Endocrine

, Volume 42, Issue 2, pp 430–435 | Cite as

Changes in serum 25-hydroxyvitamin D and cholecalciferol after one whole-body exposure in a commercial tanning bed: a randomized study

  • Jacob H. Langdahl
  • Louise Lind Schierbeck
  • Ulrich Christian Bang
  • Jens-Erik Beck Jensen
Original Article

Abstract

We wanted to evaluate the cutaneous synthesis of 25OHD and cholecalciferol after one whole-body exposure to ultraviolet radiation type B (UVB) in a randomized setup. Healthy volunteers were randomized to one whole-body exposure in a commercial tanning bed with UVB emission (UVB/UVA ratio 1.8–2.0%) or an identical placebo tanning bed without UVB. The output in the 280–320 nm range was 450 µW/cm2. Blood samples were analyzed for 25OHD and cholecalciferol at baseline and during 7 days after treatment. We included 20 volunteers, 11 to UVB and 9 to placebo treatment. During the first 6 h, no significant differences in 25OHD between the groups were found. At the end of the study, we found a mean increase of 25OHD in the UVB group of 4.5 nmol/l (SD 7 nmol/l) compared to a decline of −1.2 nmol/l (SD 7 nmol/l) in the placebo group (p = 0.1). A linear mixed model yielded an increase of 25OHD in the UVB group of 1.0 nmol/l per 24 h (p < 0.01). For cholecalciferol, we found a near significant increase of 1 pmol/l per hour in the UVB group compared to the placebo group during the first 6 h (p = 0.052). One tanning bed session had significant, but modest impact on the level of 25OHD during 7 days after exposure to UVB.

Keywords

Ultraviolet rays 25-Hydroxyvitamin D Cholecalciferol Randomized controlled trial Ionized calcium Parathyroid hormone 

Notes

Acknowledgments

The authors thank Lene Theil Skovgaard, Department of Biostatistics, Copenhagen University for helping with the mixed analysis.

Supplementary material

12020_2012_9641_MOESM1_ESM.pdf (92 kb)
Supplementary material 1 (PDF 93 kb) All measurements of 25-hydroxy vitamin D3 from baseline to end of study
12020_2012_9641_MOESM2_ESM.pdf (192 kb)
Supplementary material 2 (PDF 193 kb) Spectral emission of Philips CLEO Swift 100W-R and Ergoline High Power RXL

Reference

  1. 1.
    K. Ukinc, Severe osteomalacia presenting with multiple vertebral fractures: a case report and review of the literature. Endocrine 36, 30–36 (2009)PubMedCrossRefGoogle Scholar
  2. 2.
    G. Mazziotti, J. Bilezikian, E. Canalis, D. Cocchi, A. Giustina, New understanding and treatments for osteoporosis. Endocrine 41, 58–69 (2012)PubMedCrossRefGoogle Scholar
  3. 3.
    N.C. Bozkurt, E. Cakal, M. Sahin, E.C. Ozkaya, H. Firat, T. Delibasi, The relation of serum 25-hydroxyvitamin-D levels with severity of obstructive sleep apnea and glucose metabolism abnormalities. Endocrine. (2012). doi: 10.1007/s12020-012-9595-1
  4. 4.
    M. Chung, with or without calcium supplementation for prevention of cancer and fractures: an updated meta-analysis for the U.S. Preventive Services Task Force. Ann. Intern. Med. 155, 827–838 (2011)PubMedGoogle Scholar
  5. 5.
    J. McGrath, A. Brown, St CD, Prevention and schizophrenia—the role of dietary factors. Schizophr. Bull. 37, 272–283 (2011)PubMedCrossRefGoogle Scholar
  6. 6.
    M.F. Holick, Vitamin D deficiency. N. Engl. J. Med. 357, 266–281 (2007)PubMedCrossRefGoogle Scholar
  7. 7.
    M.F. Holick, N.M. Richtand, S.C. McNeill, S.A. Holick, J.E. Frommer, J.W. Henley, J.T. Potts Jr, Isolation and identification of previtamin D3 from the skin of rats exposed to ultraviolet irradiation. Biochemistry 18, 1003–1008 (1979)PubMedCrossRefGoogle Scholar
  8. 8.
    M.F. Holick, J.A. MacLaughlin, S.H. Doppelt, Regulation of cutaneous previtamin D3 photosynthesis in man: skin pigment is not an essential regulator. Science 211, 590–593 (1981)PubMedCrossRefGoogle Scholar
  9. 9.
    J. MacLaughlin, M.F. Holick, Aging decreases the capacity of human skin to produce vitamin D3. J. Clin. Invest. 76, 1536–1538 (1985)PubMedCrossRefGoogle Scholar
  10. 10.
    A.R. Webb, O. Engelsen, Calculated ultraviolet exposure levels for a healthy vitamin D status. Photochem. Photobiol. 82, 1697–1703 (2006)PubMedGoogle Scholar
  11. 11.
    A.R. Webb, H. Slaper, P. Koepke, A.W. Schmalwieser, Know your standard: clarifying the CIE erythema action spectrum. Photochem. Photobiol. 87, 483–486 (2011)PubMedCrossRefGoogle Scholar
  12. 12.
    H.W. Randle, Suntanning: differences in perceptions throughout history. Mayo Clin. Proc. 72, 461–466 (1997)PubMedCrossRefGoogle Scholar
  13. 13.
    J.S. Adams, T.L. Clemens, J.A. Parrish, M.F. Holick, Vitamin-D synthesis and metabolism after ultraviolet irradiation of normal and vitamin-D-deficient subjects. N. Engl. J. Med. 306, 722–725 (1982)PubMedCrossRefGoogle Scholar
  14. 14.
    L.A. Armas, S. Dowell, M. Akhter, S. Duthuluru, C. Huerter, B.W. Hollis, R. Lund, R.P. Heaney, Ultraviolet-B radiation increases serum 25-hydroxyvitamin D levels: the effect of UVB dose and skin color. J. Am. Acad. Dermatol. 57, 588–593 (2007)PubMedCrossRefGoogle Scholar
  15. 15.
    E. Thieden, H.L. Jorgensen, N.R. Jorgensen, P.A. Philipsen, H.C. Wulf, Sunbed radiation provokes cutaneous vitamin D synthesis in humans—a randomized controlled trial. Photochem. Photobiol. 84, 1487–1492 (2008)PubMedCrossRefGoogle Scholar
  16. 16.
    Commission Internationale de l’Eclairage (CIE). Action spectrum for the production of previtamin D3 in human skin. 174 edn. (2006), pp. 1–12Google Scholar
  17. 17.
    T.B. Fitzpatrick, The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 124, 869–871 (1988)PubMedCrossRefGoogle Scholar
  18. 18.
    B.L. Diffey, C.T. Jansen, F. Urbach, H.C. Wulf, The standard erythema dose: a new photobiological concept. Photodermatol. Photoimmunol. Photomed. 13, 64–66 (1997)PubMedCrossRefGoogle Scholar
  19. 19.
    R.D. Ley, L.A. Applegate, R.J. Fry, A.B. Sanchez, Photoreactivation of ultraviolet radiation-induced skin and eye tumors of Monodelphis domestica. Cancer Res. 51, 6539–6542 (1991)PubMedGoogle Scholar
  20. 20.
    T.L. Clemens, J.S. Adams, S.L. Henderson, M.F. Holick, Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet 1, 74–76 (1982)PubMedCrossRefGoogle Scholar
  21. 21.
    M.D. Farrar, R. Kift, S.J. Felton, J.L. Berry, M.T. Durkin, D. Allan, A. Vail, A.R. Webb, L.E. Rhodes, Recommended summer sunlight exposure amounts fail to produce sufficient vitamin D status in UK adults of South Asian origin. Am. J. Clin. Nutr. 94, 1219–1224 (2011)PubMedCrossRefGoogle Scholar
  22. 22.
    L.Y. Matsuoka, J. Wortsman, J.G. Haddad, P. Kolm, B.W. Hollis, Racial pigmentation and the cutaneous synthesis of vitamin D. Arch. Dermatol. 127, 536–538 (1991)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jacob H. Langdahl
    • 1
  • Louise Lind Schierbeck
    • 2
  • Ulrich Christian Bang
    • 2
  • Jens-Erik Beck Jensen
    • 1
    • 2
  1. 1.Faculty of Health ScienceUniversity of CopenhagenCopenhagenDenmark
  2. 2.Department of EndocrinologyHvidovre HospitalHvidovreDenmark

Personalised recommendations