, Volume 41, Issue 3, pp 374–383 | Cite as

Obesidomics: contribution of adipose tissue secretome analysis to obesity research

  • Maria PardoEmail author
  • Arturo Roca-Rivada
  • Luisa Maria Seoane
  • Felipe F. CasanuevaEmail author


Obesity is presently reaching pandemic proportions and it is becoming a major health concern in developed and developing countries due to its comorbidities like type II diabetes, cardiovascular pathologies, and some cancers. The discovery of the adipose tissue role as an endocrine gland able to secrete adipokines that affects whole-body energy homeostasis has become a key break-through toward a better molecular understanding of obesity. Among the known adipokines involved in the regulation of energy metabolism very few have been clearly seen as central regulators of insulin sensitivity, metabolism, and energy homeostasis. Thus, the discovery and characterization of new adipocyte-derived factors is still in progress. Proteomics technology has emerged as a useful tool to analyze adipose tissue secretion (secretome) dynamics giving a wider picture into the molecular events that control body weight. Besides the identification of new secreted proteins, the advantage of using this approach is the possibility to detect post-translational modifications and protein interactions that generally cannot be predicted by genome studies. In this review, we summarize the recent efforts to identify new bioactive adipokines by proteomics especially in pathological situations such as obesity.


Secretome Proteomics Obesity Adipose tissue 



This study has been funded by Instituto de Salud Carlos III (ISCIII: Ministerio de Ciencia e Innovación de España): FIS PI0/00537 (FEDER co-financing); FIS PS09/02075; CP08/00216; Xunta de Galicia 10PXIB918273PR. A.R–R is funded by CIBER FisiopatologíaObesidad y Nutrición (CB06/03); M.P. is a Miguel Servet Fellow (Instituto de Salud Carlos III/SERGAS).L.M.Seoane is a ISCIII/SERGAS Researcher.


  1. 1.
    L. Qi, Y.A. Cho, Gene-environment interaction and obesity. Nutr. Rev. 66, 684–694 (2008)PubMedCrossRefGoogle Scholar
  2. 2.
    D.H. Bessesen, Update on obesity. J. Clin. Endocrinol. Metab. 93, 2027–2034 (2008)PubMedCrossRefGoogle Scholar
  3. 3.
    D.M. Mutch, K. Clément, Unraveling the genetics of human obesity. PLoS Genet. 2, e188 (2006)PubMedCrossRefGoogle Scholar
  4. 4.
    M. Seip, O. Trygstad, Generalized lipodystrophy, congenital and acquired (lipoatrophy). Acta Paediatr. Suppl. 413, 2–28 (1996)PubMedCrossRefGoogle Scholar
  5. 5.
    J. Moitra, M.M. Mason, M. Olive, D. Krylov, O. Gavrilova, B. Marcus-Samuels, L. Feigenbaum, E. Lee, T. Aoyama, M. Eckhaus, M.L. Reitman, C. Vinson, Life without white fat: a transgenic mouse. Genes Dev. 12, 3168–3181 (1998)PubMedCrossRefGoogle Scholar
  6. 6.
    B. Antuna-Puente, B. Feve, S. Fellahi, J.-P. Bastard, Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab. 34, 2–11 (2008)PubMedCrossRefGoogle Scholar
  7. 7.
    H. Hauner, Secretory factors from human adipose tissue and their functional role. The Proc. Nutr. Soc. 64, 163–169 (2005)CrossRefGoogle Scholar
  8. 8.
    N. Halberg, I. Wernstedt-Asterholm, and P.E. Scherer, The adipocyte as an endocrine cell. Endocrinol. Metab. Clin. North. Am. 37, 753–68, x–xi (2008)Google Scholar
  9. 9.
    L. Hutley, J.B. Prins, Fat as an endocrine organ: relationship to the metabolic syndrome. Am. J. Med. Sci. 330, 280–289 (2005)PubMedCrossRefGoogle Scholar
  10. 10.
    K. Brochu-Gaudreau, C. Rehfeldt, R. Blouin, V. Bordignon, B.D. Murphy, M.F. Palin, Adiponectin action from head to toe. Endocrine 37, 11–32 (2010)PubMedCrossRefGoogle Scholar
  11. 11.
    M. Blüher, Vaspin in obesity and diabetes: pathophysiological and clinical significance. Endocrine (2011) (in press)Google Scholar
  12. 12.
    I. Castan-Laurell, C. Dray, C. Attané, T. Duparc, C. Knauf, P. Valet, Apelin, diabetes, and obesity. Endocrine 40, 1–9 (2011)PubMedCrossRefGoogle Scholar
  13. 13.
    M. Tyers, M. Mann, From genomics to proteomics. Nature 422, 193–197 (2003)PubMedCrossRefGoogle Scholar
  14. 14.
    M.P. Pavlou, E.P. Diamandis, The cancer cell secretome: a good source for discovering biomarkers? J. Proteomics. 73, 1896–1906 (2010)PubMedCrossRefGoogle Scholar
  15. 15.
    M.P. et al. Lodish G, Berk A, Zipursky SL. Mol. Cell Biol. New York (1999)Google Scholar
  16. 16.
    H. Skalnikova, J. Motlik, S.J. Gadher, H. Kovarova, Mapping of the secretome of primary isolates of mammalian cells, stem cells and derived cell lines. Proteomics 11, 691–708 (2011)PubMedCrossRefGoogle Scholar
  17. 17.
    C. van Vliet, E.C. Thomas, A. Merino-Trigo, R.D. Teasdale, P.A. Gleeson, Intracellular sorting and transport of proteins. Prog. Biophys. Mol. Biol. 83, 1–45 (2003)PubMedCrossRefGoogle Scholar
  18. 18.
    W. Nickel, C. Rabouille, Mechanisms of regulated unconventional protein secretion. Natl. Rev. Mol. Cell. Biol. 10, 148–155 (2009)CrossRefGoogle Scholar
  19. 19.
    N. Aoki, S. Jin-no, Y. Nakagawa, N. Asai, E. Arakawa, N. Tamura, T. Tamura, T. Matsuda, Identification and characterization of microvesicles secreted by 3T3-L1 adipocytes: redox- and hormone-dependent induction of milk fat globule-epidermal growth factor 8-associated microvesicles. Endocrinology 148, 3850–3862 (2007)PubMedCrossRefGoogle Scholar
  20. 20.
    J.D. Bendtsen, L.J. Jensen, N. Blom, G. Von Heijne, S. Brunak, Protein Eng. Des. Sel. 17, 349–356 (2004)PubMedCrossRefGoogle Scholar
  21. 21.
    J.D. Bendtsen, H. Nielsen, G. von Heijne, S. Brunak, Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795 (2004)PubMedCrossRefGoogle Scholar
  22. 22.
    M. Bodén and J. Hawkins, Prediction of subcellular localization using sequence-biased recurrent networks. Bioinformatics (Oxford, England) 21, 2279–2286 (2005)Google Scholar
  23. 23.
    O. Emanuelsson, H. Nielsen, S. Brunak, G. von Heijne, Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300, 1005–1016 (2000)PubMedCrossRefGoogle Scholar
  24. 24.
    S.-H. Chiou, C.-Y. Wu, Clinical proteomics: current status, challenges, and future perspectives. Kaohsiung J. Med. Sci. 27, 1–14 (2011)PubMedCrossRefGoogle Scholar
  25. 25.
    G. Alvarez-Llamas, E. Szalowska, M.P. de Vries, D. Weening, K. Landman, A. Hoek, B.H.R. Wolffenbuttel, H. Roelofsen, R.J. Vonk, Characterization of the human visceral adipose tissue secretome. Mol. Cell Proteomics 6, 589–600 (2007)PubMedCrossRefGoogle Scholar
  26. 26.
    X. Chen, S. Hess, Adipose proteome analysis: focus on mediators of insulin resistance. Expert Rev. Proteomics 5, 827–839 (2008)PubMedCrossRefGoogle Scholar
  27. 27.
    J.C. Sanchez, D. Chiappe, V. Converset, C. Hoogland, P.A. Binz, S. Paesano, R.D. Appel, S. Wang, M. Sennitt, A. Nolan, M.A. Cawthorne, D.F. Hochstrasser, The mouse SWISS-2D PAGE database: a tool for proteomics study of diabetes and obesity. Proteomics 1, 136–163 (2001)PubMedCrossRefGoogle Scholar
  28. 28.
    S. Yang, C.-M., Huang, Recent advances in protein profiling of tissues and tissue fluids. Expert Rev. Proteomics. 4, 515–529 (2007)Google Scholar
  29. 29.
    M. Pardo, R.A. Dwek, N. Zitzmann, Proteomics in uveal melanoma research: opportunities and challenges in biomarker discovery. Expert Rev. Proteomics 4, 273–286 (2007)PubMedCrossRefGoogle Scholar
  30. 30.
    P. Wang, E. Mariman, J. Keijer, F. Bouwman, J.-P. Noben, J. Robben, J. Renes, Profiling of the secreted proteins during 3T3-L1 adipocyte differentiation leads to the identification of novel adipokines. Cell. Mol. Life Sci. 61, 2405–2417 (2004)PubMedGoogle Scholar
  31. 31.
    I.A. Brewis, P. Brennan, Proteomics technologies for the global identification and quantification of proteins. Adv. Protein Chem. Struct. Biol. 80, 1–44 (2010)PubMedCrossRefGoogle Scholar
  32. 32.
    H. Roelofsen, M. Dijkstra, D. Weening, M.P. de Vries, A. Hoek, R.J. Vonk, Comparison of isotope-labeled amino acid incorporation rates (CILAIR) provides a quantitative method to study tissue secretomes. Mol. Cell Proteomics 8, 316–324 (2009)PubMedGoogle Scholar
  33. 33.
    X. Chen, D. Hunt, S.W. Cushman, S. Hess, Proteomic characterization of thiazolidinedione regulation of obese adipose secretome in Zucker obese rats. Proteomics Clin. Appl. 3, 1099–1111 (2009)PubMedCrossRefGoogle Scholar
  34. 34.
    X. Chen, S.W. Cushman, L.K. Pannell, S. Hess, Quantitative proteomic analysis of the secretory proteins from rat adipose cells using a 2D liquid chromatography-MS/MS approach. J. Proteome Res. 4, 570–577 (2005)PubMedCrossRefGoogle Scholar
  35. 35.
    S. Famulla, D. Lamers, S. Hartwig, W. Passlack, A. Horrighs, A. Cramer, S. Lehr, H. Sell, J. Eckel, Pigment epithelium-derived factor (PEDF) is one of the most abundant proteins secreted by human adipocytes and induces insulin resistance and inflammatory signaling in muscle and fat cells. Int. J. Obes. 35, 762–772 (2011)CrossRefGoogle Scholar
  36. 36.
    D. Lamers, S. Famulla, N. Wronkowitz, S. Hartwig, S. Lehr, D.M. Ouwens, K. Eckardt, J.M. Kaufman, M. Ryden, S. Müller, F.-G. Hanisch, J. Ruige, P. Arner, H. Sell, J. Eckel, Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes 60, 1917–1925 (2011)PubMedCrossRefGoogle Scholar
  37. 37.
    S. Zvonic, M. Lefevre, G. Kilroy, Z.E. Floyd, J.P. DeLany, I. Kheterpal, A. Gravois, R. Dow, A. White, X. Wu, J.M. Gimble, Secretome of primary cultures of human adipose-derived stem cells: modulation of serpins by adipogenesis. Mol. Cell Proteomics 6, 18–28 (2007)PubMedGoogle Scholar
  38. 38.
    M.J. Lee, J. Kim, M.Y. Kim, Y.-S. Bae, S.H. Ryu, T.G. Lee, J.H. Kim, Proteomic analysis of tumor necrosis factor-alpha-induced secretome of human adipose tissue-derived mesenchymal stem cells. J. Proteome Res. 9, 1754–1762 (2010)PubMedCrossRefGoogle Scholar
  39. 39.
    D.M. Mutch, C. Rouault, M. Keophiphath, D. Lacasa, K. Clément, Using gene expression to predict the secretome of differentiating human preadipocytes. Int. J. Obes. 33, 354–363 (2009)CrossRefGoogle Scholar
  40. 40.
    C. Chiellini, O. Cochet, L. Negroni, M. Samson, M. Poggi, G. Ailhaud, M.-C. Alessi, C. Dani, E.-Z. Amri, Characterization of human mesenchymal stem cell secretome at early steps of adipocyte and osteoblast differentiation. BMC Mol. Biol. 9, 26 (2008)PubMedCrossRefGoogle Scholar
  41. 41.
    H. Molina, Y. Yang, T. Ruch, J.-W. Kim, P. Mortensen, T. Otto, A. Nalli, Q.-Q. Tang, M.D. Lane, R. Chaerkady, A. Pandey, Temporal profiling of the adipocyte proteome during differentiation using a five-plex SILAC based strategy. J. Proteome Res. 8, 48–58 (2009)PubMedCrossRefGoogle Scholar
  42. 42.
    J. Zhong, S.A. Krawczyk, R. Chaerkady, H. Huang, R. Goel, J.S. Bader, G.W. Wong, B.E. Corkey, A. Pandey, Temporal profiling of the secretome during adipogenesis in humans. J. Proteome Res. 9, 5228–5238 (2010)PubMedCrossRefGoogle Scholar
  43. 43.
    J. Kim, Y.S. Choi, S. Lim, K. Yea, J.H. Yoon, D.-J. Jun, S.H. Ha, J.-W. Kim, J.H. Kim, P.-G. Suh, S.H. Ryu, T.G. Lee, Comparative analysis of the secretory proteome of human adipose stromal vascular fraction cells during adipogenesis. Proteomics 10, 394–405 (2010)PubMedCrossRefGoogle Scholar
  44. 44.
    N. Billon, M.C. Monteiro, C. Dani, Developmental origin of adipocytes: new insights into a pending question. Biol. Cell 100, 563–575 (2008)PubMedCrossRefGoogle Scholar
  45. 45.
    M. Toyoda, Y. Matsubara, K. Lin, K. Sugimachi, M. Furue, Characterization and comparison of adipose tissue-derived cells from human subcutaneous and omental adipose tissues. Cell Biochem. Funct. 27, 440–447 (2009)PubMedCrossRefGoogle Scholar
  46. 46.
    A.W.B. Joe, L. Yi, Y. Even, A.W. Vogl, F.M.V. Rossi, Depot-specific differences in adipogenic progenitor abundance and proliferative response to high-fat diet. Stem cells. 27, 2563–2570 (2009)PubMedCrossRefGoogle Scholar
  47. 47.
    S. Santosa, M.D. Jensen, Why are we shaped differently, and why does it matter? Am. J. Physiol. Endocrinol. Metab 295, E531–E535 (2008)PubMedCrossRefGoogle Scholar
  48. 48.
    M.M. Ibrahim, Subcutaneous and visceral adipose tissue: structural and functional differences. Obes. Rev. 11, 11–18 (2010)PubMedCrossRefGoogle Scholar
  49. 49.
    P. Arner, Regional adipocity in man. J. Endocrinol. 155, 191–192 (1997)PubMedCrossRefGoogle Scholar
  50. 50.
    J.R. Peinado, Y. Jimenez-Gomez, M.R. Pulido, M. Ortega-Bellido, C. Diaz-Lopez, F.J. Padillo, J. Lopez-Miranda, R. Vazquez-Martínez, M.M. Malagón, The stromal-vascular fraction of adipose tissue contributes to major differences between subcutaneous and visceral fat depots. Proteomics 10, 3356–3366 (2010)PubMedCrossRefGoogle Scholar
  51. 51.
    R. Pérez-Pérez, F.J. Ortega-Delgado, E. García-Santos, J.A. López, E. Camafeita, W. Ricart, J.-M. Fernández-Real, B. Peral, Differential proteomics of omental and subcutaneous adipose tissue reflects their unalike biochemical and metabolic properties. J. Proteome Res. 8, 1682–1693 (2009)PubMedCrossRefGoogle Scholar
  52. 52.
    S.L. Hocking, L.E. Wu, M. Guilhaus, D.J. Chisholm, D.E. James, Intrinsic depot-specific differences in the secretome of adipose tissue, preadipocytes, and adipose tissue-derived microvascular endothelial cells. Diabetes. 59, 3008–3016 (2010)PubMedCrossRefGoogle Scholar
  53. 53.
    R. Ross, L. Léger, D. Morris, J. de Guise, R. Guardo, Quantification of adipose tissue by MRI: relationship with anthropometric variables. J. Appl. Physiol. 72, 787–795 (1992)PubMedGoogle Scholar
  54. 54.
    A. Roca-Rivada, J. Alonso, O. Al-Massadi, C. Castelao, J.R. Peinado, L.M. Seoane, F.F. Casanueva, M. Pardo, Secretome analysis of rat adipose tissues shows location-specific roles for each depot type. J. Proteomics 74, 1068–1079 (2011)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Grupo Obesidómica, Laboratorio de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago de CompostelaComplexo Hospitalario Universitario de Santiago (CHUS/SERGAS)Santiago de CompostelaSpain
  2. 2.Grupo Fisiopatología Endocrina, Laboratorio de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago de CompostelaComplexo Hospitalario Universitario de Santiago (CHUS/SERGAS)Santiago de CompostelaSpain
  3. 3.CIBER Fisiopatología Obesidad y Nutrición (CB06/03)Instituto de Salud Carlos IIIC/Sinesio Delgado, 4Spain
  4. 4.Departamento de MedicinaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations