Endocrine

, Volume 42, Issue 3, pp 694–699

Nesfatin-1 and other hormone alterations in polycystic ovary syndrome

  • Rulin Deniz
  • Bilgin Gurates
  • Suleyman Aydin
  • Husnu Celik
  • İbrahim Sahin
  • Yakup Baykus
  • Zekiye Catak
  • Aziz Aksoy
  • Cihan Citil
  • Sami Gungor
Original Article

Abstract

Polycystic ovary syndrome (PCOS) is commonly characterised by obesity, insulin resistance (IR), hyperandrogenemia and hirsutism. Nesfatin-1 a recently discovered hormone, acts upon energy balance, glucose metabolism, obesity and probably gonadal functions. This study was to evaluate the circulating levels of nesfatin-1 in patients with PCOS (n = 30) and in age and body mass index (BMI)-matched controls (n = 30). PCOS patients had significantly lower levels of nesfatin-1 (0.88 ± 0.36 ng/mL) than healthy controls (2.22 ± 1.14 ng/mL). PCOS patients also had higher gonadotropin and androgen plasma concentrations, Ferriman–Gallwey scores, blood glucose levels and a homeostasis model of assessment-IR index (HOMA-IR) index than in healthy women. Correlation tests in PCOS subjects detected a negative correlation between nesfatin-1 levels and BMI, fasting blood glucose, insulin levels and a HOMA-IR index. Lower nesfatin-1 concentration may plays a very important role in the development of PCOS.

Keywords

PCOS Nesfatin-1 Ferriman–Gallwey scores 

Abbreviations

17-Αhp

17 Alpha hydroxyprogesterone

AS

Androstenedione

BMI

Body mass index

CSF

Cerebrospinal fluid

CV

Coefficient of variance

DHEA-S

Dehydroepiandrosterone sulphate

DM

Diabetes mellitus

E2

Estradiol

EDTA

Ethylenediaminetetraacetic acid

FABP4

Fatty acid binding protein

FBG

Fasting blood glucose

FG

Ferriman–Gallwey

FSH

Follicle-stimulating hormone

FSI

Fasting serum insulin

HDL

High density lipoprotein

HOMA-IR

Homeostasis model of assessment-insulin resistance index

IGF-1

Insulin-like growth factor

IR

Insulin resistance

KIU

Kallikrein inactivation unit

LDL

Low density lipoprotein

LH

Luteinizing hormone

LMD

Last menstrual date

PCOS

Polycystic ovary syndrome

PRL

Prolactin

SHBG

Sex-hormone binding globulin

TSH

Thyroid-stimulating hormone

TT

Total testosterone

VLDL

Very low density lipoprotein

WHR

Waist-hip circumference ratio

References

  1. 1.
    L. Speroff, Anovulation and polycystic ovary. In Clinical Gynecologic Endocrinology and Infertility, eds. by L. Speroff, M.A. Fritz MA, 6th edn. (Lippincott Williams and Wilkins, Philadelphia, 2005), pp. 465–491Google Scholar
  2. 2.
    Z.E. Hopkinson, N. Sattar, R. Fleming, I.A. Greer, Polycystic ovarian syndrome: the metabolic syndrome comes to gynecology. BMJ 317, 329–332 (1998)PubMedCrossRefGoogle Scholar
  3. 3.
    R. Azziz, K.S. Woods, R. Reyna, T.J. Key, E.S. Knochenhauer, B.O. Yildiz, The prevalence and feature of the polycystic ovary syndrome in an unselected population. J. Clin. Endocrinol. Metab. 89, 2745–2749 (2004)PubMedCrossRefGoogle Scholar
  4. 4.
    The Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group, revised consensus on diagnostic criteria and longterm health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 19, 41–47 (2004)Google Scholar
  5. 5.
    D.A. Ehrmann, Polycystic ovary syndrome. N. Engl. J. Med. 352, 1223–1236 (2005)PubMedCrossRefGoogle Scholar
  6. 6.
    H.J. Teede, S.K. Hutchison, S. Zoungas, The management of insulin resistance in polycystic ovary syndrome. Trends Endocrinol. Metab. 18, 273–279 (2007)PubMedCrossRefGoogle Scholar
  7. 7.
    R. Hamburg, Management of polycystic ovary syndrome in adolescence. Rev. Gynecol. Pract. 4, 148–155 (2004)CrossRefGoogle Scholar
  8. 8.
    H. Jia, L. Yu, X. Guo, W. Gao, Z. Jiang, Associations of adiponectin gene polymorphisms with polycystic ovary syndrome: a meta-analysis. Endocrine. (2012, in press)Google Scholar
  9. 9.
    B. Dilbaz, E. Ozkaya, M. Cinar, E. Cakir, S. Dilbaz, Cardiovascular disease risk characteristics of the main polycystic ovary syndrome phenotypes. Endocrine 39, 272–277 (2011)PubMedCrossRefGoogle Scholar
  10. 10.
    W. Hu, J. Qiao, Expression and regulation of adipocyte fatty acid binding protein in granulosa cells and its relation with clinical characteristics of polycystic ovary syndrome. Endocrine 40, 196–202 (2011)PubMedCrossRefGoogle Scholar
  11. 11.
    S. Palomba, A. Falbo, T. Russo, A. Tolino, F. Orio, F. Zullo, Pregnancy in women with polycystic ovary syndrome: the effect of different phenotypes and features on obstetric and neonatal outcomes. Fertil. Steril. 94, 1805–1811 (2010)PubMedCrossRefGoogle Scholar
  12. 12.
    I. Oh, H. Shimizu, T. Satoh, S. Okada, S. Adachi, K. Inoue, H. Eguchi, M. Yamamoto, T. Imaki, K. Hashimoto, T. Tsuchiya, T. Monden, K. Horiguchi, M. Yamada, M. Mori, Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 443, 709–712 (2006)CrossRefGoogle Scholar
  13. 13.
    D. García-Galiano, V.M. Navarro, J. Roa, F. Ruiz-Pino, M.A. Sánchez-Garrido, R. Pineda, J.M. Castellano, M. Romero, E. Aguilar, F. Gaytán, C. Diéguez, L. Pinilla, M. Tena-Sempere, The anorexigenic europeptide, nesfatin-1, is indispensable for normal puberty onset in the female rat. J. Neurosci. 30, 7783–7792 (2010)PubMedCrossRefGoogle Scholar
  14. 14.
    Y. Su, J. Zhang, Y. Tang, F. Bi, J.N. Liu, The novel function of nesfatin-1: anti-hyperglycemia. Biochem. Biophys. Res. Commun. 391, 1039–1042 (2010)PubMedCrossRefGoogle Scholar
  15. 15.
    Q.C. Li, H.Y. Wang, X. Chen, H.Z. Guan, Z.Y. Jiang, Fasting plasma levels of nesfatin-1 in patients with type 1 and type 2 diabetes mellitus and the nutrient-related fluctuation of nesfatin-1 level in normal humans. Regul. Pept. 159, 72–77 (2010)PubMedCrossRefGoogle Scholar
  16. 16.
    S. Aydin, The presence of the peptides apelin, ghrelin and nesfatin-1 in the human breast milk, and the lowering of their levels in patients with gestational diabetes mellitus. Peptides 31, 2236–2240 (2010)PubMedCrossRefGoogle Scholar
  17. 17.
    M. Aslan, O. Celik, N. Celik, I. Turkcuoglu, E. Yilmaz, A. Karaer, Y. Simsek, E. Celik, S. Aydin, Cord blood nesfatin-1 and apelin-36 levels in gestational diabetes mellitus. Endocrine. (2011, in press)Google Scholar
  18. 18.
    E. Carmina, A.M. Campagna, R.A. Lobo, A 20-year follow-up of young women with polycystic ovary syndrome. Obstet. Gynecol. 119, 263–269 (2012)PubMedCrossRefGoogle Scholar
  19. 19.
    D. Dewailly, P. Pigny, B. Soudan, S. Catteau-Jonard, C. Decanter, E. Poncelet, A. Duhamel, Reconciling the definitions of polycystic ovary syndrome: the ovarian follicle number and serum anti-Müllerian hormone concentrations aggregate with the markers of hyperandrogenism. J. Clin. Endocrinol. Metab. 95, 4399–4405 (2010)PubMedCrossRefGoogle Scholar
  20. 20.
    D. Dewailly, H. Gronier, E. Poncelet, G. Robin, M. Leroy, P. Pigny, A. Duhamel, S. Catteau-Jonard, Diagnosis of polycystic ovary syndrome (PCOS): revisiting the threshold values of follicle count on ultrasound and of the serum AMH level for the definition of polycystic ovaries. Hum. Reprod. 26, 3123–3129 (2011)PubMedCrossRefGoogle Scholar
  21. 21.
    S. Aydin, Discovery of ghrelin hormone: research and clinical applications. Turk. J. Biochem. 32, 76–89 (2007)Google Scholar
  22. 22.
    L. Ibanez, N. Potau, A. Carrascosa, Insulin resistance, premature adrenarche and a risk of the PCOS. Trends Endocrinol. Metab. 9, 72–77 (1998)PubMedCrossRefGoogle Scholar
  23. 23.
    F. Ovalle, R. Azziz, Insulin resistance, polycystic ovary syndrome and type 2 diabetes mellitus. Fertil. Steril. 77, 1095–1105 (2002)PubMedCrossRefGoogle Scholar
  24. 24.
    J. Kusari, Y. Takata, E. Hatada, G. Freidenberg, O. Kolterman, J.M. Olefsky, Insulin resistance and diabetes due to different mutations in the tyrosine kinase domain of both insulin receptor gene alleles. J. Biol. Chem. 266, 5260–5267 (1991)PubMedGoogle Scholar
  25. 25.
    A. Dunaif, Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr. Rev. 18, 774–800 (1997)PubMedCrossRefGoogle Scholar
  26. 26.
    B.O. Yildiz, O. Gedik, Assessment of glucose intolerance and insulin sensitivity in polycystic ovary syndrome. Reprod. Biomed. Online 8, 649–656 (2004)PubMedCrossRefGoogle Scholar
  27. 27.
    A.M. Venkatesan, A. Dunaif, A. Corbould, Insulin resistance in polycystic ovary syndrome: progress and paradoxes. Recent Prog. Horm. Res. 56, 295–308 (2001)PubMedCrossRefGoogle Scholar
  28. 28.
    R. Gonzalez, A. Tiwari, S. Unniappan, Pancreatic beta cells colocalize insulin and pronesfatin immunoreactivity in rodents. Biochem. Biophys. Res. Commun. 381, 643–648 (2009)PubMedCrossRefGoogle Scholar
  29. 29.
    M. Nakata, K. Manaka, S. Yamamoto, M. Mori, T. Yada, Nesfatin-1 enhances glucose-induced insulin secretion by promoting Ca(2+) influx through L-type channels in mouse islet β-cells. Endocr. J. 58, 305–313 (2011)PubMedCrossRefGoogle Scholar
  30. 30.
    V.L. Nelson, K.N. Qin, R.L. Rosenfield, J.R. Wood, T.M. Penning, R.S. Legro, J.F. Strauss III, J.M. McAllister, The biochemical basis for increased testosterone production in theca cells propagated from patients with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 86, 5925–5933 (2001)PubMedCrossRefGoogle Scholar
  31. 31.
    R. Nahum, K.J. Thong, S.G. Hillier, Metabolic regulation of androgen production by human thecal cells in vitro. Hum. Reprod. 10, 75–81 (1995)PubMedCrossRefGoogle Scholar
  32. 32.
    H. Shimizu, S. Oh, S. Okada, M. Mori, Nesfatin-1: an overview and future clinical application. Endocr. J. 56, 537–543 (2009)PubMedCrossRefGoogle Scholar
  33. 33.
    D.S. Guzick, R. Wing, D. Smith, S.L. Berga, S.J. Winters, Endocrine consequences of weight loss in obese, hyperandrogenic, anovulatory women. Fertil. Steril. 61, 598–604 (1994)PubMedGoogle Scholar
  34. 34.
    R.J. Norman, M.J. Davies, J. Lord, L.J. Moran, The role of lifestyle modification in polycystic ovary syndrome. Trends Endocrinol. Metab. 13, 251–257 (2002)PubMedCrossRefGoogle Scholar
  35. 35.
    B.K. Tan, M. Hallschmid, W. Kern, H. Lehnert, H.S. Randeva, Decreased cerebrospinal fluid/plasma ratio of the novel satiety molecule, nesfatin-1/NUCB-2, in obese humans: evidence of nesfatin-1/NUCB-2 resistance and implications for obesity treatment. J. Clin. Endocrinol. Metab. 96, E669–E673 (2011)PubMedCrossRefGoogle Scholar
  36. 36.
    M. Ari, O.H. Ozturk, Y. Bez, S. Oktar, D. Erduran, High plasma nesfatin-1 level in patients with major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 35, 497–500 (2011)PubMedCrossRefGoogle Scholar
  37. 37.
    M. Ramanjaneya, J. Chen, J.E. Brown, G. Tripathi, M. Hallschmid, S. Patel, W. Kern, E.W. Hillhouse, H. Lehnert, B.K. Tan, H.S. Randeva, Identification of nesfatin-1 in human and murine adipose tissue: a novel depot-specific adipokine with increased levels in obesity. Endocrinology 151, 3169–3180 (2010)PubMedCrossRefGoogle Scholar
  38. 38.
    Z. Zhang, L. Li, M. Yang, H. Liu, G. Boden, G. Yang, Increased plasma levels of nesfatin-1 in patients with newly diagnosed type 2 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 120, 91–95 (2012)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Rulin Deniz
    • 1
  • Bilgin Gurates
    • 1
  • Suleyman Aydin
    • 2
  • Husnu Celik
    • 1
  • İbrahim Sahin
    • 3
  • Yakup Baykus
    • 1
  • Zekiye Catak
    • 2
  • Aziz Aksoy
    • 4
  • Cihan Citil
    • 5
  • Sami Gungor
    • 1
  1. 1.Department of Obstetrics and GynecologyFirat University HospitalElazigTurkey
  2. 2.Department of Medical Biochemistry and Clinical Biochemistry, Firat Hormones Research GroupFirat University HospitalElazigTurkey
  3. 3.Department of Nutrition and DieteticsErzincan UniversityErzincanTurkey
  4. 4.Department of Nutrition and DieteticsBitlis Eren UniversityBitlisTurkey
  5. 5.Department of Biological ScienceFirat UniversityElazigTurkey

Personalised recommendations