Endocrine

, Volume 41, Issue 1, pp 53–57 | Cite as

Gitelman's syndrome: a pathophysiological and clinical update

  • Farid Nakhoul
  • Nakhoul Nakhoul
  • Evgenia Dorman
  • Liron Berger
  • Karl Skorecki
  • Daniella Magen
Mini Review

Abstract

Gitelman’s syndrome (GS), also known as familial hypokalemic hypomagnesemia, is a rare autosomal recessive hereditary salt-losing tubulopathy, characterized by hypokalemic metabolic alkalosis, hypomagnesemia, and hypocalciuria, which is usually caused by mutations in the SLC12A3 gene encoding the thiazide-sensitive sodium chloride contrasporter. Because 18–40% of suspected GS patients carry only one SLC12A3 mutant allele, large genomic rearrangements must account for unidentified mutations. The clinical manifestations of GS are highly variable in terms of age at presentation, severity of symptoms, and biochemical abnormalities. Molecular analysis in our sibling’s patients revealed compound heterozygous mutations in the coding region of SLC12A3 as underlying their disease. Such compound heterozygosity can result in disease phenotype for such loss of function mutations in the absence of homozygosis through consanguineous inheritance of mutant alleles, identical by descent. Missense mutations account for approximately 70% of the mutations in GS, and there is a predisposition to large rearrangements caused by the presence of repeated sequences within the SLC12A3. We report two adult male siblings of Jewish origin with late onset GS, who presented in their fifth decade of life with muscle weakness, hypokalemia, hypomagnesaemia, and metabolic alkalosis. Rapid clinical and biochemical improvement was achieved by replacement therapy with potassium and magnesium.

Keywords

Gitelman’s syndrome Hypokalemia–hypomagnesemia 

References

  1. 1.
    N.V.A.M. Knoers, E.N. Levtchenko, Gitelman syndrome. Orphanet J. Rare Dis. 3, 2,21–226 (2008)CrossRefGoogle Scholar
  2. 2.
    N.V.A.M. Knoers, Nine inherited forms of renal hypomagnesemia: an update. Pediatr. Nephrol. 24, 697–705 (2009)PubMedCrossRefGoogle Scholar
  3. 3.
    M. Roser, N. Eibl, B. Eisenhaber, J. Seringer, M. Nagel, S. Nagorka, F.C. Luft, U. Frei, M. Gollasch, Gitelman Syndrome. Hypertension 53, 893–897 (2009)PubMedCrossRefGoogle Scholar
  4. 4.
    H.W. Seyberth, An improved terminology and classification of Bartter-like Syndrome. Nat. Clin. Pract. Nephrol. 4, 560–577 (2008)PubMedCrossRefGoogle Scholar
  5. 5.
    D.N. Cruz, A.J. Shaher, M.J. Bia, R.P. Lifton, D.B. Simon, Gitelman syndrome revisited: an evaluation of symptoms and health related quality of life. Kidney Int. 59, 710–717 (2001)PubMedCrossRefGoogle Scholar
  6. 6.
    A.J. Shaher, Inherited primary renal tubular hypokalemic alkalosis: a review of Gitelman and Bartter syndromes. Am. J. Med. Sci. 322, 316–332 (2001)CrossRefGoogle Scholar
  7. 7.
    E. Riveira-Munoz, Q. Chang, R.J. Bindels, O. Devuyst, Gitelman’s syndrome: towards genotype-phenotype correlations? Pediatr. Nephrol. 22, 326–332 (2007)PubMedCrossRefGoogle Scholar
  8. 8.
    E. Coto, G. Arriba, M. García-Castro, F. Santos, A.I. Corao, M. Díaz, M. Sánchez Heras, M.A. Basterrechea, S. Tallón, V. Alvarez, Clinical and analytical findings in Gitelman’s syndrome associated with homozygosity for the c.1925 G > A SLC12A3 mutation. Am. J. Nephrol. 30, 218–221 (2009)PubMedCrossRefGoogle Scholar
  9. 9.
    I. Zelikovic, R. Szargal, A. Hawash, V. Labay, I. Hatib, N. Cohen, F. Nakhoul, A novel mutation in the chloride channel gene CLCNKB as a cause of Gitelman and Bartter syndrome. Kidney Int. 63, 24–32 (2003)PubMedCrossRefGoogle Scholar
  10. 10.
    R. Vargas-Poussou, K. Dahan, D. Kahila, A. Venisse, E. Riveira-Munoz, H. Debaix, B. Gristar, F. Bridoux, R. Unwin, B. Moulin, X. Jeunemaitre, Spectrum of mutations in Gitelman Syndrome. J. Am. Soc. Nephrol. 22, 693–703 (2011)PubMedCrossRefGoogle Scholar
  11. 11.
    A.S. Balavoine, P. Bataille, P. Vanhille, R. Azar et al., Phenotype-genotype correlation and follow-up in adult patients with hypokalemia of renal origin suggesting Gitelman syndrome. Eur. J. Endocrinol. 165, 665–673 (2011)PubMedCrossRefGoogle Scholar
  12. 12.
    A. Noriko, T. Nakayama, Y. Tehira, A. Haketa, M. Yabuki, T. Sekiyama, C. Nakane, H. Mano, K. Matsumoto, Two novel genotypes of the thiazide-sensitive Na-Cl cotransporter (SLC12A3) gene in patients with Gitelman’s syndrome. Endocrine 31, 149–153 (2007)CrossRefGoogle Scholar
  13. 13.
    F. Tammaro, A. Bettinelli, D. Cattarelli et al., Early appearance of hypokalemia in Gitelman syndrome. Pediatr. Nephrol. 25, 2179–2182 (2010)PubMedCrossRefGoogle Scholar
  14. 14.
    M. Naesens, P. Steels, R. Verberckmoes, Y. Vanrenterghem, D. Kuypers, Bartter’s and Gitelman’s syndromes: from gene to clinic. Nephron Physiol. 96, 65–78 (2004)CrossRefGoogle Scholar
  15. 15.
    G. Graziani, C. Fedeli, L. Moroni, L. Cosmai, S. Badalamenti, C. Ponticelli, Gitelman syndrome: pathophysiological and clinical aspects. QJM 103, 741–748 (2010)PubMedCrossRefGoogle Scholar
  16. 16.
    R. Tyler Miller, Genetic disorders of NaCl transport in the distal convolute tubule. Nephron Physiol. 118, 15–20 (2011)CrossRefGoogle Scholar
  17. 17.
    T. Nijenhuis, V. Vallon, A.W.C.M. van der Kemp, J. Loffing, J.G.J. Hoenderop, R.J.M. Bindels, Enhanced passive Ca++ reabsorption and reduced Mg++ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J. Clin. Invest. 115(6), 1651–1658 (2005)PubMedCrossRefGoogle Scholar
  18. 18.
    K. Aoki, T. Tajima, Y. Yabushita, A. Nakamura, U. Nezu, M. Takahashi, M. Kimura, Y. Terauchi, A novel initial codon mutation of the thiazide-sensitive Na-Cl Cotransporter gene in a Japanese patients with Gitelman’s Syndrome. Endocr. J. 55(3), 557–560 (2008)PubMedCrossRefGoogle Scholar
  19. 19.
    L. Shao, L. Liu, Z. Miao, H. Ren, W. Wang, Y. Lang, S. Yue, N. Chen, A novel SLC12A3 splicing mutation skipping of two exons and preliminary screening for alternative splice variants in human kidney. Am. J. Nephrol. 28, 900–907 (2008)PubMedCrossRefGoogle Scholar
  20. 20.
    Y.F. Lo, K. Nozu, K. Lijima, T. Morishita, C.C. Huang, S.S. Yang, H.K. Sytwu, Y.W. Fang, M.H. Tseng, S.H. Lin, Recurrent deep intronic mutations in the SLC12A3 gene responsible for Gitelman’s syndrome. Clin. J. Am. Soc. Nephrol. 6, 630–639 (2011)PubMedCrossRefGoogle Scholar
  21. 21.
    N. Jeck, M. Konrad, S. Webers, K.E. Bonzel, H.W. Seyberth, Mutations in the chloride channel gene, CLCNKB, leading to a mixed Bartter-Gitelman phenotype. Pediatr. Res. 48, 754–758 (2000)PubMedCrossRefGoogle Scholar
  22. 22.
    M. Enya, Y. Kanoh, T. Mune, M. Ishizawa, H. Sarui, M. Yamamoto, N. Takeda, K. Yasuda, J. Takeda, Depressive state and paresthesia dramatically improved by intravenous MgSO4 in Gitelman’s Syndrome. Intern. Med. 43(5), 410–414 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Farid Nakhoul
    • 1
    • 5
  • Nakhoul Nakhoul
    • 1
  • Evgenia Dorman
    • 3
  • Liron Berger
    • 3
  • Karl Skorecki
    • 3
    • 4
  • Daniella Magen
    • 2
    • 3
    • 4
  1. 1.Nephrology & Hypertension Division, Faculty of MedicineBaruch-Padeh Poryia Medical CenterLower GalileeIsrael
  2. 2.Pediatric Nephrology UnitTechnion-HaifaIsrael
  3. 3.Laboratory of Molecular MedicineTechnion-HaifaIsrael
  4. 4.Rambam Health Care Campus, Faculty of MedicineTechnion-HaifaIsrael
  5. 5.Faculty of MedicineBar-Ilan UniversityTel-AvivIsrael

Personalised recommendations