Coleman, Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin. Cancer Res. 12, 6243s–6249s (2006)PubMedCrossRefGoogle Scholar
  76. 76.
    J. Zekri, N. Ahmed, R.E. Coleman, B.W. Hancock, The skeletal metastatic complications of renal cell carcinoma. Int. J. Oncol. 19, 379–382 (2001)PubMedGoogle Scholar
  77. 77.
    Y. Wittrant, S. Théoleyre, C. Chipoy, M. Padrines, F. Blanchard, D. Heymann, F. Rédini, RANKL/RANK/OPG: new therapeutic targets in bone tumours and associated osteolysis. Biochim. Biophys. Acta 1704, 49–57 (2004)PubMedGoogle Scholar
  78. 78.
    Bendre, M., Gaddy, D., Nicholas, R.W., Suva, L.J.: Breast cancer metastasis to bone: it is not all about PTHrP. Clin. Orthop. Relat. Res. (415 Suppl) S39–45 (2003)Google Scholar
  79. 79.
    R.J. Thomas, T.A. Guise, J.J. Yin, J. Elliott, N.J. Horwood, T.J. Martin, M.T. Gillespie, Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology 140, 4451–4458 (1999)PubMedCrossRefGoogle Scholar
  80. 80.
    J.M. Brown, E. Corey, Z.D. Lee, L.D. True, T.J. Yun, M. Tondravi, R.L. Vessella, Osteoprotegerin and rank ligand expression in prostate cancer. Urology 57, 611–616 (2001)PubMedCrossRefGoogle Scholar
  81. 81.
    O. Sezer, U. Heider, I. Zavrski, C.A. Kühne, L.C. Hofbauer, RANK ligand and osteoprotegerin in myeloma bone disease. Blood 101, 2094–2098 (2003)PubMedCrossRefGoogle Scholar
  82. 82.
    S. Yaccoby, M.J. Wezeman, A. Henderson, M. Cottler-Fox, Q. Yi, B. Barlogie, J. Epstein, Cancer and the microenvironment: myeloma–osteoclast interactions as a model. Cancer Res. 64, 2016–2023 (2004)PubMedCrossRefGoogle Scholar
  83. 83.
    N. Giuliani, R. Bataille, C. Mancini, M. Lazzaretti, S. Barillé, Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 98, 3527–3533 (2001)PubMedCrossRefGoogle Scholar
  84. 84.
    R.N. Pearse, E.M. Sordillo, S. Yaccoby, B.R. Wong, D.F. Liau, N. Colman, J. Michaeli, J. Epstein, Y. Choi, Multiple myeloma disrupts the TRANCE/osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc. Natl Acad. Sci. USA 98, 11581–11586 (2001)PubMedCrossRefGoogle Scholar
  85. 85.
    T. Okada, S. Akikusa, H. Okuno, M. Kodaka, Bone marrow metastatic myeloma cells promote osteoclastogenesis through RANKL on endothelial cells. Clin. Exp. Metastasis 20, 639–646 (2003)PubMedCrossRefGoogle Scholar
  86. 86.
    C.M. Shipman, P.I. Croucher, Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a paracrine survival factor for human myeloma cells. Cancer Res. 63, 912–916 (2003)PubMedGoogle Scholar
  87. 87.
    J.R. Canon, M. Roudier, R. Bryant, S. Morony, M. Stolina, P.J. Kostenuik, W.C. Dougall, Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clin. Exp. Metastasis 25, 119–129 (2008)PubMedCrossRefGoogle Scholar
  88. 88.
    S. Mikami, K. Katsube, M. Oya, M. Ishida, T. Kosaka, R. Mizuno, S. Mochizuki, T. Ikeda, M. Mukai, Y. Okada, Increased RANKL expression is related to tumour migration and metastasis of renal cell carcinomas. J. Pathol. 218(4), 530–539 (2009)PubMedCrossRefGoogle Scholar
  89. 89.
    D.H. Jones, T. Nakashima, O.H. Sanchez, I. Kozieradzki, S.V. Komarova, I. Sarosi, S. Morony, E. Rubin, R. Sarao, C.V. Hojilla, V. Komnenovic, Y.-Y. Kong, M. Schreiber, S.J. Dixon, S.M. Sims, R. Khokha, T. Wada, J.M. Penninger, Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440, 692–696 (2006)PubMedCrossRefGoogle Scholar
  90. 90.
    H. Yonou, N. Kanomata, M. Goya, T. Kamijo, T. Yokose, T. Hasebe, K. Nagai, T. Hatano, Y. Ogawa, A. Ochiai, Osteoprotegerin/osteoclastogenesis inhibitory factor decreases human prostate cancer burden in human adult bone implanted into nonobese diabetic/severe combined immunodeficient mice. Cancer Res. 63, 2096–2102 (2003)PubMedGoogle Scholar
  91. 91.
    R.E. Miller, M. Roudier, J. Jones, A. Armstrong, J. Canon, W.C. Dougall, RANK ligand inhibition plus docetaxel improves survival and reduces tumor burden in a murine model of prostate cancer bone metastasis. Mol. Cancer Ther. 7, 2160–2169 (2008)PubMedCrossRefGoogle Scholar
  92. 92.
    J. Zhang, J. Dai, Y. Qi, D.L. Lin, P. Smith, C. Strayhorn, A. Mizokami, Z. Fu, J. Westman, E.T. Keller, Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J. Clin. Invest. 107, 1235–1244 (2001)PubMedCrossRefGoogle Scholar
  93. 93.
    S. Morony, K. Warmington, S. Adamu, F. Asuncion, Z. Geng, M. Grisanti, H.L. Tan, C. Capparelli, C. Starnes, B. Weimann, C.R. Dunstan, P.J. Kostenuik, The inhibition of RANKL causes greater suppression of bone resorption and hypercalcemia compared with bisphosphonates in two models of humoral hypercalcemia of malignancy. Endocrinology 146, 3235–3243 (2005)PubMedCrossRefGoogle Scholar
  94. 94.
    G.K. Ellis, H.G. Bone, R. Chlebowski, D. Paul, S. Spadafora, J. Smith, M. Fan, S. Jun, Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J. Clin. Oncol. 26, 4875–4882 (2008)PubMedCrossRefGoogle Scholar
  95. 95.
    M.R. Smith, B. Egerdie, N. Hernández Toriz, R. Feldman, T.L.J. Tammela, F. Saad, J. Heracek, M. Szwedowski, C. Ke, A. Kupic, B.Z. Leder, C. Goessl, Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N. Engl. J. Med. 361, 745–755 (2009)PubMedCrossRefGoogle Scholar
  96. 96.
    K. Fizazi, M. Carducci, M. Smith, R. Damião, J. Brown, L. Karsh, P. Milecki, N. Shore, M. Rader, H. Wang, Q. Jiang, S. Tadros, R. Dansey, C. Goessl, Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 377, 813–822 (2011)PubMedCrossRefGoogle Scholar
  97. 97.
    M.R. Smith, F. Saad, R. Coleman, N. Shore, K. Fizazi, B. Tombal, K. Miller, P. Sieber, L. Karsh, R. Damião, T.L. Tammela, B. Egerdie, H. Van Poppel, J. Chin, J. Morote, F. Gómez-Veiga, T. Borkowski, Z. Ye, A. Kupic, R. Dansey, C. Goessl, Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet 379, 39–46 (2011)PubMedCrossRefGoogle Scholar
  98. 98.
    A.T. Stopeck, A. Lipton, J.-J. Body, G.G. Steger, K. Tonkin, R.H. de Boer, M. Lichinitser, Y. Fujiwara, D.A. Yardley, M. Viniegra, M. Fan, Q. Jiang, R. Dansey, S. Jun, A. Braun, Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J. Clin. Oncol. 28, 5132–5139 (2010)PubMedCrossRefGoogle Scholar
  99. 99.
    D.H. Henry, L. Costa, F. Goldwasser, V. Hirsh, V. Hungria, J. Prausova, G.V. Scagliotti, H. Sleeboom, A. Spencer, S. Vadhan-Raj, R. von Moos, W. Willenbacher, P.J. Woll, J. Wang, Q. Jiang, S. Jun, R. Dansey, H. Yeh, Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J. Clin. Oncol. 29, 1125–1132 (2011)PubMedCrossRefGoogle Scholar
  100. 100.
    D.P. Kiel, L.I. Kauppila, L.A. Cupples, M.T. Hannan, C.J. O’Donnell, P.W. Wilson, Bone loss and the progression of abdominal aortic calcification over a 25 year period: The Framingham Heart Study, New York. Calcif. Tissue Int. 74(2), 208 (2001)Google Scholar
  101. 101.
    M. Baud’huin, F. Lamoureux, L. Duplomb, F. Rédini, D. Heymann, RANKL, RANK, osteoprotegerin: key partners of osteoimmunology and vascular diseases. Cell. Mol. Life Sci. 64, 2334–2350 (2007)PubMedCrossRefGoogle Scholar
  102. 102.
    N. Bucay, I. Sarosi, C.R. Dunstan, S. Morony, J. Tarpley, C. Capparelli, S. Scully, H.L. Tan, W. Xu, D.L. Lacey, W.J. Boyle, W.S. Simonet, Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 12, 1260–1268 (1998)PubMedCrossRefGoogle Scholar
  103. 103.
    H. Min, S. Morony, I. Sarosi, C.R. Dunstan, C. Capparelli, S. Scully, G. Van, S. Kaufman, P.J. Kostenuik, D.L. Lacey, W.J. Boyle, W.S. Simonet, Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J. Exp. Med. 192, 463–474 (2000)PubMedCrossRefGoogle Scholar
  104. 104.
    S. Morony, Y. Tintut, Z. Zhang, R.C. Cattley, G. Van, D. Dwyer, M. Stolina, P.J. Kostenuik, L.L. Demer, Osteoprotegerin inhibits vascular calcification without affecting atherosclerosis in ldlr(−/−) mice. Circulation 117, 411–420 (2008)PubMedCrossRefGoogle Scholar
  105. 105.
    M.K. Osako, H. Nakagami, N. Koibuchi, H. Shimizu, F. Nakagami, H. Koriyama, M. Shimamura, T. Miyake, H. Rakugi, R. Morishita, Estrogen inhibits vascular calcification via vascular RANKL system: common mechanism of osteoporosis and vascular calcification. Circ. Res. 107, 466–475 (2010)PubMedCrossRefGoogle Scholar
  106. 106.
    S. Helas, C. Goettsch, M. Schoppet, U. Zeitz, U. Hempel, H. Morawietz, P.J. Kostenuik, R.G. Erben, L.C. Hofbauer, Inhibition of receptor activator of NF-kappaB ligand by denosumab attenuates vascular calcium deposition in mice. Am. J. Pathol. 175, 473–478 (2009)PubMedCrossRefGoogle Scholar
  107. 107.
    G.G. Teng, N.M. Patkar, K.G. Saag, Denosumab in postmenopausal women with low bone mineral density. Curr. Rheumatol. Rep. 9(1), 48–49 (2007)PubMedCrossRefGoogle Scholar
  108. 108.
    A. Lipton, G.G. Steger, J. Figueroa, C. Alvarado, P. Solal-Celigny, J.-J. Body, R. de Boer, R. Berardi, P. Gascon, K.S. Tonkin, R. Coleman, A.H.G. Paterson, M.C. Peterson, M. Fan, A. Kinsey, S. Jun, Randomized active-controlled phase II study of denosumab efficacy and safety in patients with breast cancer-related bone metastases. J. Clin. Oncol. 25, 4431–4437 (2007)PubMedCrossRefGoogle Scholar
  109. 109.
    M.J. Green, A.A. Deodhar, Bone changes in early rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 15, 105–123 (2001)PubMedCrossRefGoogle Scholar
  110. 110.
    G. Kaya, E. Koçak, E. Akbal, A. Taş, S. Köklü, Comparison of the possible risk factors of bone mineral density in subjects with ulcerative colitis and healthy subjects. South. Med. J. 104, 747–751 (2011)PubMedCrossRefGoogle Scholar
  111. 111.
    L. Graat-Verboom, F.W. Smeenk, B.E. van den Borne, M.A. Spruit, F.H. Jansen, J.W. van Enschot, E.F. Wouters, Progression of osteoporosis in patients with COPD: a 3-year follow up study. Respir. Med. 106(6), 861–870 (2012)PubMedCrossRefGoogle Scholar
  112. 112.
    D. Carmona-Fernandes, M.J. Santos, I.P. Perpétuo, J.E. Fonseca, H. Canhão, Soluble receptor activator of nuclear factor κB ligand/osteoprotegerin ratio is increased in systemic lupus erythematosus patients. Arthritis Res. Ther. 13, R175 (2011)PubMedCrossRefGoogle Scholar
  113. 113.
    H. Takayanagi, H. Iizuka, T. Juji, T. Nakagawa, A. Yamamoto, T. Miyazaki, Y. Koshihara, H. Oda, K. Nakamura, S. Tanaka, Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum. 43, 259–269 (2000)PubMedCrossRefGoogle Scholar
  114. 114.
    Y. Li, G. Toraldo, A. Li, X. Yang, H. Zhang, W.-P. Qian, M.N. Weitzmann, B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109, 3839–3848 (2007)PubMedCrossRefGoogle Scholar
  115. 115.
    S. Cenci, G. Toraldo, M.N. Weitzmann, C. Roggia, Y. Gao, W.P. Qian, O. Sierra, R. Pacifici, Estrogen deficiency induces bone loss by increasing T cell proliferation and lifespan through IFN-gamma-induced class II transactivator. Proc. Natl Acad. Sci. USA 100, 10405–10410 (2003)PubMedCrossRefGoogle Scholar
  116. 116.
    D.M. Anderson, E. Maraskovsky, W.L. Billingsley, W.C. Dougall, M.E. Tometsko, E.R. Roux, M.C. Teepe, R.F. DuBose, D. Cosman, L. Galibert, A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175–179 (1997)PubMedCrossRefGoogle Scholar
  117. 117.
    P. Bai, Y. Sun, J. Jin, J. Hou, R. Li, Q. Zhang, Y. Wang, Disturbance of the OPG/RANK/RANKL pathway and systemic inflammation in COPD patients with emphysema and osteoporosis. Respir. Res. 12, 157 (2011)PubMedCrossRefGoogle Scholar
  118. 118.
    R.L. Van Bezooijen, H.C. Farih-Sips, S.E. Papapoulos, C.W. Löwik, Interleukin-17: a new bone acting cytokine in vitro. J. Bone Miner. Res. 14, 1513–1521 (1999)CrossRefGoogle Scholar
  119. 119.
    E. Lubberts, L. van den Bersselaar, B. Oppers-Walgreen, P. Schwarzenberger, C.J. Coenen-de Roo, J.K. Kolls, L.A. Joosten, W.B. van den Berg, IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-kappa B ligand/osteoprotegerin balance. J. Immunol. 170(5), 2655–2662 (2003)PubMedGoogle Scholar
  120. 120.
    G. Schett, K. Redlich, S. Hayer, J. Zwerina, B. Bolon, C. Dunstan, B. Görtz, A. Schulz, H. Bergmeister, G. Kollias, G. Steiner, J.S. Smolen, Osteoprotegerin protects against generalized bone loss in tumor necrosis factor-transgenic mice. Arthritis Rheum. 48, 2042–2051 (2003)PubMedCrossRefGoogle Scholar
  121. 121.
    A.R. Pettit, H. Ji, D. von Stechow, R. Müller, S.R. Goldring, Y. Choi, C. Benoist, E.M. Gravallese, TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am. J. Pathol. 159, 1689–1699 (2001)PubMedCrossRefGoogle Scholar
  122. 122.
    A.J. Ashcroft, S.M. Cruickshank, P.I. Croucher, M.J. Perry, S. Rollinson, J.M. Lippitt, J.A. Child, C. Dunstan, P.J. Felsburg, G.J. Morgan, S.R. Carding, Colonic dendritic cells, intestinal inflammation, and T cell-mediated bone destruction are modulated by recombinant osteoprotegerin. Immunity 19, 849–861 (2003)PubMedCrossRefGoogle Scholar
  123. 123.
    S.B. Cohen, R.K. Dore, N.E. Lane, P.A. Ory, C.G. Peterfy, J.T. Sharp, D. van der Heijde, L. Zhou, W. Tsuji, R. Newmark, Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum. 58, 1299–1309 (2008)PubMedCrossRefGoogle Scholar
  124. 124.
    J.T. Sharp, W. Tsuji, P. Ory, C. Harper-Barek, H. Wang, R. Newmark, Denosumab prevents metacarpal shaft cortical bone loss in patients with erosive rheumatoid arthritis. Arthritis Care Res. 62, 537–544 (2010)CrossRefGoogle Scholar
  125. 125.
    A. Deodhar, R.K. Dore, D. Mandel, J. Schechtman, W. Shergy, R. Trapp, P.A. Ory, C.G. Peterfy, T. Fuerst, H. Wang, L. Zhou, W. Tsuji, R. Newmark, Denosumab-mediated increase in hand bone mineral density associated with decreased progression of bone erosion in rheumatoid arthritis patients. Arthritis Care Res. 62, 569–574 (2010)CrossRefGoogle Scholar
  126. 126.
    D. Kim, R.E. Mebius, J.D. MacMicking, S. Jung, T. Cupedo, Y. Castellanos, J. Rho, B.R. Wong, R. Josien, N. Kim, P.D. Rennert, Y. Choi, Regulation of peripheral lymph node genesis by the tumor necrosis factor family member trance. J. Exp. Med. 192, 1467–1478 (2000)PubMedCrossRefGoogle Scholar
  127. 127.
    Y. Hikosaka, T. Nitta, I. Ohigashi, K. Yano, N. Ishimaru, Y. Hayashi, M. Matsumoto, K. Matsuo, J.M. Penninger, H. Takayanagi, Y. Yokota, H. Yamada, Y. Yoshikai, J.-I. Inoue, T. Akiyama, Y. Takahama, The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 29, 438–450 (2008)PubMedCrossRefGoogle Scholar
  128. 128.
    M.M. Guerrini, C. Sobacchi, B. Cassani, M. Abinun, S.S. Kilic, A. Pangrazio, D. Moratto, E. Mazzolari, J. Clayton-Smith, P. Orchard, F.P. Coxon, M.H. Helfrich, J.C. Crockett, D. Mellis, A. Vellodi, I. Tezcan, L.D. Notarangelo, M.J. Rogers, P. Vezzoni, A. Villa, A. Frattini, Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am. J. Hum. Genet. 83, 64–76 (2008)PubMedCrossRefGoogle Scholar
  129. 129.
    C. Sobacchi, A. Frattini, M.M. Guerrini, M. Abinun, A. Pangrazio, L. Susani, R. Bredius, G. Mancini, A. Cant, N. Bishop, P. Grabowski, A. Del Fattore, C. Messina, G. Errigo, F.P. Coxon, D.I. Scott, A. Teti, M.J. Rogers, P. Vezzoni, A. Villa, M.H. Helfrich, Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat. Genet. 39, 960–962 (2007)PubMedCrossRefGoogle Scholar
  130. 130.
    J.C. Crockett, D.J. Mellis, D.I. Scott, M.H. Helfrich, New knowledge on critical osteoclast formation and activation pathways from study of rare genetic diseases of osteoclasts: focus on the RANK/RANKL axis. Osteoporos. Int. 22, 1–20 (2011)PubMedCrossRefGoogle Scholar
  131. 131.
    N. Nakagawa, M. Kinosaki, K. Yamaguchi, N. Shima, H. Yasuda, K. Yano, T. Morinaga, K. Higashio, RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem. Biophys. Res. Commun. 253, 395–400 (1998)PubMedCrossRefGoogle Scholar
  132. 132.
    V. Kartsogiannis, H. Zhou, N.J. Horwood, R.J. Thomas, D.K. Hards, J.M. Quinn, P. Niforas, K.W. Ng, T.J. Martin, M.T. Gillespie, Localization of RANKL (receptor activator of NF kappa B ligand) mRNA and protein in skeletal and extraskeletal tissues. Bone 25, 525–534 (1999)PubMedCrossRefGoogle Scholar
  133. 133.
    R. Hanada, A. Leibbrandt, T. Hanada, S. Kitaoka, T. Furuyashiki, H. Fujihara, J. Trichereau, M. Paolino, F. Qadri, R. Plehm, S. Klaere, V. Komnenovic, H. Mimata, H. Yoshimatsu, N. Takahashi, A. von Haeseler, M. Bader, S.S. Kilic, Y. Ueta, C. Pifl, S. Narumiya, J.M. Penninger, Central control of fever and female body temperature by RANKL/RANK. Nature 462, 505–509 (2009)PubMedCrossRefGoogle Scholar
  134. 134.
    K. Loser, A. Mehling, S. Loeser, J. Apelt, A. Kuhn, S. Grabbe, T. Schwarz, J.M. Penninger, S. Beissert, Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat. Med. 12, 1372–1379 (2006)PubMedCrossRefGoogle Scholar
  135. 135.
    N.B. Watts, C. Roux, J.F. Modlin, J.P. Brown, A. Daniels, S. Jackson, S. Smith, D.J. Zack, L. Zhou, A. Grauer, S. Ferrari, Infections in postmenopausal women with osteoporosis treated with denosumab or placebo: coincidence or causal association? Osteoporos. Int. 23(1), 327–337 (2012)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Kathrin Sinningen
    • 1
  • Elena Tsourdi
    • 1
  • Martina Rauner
    • 1
  • Tilman D. Rachner
    • 1
  • Christine Hamann
    • 2
  • Lorenz C. Hofbauer
    • 1
    • 3
  1. 1.Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine IIITechnical University Medical CenterDresdenGermany
  2. 2.Department of OrthopedicsTechnical University Medical CenterDresdenGermany
  3. 3.Center of Regenerative Therapies DresdenDresdenGermany

Personalised recommendations