, Volume 41, Issue 1, pp 19–30 | Cite as

Extrapituitary production of anterior pituitary hormones: an overview

  • S. HarveyEmail author
  • C. Arámburo
  • E. J. Sanders


Protein hormones from the anterior pituitary gland have well-established endocrine roles in their peripheral target glands. It is, however, now known that these proteins are also produced within many of their target tissues, in which they act as local autocrine or paracrine factors, with physiological and/or pathophysiological significance. This emerging concept is the focus of this brief review.


Growth hormone Prolactin Adrenocorticotropin Thyrotropin Luteinizing hormone Follicle-stimulating hormone 



This work was supported by the Natural Science and Research Council of Canada.


  1. 1.
    D. Le Roith. The insulin-like growth factor system. Exp. Diabetes Res. 4, 205–212 (2003)Google Scholar
  2. 2.
    D. Le Roith, C. Bondy, S. Yakar, J.L. Liu, A. Butler, The somatomedin hypothesis: 2001. Endocr. Rev. 22, 53–74 (2001)PubMedGoogle Scholar
  3. 3.
    K. Sjogren, J.O. Jansson, O.G. Isaksson, C. Ohlsson, A model for tissue-specific inducible insulin-like growth factor-I (IGF-I) inactivation to determine the physiological role of liver-derived IGF-I. Endocrine 19, 249–256 (2002)PubMedGoogle Scholar
  4. 4.
    G. Rindi, A. Torsello, V. Locatelli, E. Solcia, Ghrelin expression and actions: a novel peptide for an old cell type of the diffuse endocrine system. Exp. Biol. Med. 229, 1007–1016 (2004)Google Scholar
  5. 5.
    H. Kojima, M. Fujimiya, K. Matsumura, T. Nakahara, M. Hara, L. Chan, Extra-pancreatic insulin-producing cells in multiple organs in diabetes. Proc. Natl. Acad. Sci. USA 101, 2458–2463 (2004)PubMedGoogle Scholar
  6. 6.
    E.J. Sanders, S. Harvey, Peptide hormones as developmental growth and differentiation factors. Dev. Dyn. 237, 1537–1552 (2008)PubMedGoogle Scholar
  7. 7.
    M.V. Urgrumov, Developing brain as an endocrine organ: a paradoxical reality. Neurochem. Res. 35, 837–850 (2010)Google Scholar
  8. 8.
    S. Harvey, Extrapituitary growth hormone. Endocrine 38, 335–359 (2010)PubMedGoogle Scholar
  9. 9.
    J.K. Perry, K.M. Mohankumar, B.S. Emerald, H.C. Mertani, P.E. Lobie, The contribution of growth hormone to mammary neoplasia. J. Mammary Gland Biol. Neoplasia. 13, 131–145 (2008)PubMedGoogle Scholar
  10. 10.
    V. Pandey, J.K. Perry, K.M. Mohankumar, X.J. Kong, S.M. Liu, Z.S. Wu, M.D. Mitchell, T. Zhu, P.E. Lobie, Autocrine human growth hormone stimulates oncogenicity of endometrial carcinoma cells. Endocrinology 149, 3909–3919 (2008)PubMedGoogle Scholar
  11. 11.
    S.E. Brunet-Dunand, C. Vouyovitch, S. Araneda, V. Pandey, L.J. Vidal, C. Print, H.C. Mertani, P.E. Lobie, J.K. Perry, Autocrine human growth hormone promotes tumor angiogenesis in mammary carcinoma. Endocrinology 150, 1341–1352 (2009)PubMedGoogle Scholar
  12. 12.
    Z.S. Wu, K. Yang, Y. Wan, P.X. Qian, J.K. Perry, J. Chiesa, H.C. Mertani, T. Zhu, P.E. Lobie, Tumor expression of human growth hormone and human prolactin predict a worse survival outcome in patients with mammary or endometrial carcinoma. J. Clin. Endocrinol. Metab. 96, E1619–E1629 (2011)PubMedGoogle Scholar
  13. 13.
    N. Ben-Jonathan, J.L. Mershon, D.L. Allen, R.W. Steinmetz, Extrapituitary prolactin: distribution, regulation, functions, and clinical aspects. Endocr. Rev. 17, 639–669 (1996)PubMedGoogle Scholar
  14. 14.
    L. Matera, Endocrine, paracrine and autocrine actions of prolactin on immune cells. Life Sci. 59, 599–614 (1996)PubMedGoogle Scholar
  15. 15.
    L. Diaz, I. Martinez-Reza, R. Garcia-Becerra, L. Gonzalez, F. Larrea, Calcitriol stimulates prolactin expression in non-activated human peripheral blood mononuclear cells: breaking paradigms. Cytokine 55, 188–194 (2011)PubMedGoogle Scholar
  16. 16.
    K. Horiguchi, S. Yagi, K. Ono, Y. Nishiura, M. Tanaka, M. Ishida, T. Harigaya, Prolactin gene expression in mouse spleen helper T cells. J. Endocrinol. 183, 639–646 (2004)PubMedGoogle Scholar
  17. 17.
    K.W. Kelley, D.A. Weigent, R. Kooijman, Protein hormones and immunity. Brain Behav. Immun. 21, 384–392 (2007)PubMedGoogle Scholar
  18. 18.
    L. Matera, Action of pituitary and lymphocyte prolactin. Neuroimmunomodulation 4, 171–180 (1997)PubMedGoogle Scholar
  19. 19.
    D. Xu, F. Lin, X. Lin, Z. Huang, Z. Lei, Immunoregulation of autocrine prolactin: suppressing the expression of costimulatory molecules and cytokines in T-lymphocytes by prolactin receptor knockdown. Cell. Immunol. 263, 71–78 (2010)PubMedGoogle Scholar
  20. 20.
    I. Mendez, J. Alcocer-Varela, A. Parra, A. Lava-Zavala, D.A. de la Cruz, D. Alarcon-Segovia, F. Larrea, Neuroendocrine dopaminergic regulation of prolactin release in systemic lupus erythematosus: a possible role of lymphocyte-derived prolactin. Lupus 13, 45–53 (2004)PubMedGoogle Scholar
  21. 21.
    I. Mendez, C. Clarion, L. Diaz, Prolactin in the immunological system: synthesis and biological effects. Rev. Invest. Clin. 57, 447–456 (2005)PubMedGoogle Scholar
  22. 22.
    N. Ben-Jonathan, K. Liby, M. McFarland, M. Zinger, Prolactin as an autocrine/paracrine growth factor in human cancer. Trends Endocrinol. Metab. 13, 245–250 (2002)PubMedGoogle Scholar
  23. 23.
    C. Manhes, V. Goffin, P.A. Kelly, P. Touraine, Autocrine prolactin as a promoter of mammary tumour growth. J. Dairy Res. 72, 58–65 (2005)PubMedGoogle Scholar
  24. 24.
    S. Bernichtein, P. Touraine, V. Goffin, New concepts in prolactin biology. J. Endocrinol. 206, 1–11 (2010)PubMedGoogle Scholar
  25. 25.
    A. Kurtz, L.A. Bristol, B.E. Toth, E. Lazar-Wesley, L. Takacs, B. Kacsoh, Mammary epithelial cells of lactating rats express prolactin messenger ribonucleic acid. Biol. Reprod. 48, 1095–1103 (1993)PubMedGoogle Scholar
  26. 26.
    R.W. Steinmetz, A.L. Grant, P.V. Malven, Transcription of prolactin gene in milk secretory cells of the rat mammary gland. J. Endocrinol. 136, 271–276 (1993)PubMedGoogle Scholar
  27. 27.
    T. Harigaya, E. Imata, Y. Mori, Prolactin gene expression in mouse mammary gland during late pregnancy and lactation. Anim. Sci. Technol. 67, 484–485 (1996)Google Scholar
  28. 28.
    L. Gabou, M. Boisnard, I. Gourdou, H. Jammes, J.P. Dulor, J. Djiane, Cloning of rabbit prolactin cDNA and prolactin gene expression in the rabbit mammary gland. J. Mol. Endocrinol. 16, 27–37 (1996)PubMedGoogle Scholar
  29. 29.
    F. Le Provost, C. Leroux, P. Martin, P. Gaye, J. Djiane, Prolactin gene expression on ovine and caprine mammary gland. Neuroendocrinology 60, 305–313 (1994)PubMedGoogle Scholar
  30. 30.
    P.V. Malven, Prolactin and other protein hormones in milk. J. Anim. Sci. 45, 609–616 (1977)PubMedGoogle Scholar
  31. 31.
    A. Dagvadorj, S. Collins, J.-B. Jomain, J. Abdulghani, I. Karras, T. Zellweger, H. Li, M. Nurmi, K. Alanen, T. Mirtti, T. Visakorpi, L. Bubendorf, V. Goffin, M.T. Nevalainen, Autocrine prolactin promotes prostate cancer cell growth via Janus kinase-2-signal transducer and activator of transcription-5a/b signaling pathway. Endocrinology 148, 3089–3101 (2007)PubMedGoogle Scholar
  32. 32.
    V. Rouet, R.L. Bogorad, C. Kayser, K. Kessal, C. Genestie, A. Bardier, D.R. Grattan, B. Kelder, J.J. Kopchick, P.A. Kelly, V. Goffin, Local prolactin is a target to prevent expansion of basal/stem cells in prostate tumors. Proc. Natl. Acad. Sci. (USA) 107, 15199–15204 (2010)Google Scholar
  33. 33.
    E.M. Jacobson, E.R. Hugo, D.C. Borcherding, N. Ben-Jonathan, Prolactin in breast and prostate cancer: molecular and genetic perspectives. Discov. Med. 11, 315–324 (2011)PubMedGoogle Scholar
  34. 34.
    M.T. Nevalainen, E.M. Valve, P.M. Ingleton, M. Nurmi, P.M. Martikainen, P.L. Hardonen, Prolactin and prolactin receptors are expressed and functioning in human prostate. J. Clin. Invest. 99, 618–627 (1997)PubMedGoogle Scholar
  35. 35.
    H. Wennbo, J. Kindblom, O.G. Isaksson, J. Tornell, Transgenic mice over-expressing the prolactin gene develop dramatic enlargement of the prostate gland. Endocrinology 138, 4410–4415 (1997)PubMedGoogle Scholar
  36. 36.
    J. Kindblom, K. Dillner, L. Sahlin, F. Roberson, D. Ormandy, J. Tornell, H. Wennbo, Prostate hyperplasia in a transgenic mouse with prostate-specific expression of prolactin. Endocrinology 144, 2269–2278 (2003)PubMedGoogle Scholar
  37. 37.
    M. Roux, N. Martinat, J.P. Richoux, G. Grignon, Histoimmunological identification of a prolactin-like substance in rodent testis. Cell. Tissue Res. 240, 663–667 (1985)PubMedGoogle Scholar
  38. 38.
    M. Ishida, M. Yoshida, S. Fukuta, K. Uemura, M. Iijima, K. Horiguchi, T. Harigaya, Analysis of prolactin gene expression and cleaved prolactin variants in the mouse testis and spermatozoa. J. Reprod. Dev. 56, 567–574 (2010)PubMedGoogle Scholar
  39. 39.
    S. Nag, S. Sanyal, K.K. Ghosh, N.M. Biswas, Prolactin suppression and spermatogenic developments in maturing rats. A quantitative study. Horm. Res. 15, 72–77 (1981)PubMedGoogle Scholar
  40. 40.
    P. Guillaumot, E. Tabone, M. Benahmed, Sertoli cells as potential targets of prolactin action in the testis. Mol. Cell. Endocrinol. 122, 199–206 (1996)PubMedGoogle Scholar
  41. 41.
    H.N. Jabbour, H.O. Critchley, Potential roles of decidual prolactin in early pregnancy. Reproduction 121, 197–205 (2001)PubMedGoogle Scholar
  42. 42.
    L. Bao, C. Tessier, A. Prigent-Tessier, F. Li, O.L. Buzzio, E.A. Callegari, N.D. Horseman, G. Gibori, Decidual prolactin silences the expression of genes detrimental to pregnancy. Endocrinology 148, 2326–2334 (2007)PubMedGoogle Scholar
  43. 43.
    M. Zinger, M. McFarland, N. Ben-Jonathan, Prolactin expression and secretion by human breast glandular and adipose tissue explants. J. Clin. Endocrinol. Metab. 88, 689–696 (2003)PubMedGoogle Scholar
  44. 44.
    T. Brandebourg, E. Hugo, N. Ben-Jonathan, Adipocyte prolactin: regulation of release and putative functions. Diabetes Obes. Metab. 9, 464–476 (2007)PubMedGoogle Scholar
  45. 45.
    M. McFarland-Mancini, E. Hugo, J. Loftus, N. Ben-Jonathan, Induction of prolactin expression and release in human preadipocytes by cAMP activating ligands. Biochem. Biophys. Res. Commun. 344, 9–16 (2006)PubMedGoogle Scholar
  46. 46.
    E.R. Hugo, D.C. Borcherding, K.S. Gersin, J. Loftus, N. Ben-Jonathan, Prolactin release by adipose explants, primary adipocytes, and LS14 adipocytes. J. Clin. Endocrinol. Metab. 93, 4006–4012 (2008)PubMedGoogle Scholar
  47. 47.
    C. Ling, G. Hellgren, M. Gebre-Medhin, K. Dillner, H. Wennbo, B. Carlsson, H. Billig, Prolactin (PRL) receptor gene expression in mouse adipose tissue: increases during lactation and in PRL-transgenic mice. Endocrinology 141, 3564–3572 (2000)PubMedGoogle Scholar
  48. 48.
    C. Ling, L. Svensson, B. Oden, B. Weijdegard, B. Eden, S. Eden, H. Billig, Identification of functional prolactin (PRL) receptor gene expression: PRL inhibits lipoprotein lipase activity in human white adipose tissue. J. Clin. Endocrinol. Metab. 88, 1804–1808 (2003)PubMedGoogle Scholar
  49. 49.
    T.D. Brandebourg, J.L. Bown, N. Ben-Jonathan, Prolactin upregulates its receptors and inhibits lipolysis and leptin release in male rat adipose tissue. Biochem. Biophys. Res. Comm. 357, 408–413 (2007)PubMedGoogle Scholar
  50. 50.
    E.A. Langan, K. Foitzik-Lau, V. Goffin, Y. Ramot, R. Paus, Prolactin: an emerging force along the cutaneous-endocrine axis. Trends Endocrinol. Metab. 21, 569–577 (2010)PubMedGoogle Scholar
  51. 51.
    R.G. Richards, S.M. Hartman, Human dermal fibroblast cells express prolactin in vitro. J. Invest. Dermatol. 106, 1250–1255 (1996)PubMedGoogle Scholar
  52. 52.
    K. Foitzik, E.A. Langan, R. Paus, Prolactin and the skin: a dermatological perspective on an ancient pleiotropic peptide hormone. J. Invest. Dermatol. 129, 1071–1087 (2009)PubMedGoogle Scholar
  53. 53.
    K. Foitzik, K. Krause, F. Conrad, M. Nakamura, W. Funk, R. Paus, Human scalp hair follicles are both a target and a source of prolactin, which serves as an autocrine and/or paracrine promoter of apoptosis-driven hair follicle regression. Am. J. Pathol. 168, 748–756 (2006)PubMedGoogle Scholar
  54. 54.
    C. Clapp, F.J. Lopez-Gomez, G. Nava, A. Corbacho, L. Torner, Y. Macotela, Z. Dueňas, Z. Ochoa, G. Noris, E. Acosta, E. Garay, G.M. de la Escalera, Expression of prolactin mRNA and of prolactin-like proteins in endothelial cells: evidence for autocrine effects. J. Endocrinol. 158, 113–160 (1998)Google Scholar
  55. 55.
    M. Koizumi, K. Horiguchi, Y. Tomita, Y. Kato, T. Harigaya, Prolactin gene expression in the mouse nipple. J. Reprod. Dev. 49, 465–472 (2003)PubMedGoogle Scholar
  56. 56.
    C. Clapp, G.Martinez. de la Escalera, Prolactins: novel regulators of angiogenesis. News Physiol. Sci. 12, 231–237 (1997)Google Scholar
  57. 57.
    A.M. Corbacho, G.Martinez. de la Escalera, C. Clapp, Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis. J. Endocrinol. 173, 219–238 (2002)PubMedGoogle Scholar
  58. 58.
    A.M. Corbacho, Y. Macotela, G. Nava, L. Torner, Z. Dueňas, G. Noris, M.A. Morales, G.Martinez. de la Escalera, C. Clapp, Human umbilical vein endothelial cells express multiple prolactin isoforms. J. Endocrinol. 166, 53–62 (2000)PubMedGoogle Scholar
  59. 59.
    A.M. Corbacho, G. Nava, J.P. Eiserich, G. Noris, Y. Macotela, I. Struman, G.M. de la Escalera, B.A. Freeman, C. Clapp, Proteolytic cleavage confers nitric oxide synthase inducing activity upon prolactin. J. Biol. Chem. 275, 13183–13186 (2000)PubMedGoogle Scholar
  60. 60.
    A. Ochoa, P.Montes. de Oca, J.C. Rivera, Z. Dueňas, G. Nava, G.M. de la Escalera, C. Clapp, Expression of prolactin gene and secretion of prolactin by rat retinal capillary endothelial cells. Investig. Ophthalmol. Vis. Sci. 42, 1639–1645 (2001)Google Scholar
  61. 61.
    C. Clapp, L. Torner, G. Gutierrez-Ospina, E. Alcantara, F.J. Lopez-Gomez, M. Nagano, P.A. Kelly, S. Mejia, M.A. Morales, G.M. de la Escalera, The prolactin gene is expressed in the hypothalamic-neurohypophyseal system and the protein is processed into a 14 kDa fragment with activity like 16 kDa prolactin. Proc. Natl. Acad. Sci. (USA) 91, 10384–10388 (1994)Google Scholar
  62. 62.
    B.L. Hansen, G.N. Hansen, C. Hagen, Immunoreactive material resembling ovine prolactin in perikarya and nerve terminals of the rat hypothalamus. Cell Tissue Res. 226, 121–131 (1982)PubMedGoogle Scholar
  63. 63.
    L. Torner, I.D. Neumann, The brain prolactin system: involvement in stress response adaptations in lactation. Stress 5, 249–257 (2002)PubMedGoogle Scholar
  64. 64.
    L. Torner, S. Mejia, F.J. Lopez-Gomez, A. Quintanar, G. Martinez. de la Escalera, C. Clapp, A 14-kilodalton prolactin-like fragment is secreted by the hypothalamo-neurohypophyseal system of the rat. Endocrinology 136, 5454–5460 (1995)PubMedGoogle Scholar
  65. 65.
    M. Lkhider, S. Delpal, F. Le Provost, M. Ollivier-Bousquet, Rat prolactin synthesis by lactating mammary epithelial cells. FEBS Lett. 401, 117–122 (1997)PubMedGoogle Scholar
  66. 66.
    D.R. Grattan, I.C. Kokay, Prolactin: a pleiotropic neuroendocrine hormone. J. Neuroendocrinol. 20, 752–763 (2008)PubMedGoogle Scholar
  67. 67.
    R.J. Walsh, L.P. Mangurian, B.I. Posner, Prolactin receptors in the primate choroid plexus. J. Anat. 168, 137–141 (1990)PubMedGoogle Scholar
  68. 68.
    R.J. Walsh, F.J. Slaby, B.I. Posner, A receptor-mediated mechanism for the transport of prolactin from blood to cerebrospinal fluid. Endocrinology 120, 1846–1850 (1987)PubMedGoogle Scholar
  69. 69.
    S. Harvey, D. Rattray, M.-L. Baudet, E.J. Sanders, Ocular pituitary hormones in the chick embryo, in Functional avian endocrinology, ed. by A. Dawson, P.J. Sharp (Narosa Publishing House, New Delhi, 2005), pp. 403–414Google Scholar
  70. 70.
    Z. Dueňas, L. Torner, A.M. Corbacho, G. Gutierrez-Ospina, F. Lopez-Barrera, F.A. Barrios, P. Berger, G.Martinez. de la Escalera, C. Clapp, Inhibition of rat corneal angiogenesis by 16 kDa prolactin and by endogenous prolactin-like molecules. Investig. Ophthalmol. Vis. Sci. 40, 2498–2505 (1999)Google Scholar
  71. 71.
    H. Quiroz, Z. Dueňas, F. Lopez-Barrera, G. Nava, A. Ochoa, G. Noris, G.Martinez. de la Escalera, C. Clapp, Detection of prolactin and prolactin mRNA in the eye of patients with retinopathy of prematurity. Investig. Ophthalmol. Vis. Sci. 41, 12 (2000). (abstract 1766)Google Scholar
  72. 72.
    Z. Dueňas, J.C. Rivera, H. Quiroz-Mercado, J. Aranda, Y. Macotela, P.M. de Oca, F. Lopez-Barrera, G. Nava, J.L. Guerrero, A. Suarez, M. De Regil, G.M. del la Escalera, C. Clapp, Prolactin in eyes of patients with retinopathy of prematurity: implications of vascular regression. Investig. Ophthalmol. Vis. Sci. 45, 2049–2055 (2004)Google Scholar
  73. 73.
    C.M. Shaw-Bruha, S.J. Pirrucello, J.D. Shull, Expression of the prolactin gene in normal and neoplastic human breast tissues and human mammary cell lines: promoter usage and alternative mRNA splicing. Breast Cancer Res. Treat. 44, 243–253 (1997)PubMedGoogle Scholar
  74. 74.
    S. Gerlo, J.R.E. Davis, D.L. Mager, R. Kooijman, Prolactin in man: a tale of two promoters. BioEssays 28, 1051–1055 (2006)PubMedGoogle Scholar
  75. 75.
    R. Telgmann, E. Maronde, K. Tasken, B. Gellersen, Activated protein kinase A is required for differentiation-dependent transcription of the decidual prolactin gene in human endometrial stromal cells. Endocrinology 138, 929–937 (1997)PubMedGoogle Scholar
  76. 76.
    G.H. Reem, D.W. Ray, J.R. Davis, The human prolactin gene upstream promoter is regulated in lymphoid cells by activators of T-cells and by cAMP. J. Mol. Endocrinol. 22, 285–292 (1999)PubMedGoogle Scholar
  77. 77.
    Y. Jiang, Y. Hu, J. Zhao, X. Zhen, G. Yan, H. Sun, The orphan nuclear receptor Nur77 regulates decidual prolactin expression in human endometrial stromal cells. Biochem. Biophys. Res. Commun. 404, 628–633 (2011)PubMedGoogle Scholar
  78. 78.
    S. Handweger, R.G. Richards, E. Markoff, The physiology of decidual prolactin and other decidual protein hormones. Trends Endocrinol. Metab. 3, 91–95 (1992)Google Scholar
  79. 79.
    E. Markoff, S. Barry, S. Handwerger, Influence of osmolality and ionic environment on the secretion of prolactin by human decidua in vitro. J. Endocrinol. 92, 103–110 (1982)PubMedGoogle Scholar
  80. 80.
    E. Kiapekou, D. Loutradis, E. Patsoula, G.A. Koussidis, V. Minas, R. Bletsa, A. Antsaklis, S. Michalas, A. Makrigiannakis, Prolactin receptor mRNA expression in oocytes and preimplantation mouse embryos. Reprod. Biomed. Online 10, 339–346 (2005)PubMedGoogle Scholar
  81. 81.
    A.K. Karabulut, R. Layfield, M.K. Pratten, The mechanism of growth-promoting effects of prolactin in embryogenesis—links to growth factors. Cell Tissue Organs 164, 2–13 (1999)Google Scholar
  82. 82.
    A.K. Karabulut, M.K. Pratten, Species-specificity of growth-promoting effects of prolactin during rat embryogenesis. J. Anat. 192, 1–12 (1998)PubMedGoogle Scholar
  83. 83.
    K. Ishibashi, M. Imai, Identification of four new members of the rat prolactin/growth hormone gene family. Biochem. Biophys. Res. Commun. 262, 575–578 (1999)PubMedGoogle Scholar
  84. 84.
    D.J. Toft, D.I. Linzer, Identification of three prolactin-related hormones as markers of invasive trophoblasts in the rat. Biol. Reprod. 63, 519–525 (2000)PubMedGoogle Scholar
  85. 85.
    N. Sahgal, G.T. Knipp, B. Liu, B.M. Chapman, G. Dai, M.J. Soares, Identification of two new nonclassical members of the rat prolactin family. J. Mol. Endocrinol. 24, 95–108 (2000)PubMedGoogle Scholar
  86. 86.
    D.O. Wiemers, R. Ain, S. Ohboshi, M.J. Soares, Migratory trophoblast cells express a newly identified member of the prolactin gene family. J. Endocrinol. 179, 335–345 (2003)PubMedGoogle Scholar
  87. 87.
    Y. Wang, J. Li, A.H. Yan Kwok, W. Ge, F.C. Leung, A novel prolactin-like protein (PRL-L) gene in chickens and zebrafish: cloning and characterization of its tissue expression. Gen. Comp. Endocrinol. 166, 200–210 (2010)PubMedGoogle Scholar
  88. 88.
    B.A. Eipper, R.E. Mains, Structure and biosynthesis of pro-adenocorticotropin/endorphin and related peptides. Endocr. Rev. 1, 1–27 (1980)PubMedGoogle Scholar
  89. 89.
    A.N. Eberle, Structure and chemistry of the peptide hormones of the intermediate lobe. Ciba Found. Symp. 81, 13–31 (1981)PubMedGoogle Scholar
  90. 90.
    A.B. Bicknell, Identification of the adrenal protease that cleaves pro-gamma-MSH: the dawning of a new era in adrenal physiology? J. Endocrinol. 172, 405–410 (2002)PubMedGoogle Scholar
  91. 91.
    S. Takeuchi, S. Takahashi, R. Okimoto, H.B. Schioth, T. Boswell, Avian melanocortin system: α-MSH may act as an autocrine/paracrine hormone. Ann. N.Y. Acad. Sci. 994, 366–372 (2003)PubMedGoogle Scholar
  92. 92.
    K. Teshigawara, S. Takahashi, T. Boswell, Q. Li, S. Tanaka, S. Takeuchi, Identification of avian α-melanocyte-stimulating hormone in the eye: temporal and spatial regulation of expression in the developing chicken. J. Endocrinol. 168, 527–537 (2001)PubMedGoogle Scholar
  93. 93.
    N. Lindqvist, U. Napankangas, J. Lindblom, F. Hallbook, Proopiomelanocortin and melanocortin receptors in the adult rat retino-tectal system and their regulation after optic nerve transaction. Euro. J. Pharmacol. 482, 85–94 (2003)Google Scholar
  94. 94.
    L.-I. Larsson, Corticotropin-like peptides in central nerves and in endocrine cells of gut and pancreas. Lancet 2, 1321–1323 (1977)Google Scholar
  95. 95.
    E. Saito, S. Iwasa, W.D. Odell, Widespread presence of large molecular weight adrenocorticotropin-like substances in normal rat extrapituitary tissues. Endocrinology 113, 1010–1019 (1983)PubMedGoogle Scholar
  96. 96.
    E.S. Orwoll, J.W. Kendall, Beta-endorphin and adrenocorticotropin extrapituitary sites: gastrointestinal tract. Endocrinology 107, 438–442 (1980)PubMedGoogle Scholar
  97. 97.
    S.I. Grigorakis, E. Anastasiou, K. Dai, A. Souvatzoglou, M. Alevizaki, Three mRNA transcripts of the proopiomelanocortin gene in human placenta at term. Eur. J. Endocrinol. 142, 533–536 (2000)PubMedGoogle Scholar
  98. 98.
    P.D. Lyons, J.E. Blalock, Proopiomelanocortin gene expression and protein processing in rat mononuclear leukocytes. J. Neuroimmunol. 78, 47–56 (1978)Google Scholar
  99. 99.
    D.A. Weigent, J.E. Blalock, Interactions between the neuroendocrine and immune systems: common hormones and receptors. Immunol. Rev. 100, 79–108 (1987)PubMedGoogle Scholar
  100. 100.
    A. Franchini, E. Ottaviani, Immunoreactive POMC-derived peptides and cytokines in the chicken thymus and bursa of Fabricius microenvironments: age-related changes. J. Neuroendocrinol. 11, 685–692 (1999)PubMedGoogle Scholar
  101. 101.
    A. Slominski, J. Wortsman, Neuroendocrinology of the skin. Endocr. Rev. 21, 457–487 (2000)PubMedGoogle Scholar
  102. 102.
    R. Paus, V.A. Botchkarev, N.V. Botchkareva, L. Mecklenburg, T. Luger, A. Slominski, The skin POMC system (SPS). Leads and lessons from the hair follicle. Ann. N. Y. Acad. Sci. 20, 350–363 (1999)Google Scholar
  103. 103.
    K. Seiffert, R. Granstein, Neuropeptides and neuroendocrine hormones in ultraviolet radiation-induced immunosuppression. Methods 28, 97 (2002)PubMedGoogle Scholar
  104. 104.
    T.E. Scholzen, T. Brzoska, D.H. Kalden, M. Hartmeyer, M. Fastrich, T.A. Luger, C.A. Armstrong, J.E. Ansel, Expression of functional melanocortin receptors and proopiomelanocortin peptides by human dermal microvascular endothelial cells. Ann. N. Y. Acad. Sci. 20, 239–253 (1999)Google Scholar
  105. 105.
    M. Tsatmali, J. Ancans, J. Yukitake, A.J. Thody, Skin POMC peptides: their actions at the human MC-1 receptor and roles in the tanning response. Pigment Cell Res. 13, 125–129 (2000)PubMedGoogle Scholar
  106. 106.
    M. Nagahama, Y. Funasaka, M.L. Fernandez-Frez, A. Ohashi, A.K. Chakraborty, M. Ueda, M. Ichihashi, Immunoreactivity of alpha-melanocyte-stimulating hormones and beta-endorphin in cutaneous malignant melanoma and benign melanocytic naevi. Br. J. Dermatol. 138, 981–985 (1998)PubMedGoogle Scholar
  107. 107.
    M. De Martin, F. Pecori Giraldi, F. Cavagnini, Cushing’s disease. Pituitary 9, 279–287 (2006)PubMedGoogle Scholar
  108. 108.
    A.E. Murphy, S. Harvey, Extrapituitary beta TSH and GH in early chick embryos. Mol. Cell. Endocrinol. 185, 161–171 (2001)PubMedGoogle Scholar
  109. 109.
    A.E. Murphy, S. Harvey, Extrapituitary TSH in early chick embryos: Pit-1 dependence? J. Mol. Neurosci. 18, 77–87 (2002)PubMedGoogle Scholar
  110. 110.
    F.J. Fernandez-Trujillo, A. Prada, C. Verastegui, Thyrotropin-like immunoreactivity in human retina: immunoreactive colocalization in ganglion cells in perivascular fibers. Neurochem. Int. 28, 381–384 (1996)PubMedGoogle Scholar
  111. 111.
    J.A. Prada, C. Verastegui, N. Perez-Rios, M. Gonzalez-Moreno, F.J. Fernandez-Trujillo, Thyrotropin-like immunoreactivity in the developing chicken retina. Eur. J. Morphol. 38, 34–40 (2000)PubMedGoogle Scholar
  112. 112.
    S.W. Kohl, G.J. Chader, Agonist effects on the intracellular cyclic AMP concentration of retinal pigment epithelial cells in culture. J. Neurochem. 42, 287–289 (1984)Google Scholar
  113. 113.
    S.A. Joseph, K.M. Knigge, Localization and content of TSH in median eminence of the hypothalamus. Am. J. Physiol. 226, 630–633 (1974)PubMedGoogle Scholar
  114. 114.
    W.J. DeVito, T.N. Spearman, J.M. Connors, G.A. Hedge, Subcellular localization of immunoreactive thyroid-stimulating hormone in the rat hypothalamus. Neuroendocrinology 42, 459–466 (1986)PubMedGoogle Scholar
  115. 115.
    W.J. DeVito, Comparison of brain and pituitary immunoreactive prolactin by peptide mapping and lectin affinity chromatography. Endocrinology 125, 2439–2444 (1989)PubMedGoogle Scholar
  116. 116.
    S. Hojvat, N. Emanuele, G. Baker, E. Connick, L. Kirsteins, A.M. Lawrence, Growth hormone (GH), thyroid-stimulating hormone (TSH), and luteinizing hormone (LH)-like peptides in the rodent brain: non-parallel ontogenetic development with pituitary counterparts. Brain Res. 256, 427–434 (1982)PubMedGoogle Scholar
  117. 117.
    E.M. Smith, M. Phan, T.E. Kruger, D.H. Coppenhaver, J.E. Blalock, Human lymphocyte production of immunoreactive thyrotropin. Proc. Natl. Acad. Sci. USA 80, 6010–6013 (1983)PubMedGoogle Scholar
  118. 118.
    J.R. Klein, The immune system as a regulator of thyroid hormone activity. Exp. Biol. Med. 231, 229–236 (2006)Google Scholar
  119. 119.
    E.U. Bagriacik, Q. Zhou, H.C. Wang, J.R. Klein, Rapid and transient reduction in circulating thyroid hormones following systemic antigen priming: implications of functional collaboration between dendritic cells and thyroid. Cell. Immunol. 212, 92–100 (2001)PubMedGoogle Scholar
  120. 120.
    J. Wang, M. Whetsell, J.R. Klein, Local hormone networks and intestinal T cells homeostasis. Science 275, 1937–1939 (1997)PubMedGoogle Scholar
  121. 121.
    V.L. Scofield, D. Montufar-Solis, E. Cheng, M.K. Estes, J.R. Klein, Intestinal TSH production is localized in crypt enterocytes and in villus ‘hotblocks’ and is coupled to IL-7 production: evidence for involvement of TSH during acute enteric virus infection. Immunol. Lett. 99, 36–44 (2005)PubMedGoogle Scholar
  122. 122.
    H.C. Wang, J. Dragoo, Q. Zhou, J.R. Klein, An intrinsic thyrotropin-mediated pathway of TNF-alpha production by bone marrow cells. Blood 101, 119–123 (2003)PubMedGoogle Scholar
  123. 123.
    D.V. Harbour, T.E. Kruger, D. Coppenhaver, E.M. Smith, W.J. Meyer 3rd, Differential expression and regulation of thyrotropin (TSH) in T cells lines. Mol. Cell. Endocrinol. 64, 229–241 (1989)PubMedGoogle Scholar
  124. 124.
    S. Varghese, D. Montufar-Solis, B.H. Vincent, J.R. Klein, Virus infection activates thyroid stimulating hormone synthesis in intestinal epithelial cells. J. Cell. Biochem. 105, 271–276 (2008)PubMedGoogle Scholar
  125. 125.
    J.R. Klein, H.C. Wang, Characterization of a novel set of resident intrathyroidal bone marrow-derived hematopoietic cells: potential for immune-endocrine interactions in thyroid homeostasis. J. Exp. Biol. 207, 55–65 (2004)PubMedGoogle Scholar
  126. 126.
    J.S. Schaefer, J.R. Klein, Immunological regulation of metabolism—a novel quintessential role for the immune system in health and disease. FASEB J. 25, 29–34 (2011)PubMedGoogle Scholar
  127. 127.
    B.H. Vincent, D. Montufar-Solis, B.B. Teng, B.A. Amendt, J. Schaefer, J.R. Klein, Bone marrow cells produce a novel TSHbeta splice variant that is upregulated in the thyroid following systemic virus infection. Genes Immun. 10, 18–26 (2009)PubMedGoogle Scholar
  128. 128.
    J.S. Schaefer, J.R. Klein, A novel thyroid stimulating hormone beta-subunit isoform in human pituitary, peripheral blood leukocytes, and thyroid. Gen. Comp. Endocrinol. 162, 241–244 (2009)PubMedGoogle Scholar
  129. 129.
    E. Bodo, B. Kany, E. Gaspar, J. Knuver, A. Kromminga, Y. Ramot, T. Biro, A. Tiede, N. van Beek, B. Poeggeler, K.C. Meyer, B.E. Wenzel, R. Paus, Thyroid-stimulating hormone, a novel, locally produced modulator of human epidermal functions, is regulated by thyrotropin-releasing hormone and thyroid hormones. Endocrinology 151, 1633–1642 (2010)PubMedGoogle Scholar
  130. 130.
    B. Poeggeler, J. Knuever, E. Gaspar, T. Biro, M. Klinger, E. Bodo, R.J. Wiesner, B.E. Wenzel, R. Paus, Thyrotropin powers human mitochondria. FASEB J. 24, 1525–1531 (2010)PubMedGoogle Scholar
  131. 131.
    N. Shirasawa, M. Shiino, Y. Shimizu, H. Nogami, S. Ishii, Immunoreactive luteinizing hormone (ir-LH) cells in the lung and stomach of chick embryos. Cell Tissue Res. 283, 19–27 (1996)PubMedGoogle Scholar
  132. 132.
    D.A. Thompson, M.I. Othman, Z. Lei, X. Li, Z.H. Huang, D.M. Eadie, C.V. Rao, Localization of receptors for luteinizing hormone/chorionic gonadotropin in neural retina. Life. Sci. 63, 1057–1064 (1998)PubMedGoogle Scholar
  133. 133.
    E. Patsoula, D. Loutradis, P. Drakakis, K. Kallianidis, R. Bletsa, S. Michalas, Expression of mRNA for the LH and FSH receptors in mouse oocytes and preimplantation embryos. Reproduction 121, 455–461 (2001)PubMedGoogle Scholar
  134. 134.
    J.Y. Chen, M.J. Chiou, Molecular cloning and functional analysis of the zebrafish luteinizing hormone beta subunit (LH<beta>) promoter. Fish Physiol. Biochem. 36, 1253–1262 (2010)PubMedGoogle Scholar
  135. 135.
    R.L. Bowen, M.A. Smith, P.L. Harris, Z. Kubat, R.N. Martins, R.J. Castellani, G. Perry, C.S. Atwood, Elevated luteinizing hormone expression colocalizes with neurons vulnerable to Alzheimer’s disease pathology. J. Neurosci. Res. 70, 514–518 (2002)PubMedGoogle Scholar
  136. 136.
    H. Croxatto, J. Arrau, H. Croxatto, Luteinizing hormone-like activity in human median eminence extracts. Nature 204, 584–585 (1964)PubMedGoogle Scholar
  137. 137.
    H.P. Noteborn, J. de Koning, F.H. de Jong, I. Ebels, C.A. Salemink, Identification of luteinizing hormone-like proteins in the ovine pineal gland. J. Pineal Res. 12, 118–127 (1992)PubMedGoogle Scholar
  138. 138.
    V.A. Isachenkov, O.G. Krivosheev, E.P. Badosov, N.A. Nabatchikova, Extrapituitary localization of luteinizing hormone in rats. Vopr. Med. Khim. 27, 527–534 (1981)PubMedGoogle Scholar
  139. 139.
    A.C. Wilson, M.S. Salamat, R.J. Haasl, K.M. Roche, A. Karande, S.V. Meethal, E. Terasawa, R.L. Bowen, C.S. Atwood, Human neurons express type I GnRH receptor and respond to GnRH I by increasing luteinizing hormone expression. J. Endocrinol. 191, 651–663 (2006)PubMedGoogle Scholar
  140. 140.
    A.A. Al-Hader, Z.M. Lei, C.V. Rao, Novel expression of functional luteinizing hormone/chorionic gonadotropin receptors in cultured glial cells from neonatal rat brains. Biol. Reprod. 56, 501–507 (1997)PubMedGoogle Scholar
  141. 141.
    R. Lathe, Hormones and the hippocampus. J. Endocrinol. 169, 205–231 (2001)PubMedGoogle Scholar
  142. 142.
    I.S. Parhar, T. Soga, S. Ogawa, Y. Sakuma, FSH and LH-beta subunits in the preoptic nucleus: ontogenic expression in teleost. Gen. Comp. Endocrinol. 132, 369–378 (2003)PubMedGoogle Scholar
  143. 143.
    M. Pandolfi, A.G. Pozzi, M. Canepa, P.G. Vissio, A. Shimizu, M.C. Maggese, G. Lobo, Presence of beta-follicle-stimulating hormone and beta-luteinizing hormone transcripts in the brain of Cichlasoma dimerus (Perciformes: Cichlidae): effect of brain-derived gonadotropins on pituitary hormone release. Neuroendocrinology 89, 27–37 (2009)PubMedGoogle Scholar
  144. 144.
    P.K. Hotakainen, E.M. Serlachius, S.I. Lintula, H.V. Alfthan, J.P. Schroder, U.E. Stenman, Expression of luteinizing hormone and chorionic gonadotropin beta-subunit messenger-RNA and protein in human peripheral blood leukocytes. Mol. Cell. Endocrinol. 162, 79–85 (2000)PubMedGoogle Scholar
  145. 145.
    P. Sabharwal, S. Varma, W.B. Malarkey, Human thymocytes secrete luteinizing hormone: an autocrine regulator of T-cell proliferation. Biochem. Biophys. Res. Commun. 187, 1187–1192 (1992)PubMedGoogle Scholar
  146. 146.
    So. W-K, H.-F. Kwok, W. Ge, Zebrafish gonadotropins and their receptors: II. Cloning and characterization of zebrafish follicle-stimulating hormone and luteinizing hormone subunits—their spatial-temporal expression patterns and receptor specificity. Biol. Reprod. 72, 1382–1396 (2005)Google Scholar
  147. 147.
    A. Al-Timimi, H. Fox, Immunohistochemical localization of follicle-stimulating hormone, luteinizing hormone, growth hormone, adrenocorticotrophic hormone and prolactin in the human placenta. Placenta 7, 163–172 (1986)PubMedGoogle Scholar
  148. 148.
    G.D. Sorenson, O.S. Pettengill, T. Brinck-Johnsen, C.C. Cate, L.H. Maurer, Hormone production by cultures of small-cell carcinoma of the lung. Cancer 47, 1289–1296 (1981)PubMedGoogle Scholar
  149. 149.
    M. Fukayama, Y. Hayashi, M. Koike, H. Hajikano, S. Endo, H. Okumura, Human chorionic gonadotropin in lung and lung tumors. Immunohistochemical study on unbalanced distribution of subunits. Lab. Investig. 55, 433–443 (1986)PubMedGoogle Scholar
  150. 150.
    A.G. Davies, I.F. Duncan, S.S. Lynch, Autoradiographic localization of 125I-labeled follicle-stimulating hormone in the rat hypothalamus. J. Endocrinol. 66, 301–302 (1975)PubMedGoogle Scholar
  151. 151.
    C. Chu, G. Gao, W. Huang, A study on colocalization of FSH and its receptor in rat hippocampus. J. Mol. Histol. 39, 49–55 (2008)PubMedGoogle Scholar
  152. 152.
    B. Baccetti, G. Collodel, E. Costantino-Ceccarini, A. Eshkol, L. Gambera, E. Moretti, M. Strazza, P. Piomboni, Localization of human follicle-stimulating hormone in the testis. FASEB J. 12, 1045–1054 (1998)PubMedGoogle Scholar
  153. 153.
    C. Chu, B. Xu, H. Weiquan, A study on expression of FSH and its effects on the secretion of insulin and glucagon in rat pancreas. Tissue Cell 42, 370–375 (2010)PubMedGoogle Scholar
  154. 154.
    E. Patsoula, D. Loutradis, P. Drakakis, L. Michalas, R. Bletsa, S. Michalas, Messenger RNA expression for the follicle-stimulating hormone receptor and luteinizing hormone receptor in human oocytes and preimplantation-stage embryos. Fertil. Steril. 79, 1187–1193 (2003)PubMedGoogle Scholar
  155. 155.
    P.S. Mandrekar, A.R. Sheth, V.M. Doctor, J.P. Zaveri, N.A. Sheth, Immunocytochemical localization of follicle stimulating hormone in normal human stomach. Anat. Rec. 227, 334–339 (1990)PubMedGoogle Scholar
  156. 156.
    S.K. Shahani, S.M. Gupta, P.K. Meherji, Lymphocytes—their possible endocrine role in the regulation of fertility. Am. J. Reprod. Immunol. 35, 1–4 (1996)PubMedGoogle Scholar
  157. 157.
    K.S. Hurkadli, M.G. Shah, D.S. Pardanani, A.R. Sheth, De novo biosynthesis of FSH like peptide by the human prostate. Life Sci. 47, 391–400 (1990)PubMedGoogle Scholar
  158. 158.
    S.V. Garde, A.R. Sheth, M.G. Shah, S.A. Kulkarni, Prostate—an extrapituitary source of follicle-stimulating hormone (FSH): occurrence, localization, and de novo biosynthesis and its hormonal modulation in primates and rodents. Prostate 18, 271–287 (1991)PubMedGoogle Scholar
  159. 159.
    S.V. Garde, A.R. Sheth, R. Joseph, C.J. Panchal, R.F. Chinoy, N.A. Sheth, Occurrence and de novo biosynthesis of follicle stimulating hormone (FSH) in benign and malignant conditions of human breast. Cancer Lett. 75, 1–9 (1993)PubMedGoogle Scholar
  160. 160.
    W. Zheng, M.S. Magid, E.E. Kramer, Y.T. Chen, Follicle-stimulating hormone receptor is expressed in human ovarian surface epithelium and fallopian tube. Am. J. Pathol. 148, 47–53 (1996)PubMedGoogle Scholar
  161. 161.
    D. Mizrachi, M. Shemesh, Follicle-stimulating hormone receptor and its messenger ribonucleic acid are present in the bovine cervix and can regulate cervical prostanoid synthesis. Biol. Reprod. 61, 776–784 (1999)PubMedGoogle Scholar
  162. 162.
    M. Shemesh, D. Mizrachi, M. Gurevich, Y. Stram, L.S. Shore, M.J. Fields, Functional importance of bovine myometrial and vascular LH receptors and cervical FSH receptors. Semin. Reprod. Med. 19, 87–96 (2001)PubMedGoogle Scholar
  163. 163.
    C. Bole-Feysot, V. Goffin, M. Edery, N. Binart, P.A. Kelly, Prolactin (PRL) and its receptor: action, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr. Rev. 19, 225–268 (1998)PubMedGoogle Scholar
  164. 164.
    E. Nagy, I. Berczi, Hypophysectomized rats depend on residual prolactin for survival. Endocrinology 128, 2776–2784 (1991)PubMedGoogle Scholar
  165. 165.
    B.P. Meij, J.A. Mol, T.S. van den Ingh, M.M. Bevers, H.A. Hazewinkel, A. Rijnberk, Assessment of pituitary function after transsphenoidal hypophysectomy in beagle dogs. Domest. Anim. Endocrinol. 14, 81–97 (1997)PubMedGoogle Scholar
  166. 166.
    B.P. Meij, J.A. Mol, M.M. Bevers, A. Rijnberk, Residual pituitary function after transsphenoidal hypophysectomy in dogs with pituitary-dependent hyperadrenocorticism. J. Endocrinol. 155, 531–539 (1997)PubMedGoogle Scholar
  167. 167.
    D. Morishita, M. Wakita, S. Hoshino, Effect of hypophysectomy on insulin-like growth factor (IGF)-1 binding activity of serum in chickens. Comp. Biochem. Physiol. Comp. Physiol. 104, 261–265 (1993)PubMedGoogle Scholar
  168. 168.
    P.S. Hopkins, A.L. Wallace, G.D. Thorburn, Thyrotrophin concentrations in the plasma of cattle, sheep, and foetal lambs as measured by radioimmunoassay. J. Endocrinol. 64, 371–387 (1975)PubMedGoogle Scholar
  169. 169.
    S.H. Shin, S.G. Vincent, C. Maltman, M.C. Obonsawin, J.C. Stokreef, C.W. Reifel, Pulsatile release of immunoreactive luteinizing hormone (irLH) in hypophysectomized male rats. Biol. Reprod. 35, 1115–1122 (1986)PubMedGoogle Scholar
  170. 170.
    P.P. Morosini, N. Campanella, G.F. Ferretti, P. Carletti, Hypophyseal gonadotropins after GnRH in patients with hypophyseal tumors and after hypophysectomy. Boll. Soc. Ital. Biol. Sper. 56, 1248–1251 (1980)PubMedGoogle Scholar
  171. 171.
    J.M. Hanson, H.S. Kooistra, J.A. Mol, E. Teske, B.P. Meij, Plasma profiles of adrenocorticotropic hormone, cortisol, alpha-melanocyte-stimulating hormone, and growth hormone in dogs with pituitary-dependent hyperadrenocorticism before and after hypophysectomy. J. Endocrinol. 190, 601–609 (2006)PubMedGoogle Scholar
  172. 172.
    P.J. Selman, J.A. Mol, G.R. Rutteman, E. van Garderen, A. Rijnberk, Progestin-induced growth hormone excess in the dog originates in the mammary gland. Endocrinology 134, 287–292 (1984)Google Scholar
  173. 173.
    J.E. Eigenmann, Acromegaly in the dog. Vet. Clin. North Am. Small Anim. Pract. 14, 827–836 (1984)PubMedGoogle Scholar
  174. 174.
    H.S. Kooistra, G. Voorhout, P.J. Selman, A. Rijnberk, Progestin-induced growth hormone (GH) production in the treatment of dogs with congenital GH deficiency. Domest. Anim. Endocrinol. 15, 93–102 (1998)PubMedGoogle Scholar
  175. 175.
    K.I. Alexandraki, A.B. Grossman, The ectopic ACTH syndrome. Rev. Endocr. Metab. Disord. 11, 117–126 (2010)PubMedGoogle Scholar
  176. 176.
    M.N. Dizon, D.L. Vesely, Gonadotropin-secreting pituitary tumor associated with hypersecretion of testosterone and hypogonadism after hypophysectomy. Endocr. Pract. 8, 225–231 (2002)PubMedGoogle Scholar
  177. 177.
    D.A. Weigent, J.E. Blalock, Associations between the neuroendocrine and immune systems. J. Leukoc. Biol. 58, 137–150 (1995)PubMedGoogle Scholar
  178. 178.
    H.O. Besedovsky, A.D. Rey, Physiology of psychoneuroimmunology: a personal view. Brain Behav. Immun. 21, 34–44 (2007)PubMedGoogle Scholar
  179. 179.
    K.L. Hull, F. Nette, S. Harvey, Bidirectional communication between the immune and neuroendocrine systems: role of growth hormone, in Avian endocrinology, ed. by A. Dawson, C.M. Chaturvedi (Narosa Publishing Hourse, New Delhi, 2001), pp. 437–446Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysiologyUniversity of AlbertaEdmontonCanada
  2. 2.Departmento de Neurobiología Celular Y Molecular, Instituto de Neurobiología, Campus JuriquillaUniversidad Nacional, Autónoma de MexicoQuerétaroMexico

Personalised recommendations