, Volume 40, Issue 3, pp 354–365

Pheochromocytomas and paragangliomas: assessment of malignant potential



Pheochromocytomas and paragangliomas (PPGLs) are rare catecholamine-secreting tumors which arise from the adrenal glands or sympathetic neuronal tissue. Malignant transformation of these tumors occurs in a significant proportion and may therefore lower overall survival rates. In patients with PPGLs it is impossible to identify malignant disease without the presence of metastatic disease, something which can occur as long as 20 years after initial surgery. Early identification of malignant disease would necessitate a more aggressive treatment approach, something which may result in better disease outcome. We have therefore reviewed possible predictors of malignancy and current developments in order to help clinicians to swiftly assess malignant potential in patients with PPGLs. Currently, there is no absolute marker which can objectively reflect malignant potential. Tumor size is the most reliable predictor and should therefore be used as the baseline characteristic. The combination of various clinical markers (extra-adrenal disease and post-operative hypertension), biochemical markers (high dopamine, high norepinephrine and epinephrine to total catecholamine ratio) and/or histological markers (SNAIL, microRNAs and/or microarray results) can raise or lower the suspicion of malignancy. Furthermore, we discuss how clinical markers may affect biochemical results linked to malignancy, how biochemical results may distinguish hereditary syndromes, the role of imaging in determining malignant potential and tumor detection, and recent results of proposed histological markers.


Pheochromocytoma Paraganglioma Malignant Clinical Molecular pathology 


  1. 1.
    G. Eisenhofer, S.R. Bornstein, F.M. Brouwers, N.K. Cheung, P.L. Dahia, R.R. de Krijger et al., Malignant pheochromocytoma: current status and initiatives for future progress. Endocr. Relat. Cancer 11(3), 423–436 (2004)PubMedCrossRefGoogle Scholar
  2. 2.
    H. Lehnert, J. Mundschenk, K. Hahn, Malignant pheochromocytoma. Front. Horm. Res. 31, 155–162 (2004)PubMedCrossRefGoogle Scholar
  3. 3.
    H.J. Timmers, F.M. Brouwers, A.R. Hermus, F.C. Sweep, A.A. Verhofstad, A.L. Verbeek et al., Metastases but not cardiovascular mortality reduces life expectancy following surgical resection of apparently benign pheochromocytoma. Endocr. Relat. Cancer 15(4), 1127–1133 (2008)PubMedCrossRefGoogle Scholar
  4. 4.
    A. Chrisoulidou, G. Kaltsas, I. Ilias, A.B. Grossman, The diagnosis and management of malignant phaeochromocytoma and paraganglioma. Endocr. Relat. Cancer 14(3), 569–585 (2007)PubMedCrossRefGoogle Scholar
  5. 5.
    K. Nomura, H. Kimura, S. Shimizu, H. Kodama, T. Okamoto, T. Obara et al., Survival of patients with metastatic malignant pheochromocytoma and efficacy of combined cyclophosphamide, vincristine, and dacarbazine chemotherapy. J. Clin. Endocrinol. Metab. 94(8), 2850–2856 (2009)PubMedCrossRefGoogle Scholar
  6. 6.
    C. Jimenez, M. Ayala-Ramirez, L. Feng, M.M. Johnson, S. Ejaz, M.A. Habra et al., Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: primary tumor size and primary tumor location as prognostic indicators. J. Clin. Endocrinol. Metab. 96(3), 717–725 (2011)PubMedCrossRefGoogle Scholar
  7. 7.
    N. Kimura, T. Watanabe, T. Noshiro, S. Shizawa, Y. Miura, Histological grading of adrenal and extra-adrenal pheochromocytomas and relationship to prognosis: a clinicopathological analysis of 116 adrenal pheochromocytomas and 30 extra-adrenal sympathetic paragangliomas including 38 malignant tumors. Endocr Pathol 16(1), 23–32 (2005)PubMedCrossRefGoogle Scholar
  8. 8.
    V.E. Strong, T. Kennedy, H. Al-Ahmadie, L. Tang, J. Coleman, Y. Fong et al., Prognostic indicators of malignancy in adrenal pheochromocytomas: clinical, histopathologic, and cell cycle/apoptosis gene expression analysis. Surgery 143(6), 759–768 (2008)PubMedCrossRefGoogle Scholar
  9. 9.
    T. Zelinka, Z. Musil, J. Duskova, D. Burton, M.J. Merino, D. Milosevic, et al., Metastatic pheochromocytoma: Does the size and age matter? Eur. J. Clin. Invest. 41(10), 1121–1128 (2011)Google Scholar
  10. 10.
    P.F. Plouin, G. Chatellier, I. Fofol, P. Corvol, Tumor recurrence and hypertension persistence after successful pheochromocytoma operation. Hypertension 29(5), 1133–1139 (1997)PubMedGoogle Scholar
  11. 11.
    F. Feng, Y. Zhu, X. Wang, Y. Wu, W. Zhou, X. Jin et al., Predictive factors for malignant pheochromocytoma: analysis of 136 patients. J. Urol. 185(5), 1583–1590 (2011)PubMedCrossRefGoogle Scholar
  12. 12.
    L.D. Thompson, Pheochromocytoma of the Adrenal gland Scaled Score (PASS) to separate benign from malignant neoplasms: a clinicopathologic and immunophenotypic study of 100 cases. Am. J. Surg. Pathol. 26(5), 551–566 (2002)PubMedCrossRefGoogle Scholar
  13. 13.
    E. van der Harst, H.A. Bruining, H. Jaap Bonjer, F. van der Ham, W.N. Dinjens, S.W. Lamberts et al., Proliferative index in phaeochromocytomas: Does it predict the occurrence of metastases? J. Pathol. 191(2), 175–180 (2000)PubMedCrossRefGoogle Scholar
  14. 14.
    Y. Zhu, H.C. He, F. Yuan, J. Zhang, W.B. Rui, J.P. Zhao et al., Heparanase-1 and cyclooxygenase-2: prognostic indicators of malignancy in pheochromocytomas. Endocrine 38(1), 93–99 (2010)PubMedCrossRefGoogle Scholar
  15. 15.
    R.K. Whalen, A.F. Althausen, G.H. Daniels, Extra-adrenal pheochromocytoma. J. Urol. 147(1), 1–10 (1992)PubMedGoogle Scholar
  16. 16.
    R.I. Linnoila, H.R. Keiser, S.M. Steinberg, E.E. Lack, Histopathology of benign versus malignant sympathoadrenal paragangliomas: clinicopathologic study of 120 cases including unusual histologic features. Hum. Pathol. 21(11), 1168–1180 (1990)PubMedCrossRefGoogle Scholar
  17. 17.
    A. Blank, A.M. Schmitt, E. Korpershoek, F. van Nederveen, T. Rudolph, N. Weber et al., SDHB loss predicts malignancy in pheochromocytomas/sympathetic paragangliomas, but not through hypoxia signalling. Endocr. Relat. Cancer 17(4), 919–928 (2010)PubMedCrossRefGoogle Scholar
  18. 18.
    M. Maier-Woelfle, M. Brandle, P. Komminoth, P. Saremaslani, S. Schmid, T. Locher et al., A novel succinate dehydrogenase subunit B gene mutation, H132P, causes familial malignant sympathetic extra adrenal paragangliomas. J. Clin. Endocrinol. Metab. 89(1), 362–367 (2004)PubMedCrossRefGoogle Scholar
  19. 19.
    H.P. Neumann, B. Bausch, S.R. McWhinney, B.U. Bender, O. Gimm, G. Franke et al., Germ-line mutations in nonsyndromic pheochromocytoma. N. Engl. J. Med. 346(19), 1459–1466 (2002)PubMedCrossRefGoogle Scholar
  20. 20.
    S.M. Tavangar, A. Shojaee, H. Moradi Tabriz, V. Haghpanah, B. Larijani, R. Heshmat et al., Immunohistochemical expression of Ki67, c-erbB-2, and c-kit antigens in benign and malignant pheochromocytoma. Pathol. Res. Pract. 206(5), 305–309 (2010)PubMedCrossRefGoogle Scholar
  21. 21.
    G. Chen, J. Yao, L. Mou, X. Fang, H. Huang, J. Liang et al., Clinical analysis of 249 cases of adrenal tumors in a Chinese hospital. Urol. Int. 85(3), 270–275 (2010)PubMedCrossRefGoogle Scholar
  22. 22.
    J. Park, C. Song, M. Park, S. Yoo, S.J. Park, S. Hong et al., Predictive characteristics of malignant pheochromocytoma. Korean J. Urol. 52(4), 241–246 (2011)PubMedCrossRefGoogle Scholar
  23. 23.
    H. John, W.H. Ziegler, D. Hauri, P. Jaeger, Pheochromocytomas: Can malignant potential be predicted? Urology 53(4), 679–683 (1999)PubMedCrossRefGoogle Scholar
  24. 24.
    C. Boltze, J. Mundschenk, N. Unger, R. Schneider-Stock, B. Peters, C. Mawrin et al., Expression profile of the telomeric complex discriminates between benign and malignant pheochromocytoma. J. Clin. Endocrinol. Metab. 88(9), 4280–4286 (2003)PubMedCrossRefGoogle Scholar
  25. 25.
    E.W. Lai, S.M. Perera, B. Havekes, H.J. Timmers, F.M. Brouwers, B. McElroy et al., Gender-related differences in the clinical presentation of malignant and benign pheochromocytoma. Endocrine 34(1–3), 96–100 (2008)PubMedCrossRefGoogle Scholar
  26. 26.
    R.J. Hsiao, H.P. Neumann, R.J. Parmer, J.A. Barbosa, D.T. O’Connor, Chromogranin A in familial pheochromocytoma: diagnostic screening value, prediction of tumor mass, and post-resection kinetics indicating two-compartment distribution. Am. J. Med. 88(6), 607–613 (1990)PubMedCrossRefGoogle Scholar
  27. 27.
    R.J. Hsiao, R.J. Parmer, M.A. Takiyyuddin, D.T. O’Connor, Chromogranin A storage and secretion: sensitivity and specificity for the diagnosis of pheochromocytoma. Medicine (Baltim.) 70(1), 33–45 (1991)Google Scholar
  28. 28.
    F. Rao, H.R. Keiser, D.T. O’Connor, Malignant pheochromocytoma. Chromaffin granule transmitters and response to treatment. Hypertension 36(6), 1045–1052 (2000)PubMedGoogle Scholar
  29. 29.
    A. Szalat, M. Fraenkel, V. Doviner, A. Salmon, D.J. Gross, Malignant pheochromocytoma: predictive factors of malignancy and clinical course in 16 patients at a single tertiary medical center. Endocrine 39(2), 160–166 (2011)PubMedCrossRefGoogle Scholar
  30. 30.
    E. van der Harst, W.W. de Herder, R.R. de Krijger, H.A. Bruining, H.J. Bonjer, S.W.J. Lamberts et al., The value of plasma markers for the clinical behaviour of phaeochromocytomas. Eur. J. Endocrinol. 147(1), 85–94 (2002)PubMedCrossRefGoogle Scholar
  31. 31.
    C. Proye, P. Fossati, P. Fontaine, J. Lefebvre, M. Decoulx, J.L. Wemeau et al., Dopamine-secreting pheochromocytoma: An unrecognized entity? Classification of pheochromocytomas according to their type of secretion. Surgery 100(6), 1154–1162 (1986)PubMedGoogle Scholar
  32. 32.
    M. Schlumberger, C. Gicquel, J. Lumbroso, F. Tenenbaum, E. Comoy, J. Bosq et al., Malignant pheochromocytoma: clinical, biological, histologic and therapeutic data in a series of 20 patients with distant metastases. J. Endocrinol. Investig. 15(9), 631–642 (1992)Google Scholar
  33. 33.
    P.A. Tippett, A.J. McEwan, D.M. Ackery, A re-evaluation of dopamine excretion in phaeochromocytoma. Clin. Endocrinol. (Oxf.) 25(4), 401–410 (1986)CrossRefGoogle Scholar
  34. 34.
    L. Amar, E. Baudin, N. Burnichon, S. Peyrard, S. Silvera, J. Bertherat et al., Succinate dehydrogenase B gene mutations predict survival in patients with malignant pheochromocytomas or paragangliomas. J. Clin. Endocrinol. Metab. 92(10), 3822–3828 (2007)PubMedCrossRefGoogle Scholar
  35. 35.
    H. Chen, R.S. Sippel, M.S. O’Dorisio, A.I. Vinik, R.V. Lloyd, K. Pacak, The North American Neuroendocrine Tumor Society consensus guideline for the diagnosis and management of neuroendocrine tumors: pheochromocytoma, paraganglioma, and medullary thyroid cancer. Pancreas 39(6), 775–783 (2010)PubMedCrossRefGoogle Scholar
  36. 36.
    H.J. Timmers, A. Kozupa, G. Eisenhofer, M. Raygada, K.T. Adams, D. Solis et al., Clinical presentations, biochemical phenotypes, and genotype–phenotype correlations in patients with succinate dehydrogenase subunit B-associated pheochromocytomas and paragangliomas. J. Clin. Endocrinol. Metab. 92(3), 779–786 (2007)PubMedCrossRefGoogle Scholar
  37. 37.
    G. Eisenhofer, J.W. Lenders, H. Timmers, M. Mannelli, S.K. Grebe, L.C. Hofbauer et al., Measurements of plasma methoxytyramine, normetanephrine, and metanephrine as discriminators of different hereditary forms of pheochromocytoma. Clin. Chem. 57(3), 411–420 (2011)PubMedCrossRefGoogle Scholar
  38. 38.
    G. Eisenhofer, H.J. Timmers, J.W. Lenders, S.R. Bornstein, O. Tiebel, M. Mannelli et al., Age at diagnosis of pheochromocytoma differs according to catecholamine phenotype and tumor location. J. Clin. Endocrinol. Metab. 96(2), 375–384 (2011)PubMedCrossRefGoogle Scholar
  39. 39.
    E.A. Gerlo, C. Sevens, Urinary and plasma catecholamines and urinary catecholamine metabolites in pheochromocytoma: diagnostic value in 19 cases. Clin. Chem. 40(2), 250–256 (1994)PubMedGoogle Scholar
  40. 40.
    R. Mornex, C. Badet, L. Peyrin, Malignant pheochromocytoma: a series of 14 cases observed between 1966 and 1990. J. Endocrinol. Investig. 15(9), 643–649 (1992)Google Scholar
  41. 41.
    J. Axelrod, Methylation reactions in the formation and metabolism of catecholamines and other biogenic amines. Pharmacol. Rev. 18(1), 95–113 (1966)PubMedGoogle Scholar
  42. 42.
    A.E. Jacques, A. Sahdev, M. Sandrasagara, R. Goldstein, D. Berney, A.G. Rockall et al., Adrenal phaeochromocytoma: correlation of MRI appearances with histology and function. Eur. Radiol. 18(12), 2885–2892 (2008)PubMedCrossRefGoogle Scholar
  43. 43.
    K. Brindle, New approaches for imaging tumour responses to treatment. Nat. Rev. Cancer 8(2), 94–107 (2008)PubMedCrossRefGoogle Scholar
  44. 44.
    K.S. Bhatia, M.M. Ismail, A. Sahdev, A.G. Rockall, K. Hogarth, A. Canizales et al., 123I-Metaiodobenzylguanidine (MIBG) scintigraphy for the detection of adrenal and extra-adrenal phaeochromocytomas: CT and MRI correlation. Clin. Endocrinol. (Oxf.) 69(2), 181–188 (2008)CrossRefGoogle Scholar
  45. 45.
    I. Ilias, C.C. Chen, J.A. Carrasquillo, M. Whatley, A. Ling, I. Lazurova et al., Comparison of 6-18F-fluorodopamine PET with 123I-metaiodobenzylguanidine and 111in-pentetreotide scintigraphy in localization of nonmetastatic and metastatic pheochromocytoma. J. Nucl. Med. 49(10), 1613–1619 (2008)PubMedCrossRefGoogle Scholar
  46. 46.
    R. Mihai, F. Gleeson, D. Roskell, A. Parker, G. Sadler, Routine preoperative (123)I-MIBG scintigraphy for patients with phaeochromocytoma is not necessary. Langenbecks Arch. Surg. 393(5), 725–727 (2008)PubMedCrossRefGoogle Scholar
  47. 47.
    U. Srirangalingam, B. Khoo, L. Walker, F. MacDonald, R.H. Skelly, E. George et al., Contrasting clinical manifestations of SDHB and VHL associated chromaffin tumours. Endocr. Relat. Cancer 16(2), 515–525 (2009)PubMedCrossRefGoogle Scholar
  48. 48.
    H.J. Timmers, A. Kozupa, C.C. Chen, J.A. Carrasquillo, A. Ling, G. Eisenhofer et al., Superiority of fluorodeoxyglucose positron emission tomography to other functional imaging techniques in the evaluation of metastatic SDHB-associated pheochromocytoma and paraganglioma. J. Clin. Oncol. 25(16), 2262–2269 (2007)PubMedCrossRefGoogle Scholar
  49. 49.
    E. van der Harst, W.W. de Herder, H.A. Bruining, H.J. Bonjer, R.R. de Krijger, S.W. Lamberts et al., [(123)I]Metaiodobenzylguanidine and [(111)In]octreotide uptake in benign and malignant pheochromocytomas. J. Clin. Endocrinol. Metab. 86(2), 685–693 (2001)PubMedCrossRefGoogle Scholar
  50. 50.
    S. Hoegerle, E. Nitzsche, C. Altehoefer, N. Ghanem, T. Manz, I. Brink et al., Pheochromocytomas: detection with 18F DOPA whole body PET—initial results. Radiology 222(2), 507–512 (2002)PubMedCrossRefGoogle Scholar
  51. 51.
    D. Taieb, L. Tessonnier, F. Sebag, P. Niccoli-Sire, I. Morange, C. Colavolpe et al., The role of 18F-FDOPA and 18F-FDG-PET in the management of malignant and multifocal phaeochromocytomas. Clin. Endocrinol. (Oxf.) 69(4), 580–586 (2008)CrossRefGoogle Scholar
  52. 52.
    H.J. Timmers, M. Hadi, J.A. Carrasquillo, C.C. Chen, L. Martiniova, M. Whatley et al., The effects of carbidopa on uptake of 6-18F-Fluoro-l-DOPA in PET of pheochromocytoma and extra adrenal abdominal paraganglioma. J. Nucl. Med. 48(10), 1599–1606 (2007)PubMedCrossRefGoogle Scholar
  53. 53.
    B. Havekes, K. King, E.W. Lai, J.A. Romijn, E.P. Corssmit, K. Pacak, New imaging approaches to phaeochromocytomas and paragangliomas. Clin. Endocrinol. (Oxf.) 72(2), 137–145 (2010)CrossRefGoogle Scholar
  54. 54.
    H.J. Timmers, C.C. Chen, J.A. Carrasquillo, M. Whatley, A. Ling, B. Havekes et al., Comparison of 18F-fluoro-l-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J. Clin. Endocrinol. Metab. 94(12), 4757–4767 (2009)PubMedCrossRefGoogle Scholar
  55. 55.
    D.J. Kwekkeboom, H. Vanurk, B.K.H. Pauw, S.W.J. Lamberts, P.P.M. Kooij, R.P.L.M. Hoogma et al., Octreotide scintigraphy for the detection of paragangliomas. J. Nucl. Med. 34(6), 873–878 (1993)PubMedGoogle Scholar
  56. 56.
    T. van Gelder, G.T. Verhoeven, P. de Jong, H.Y. Oei, E.P. Krenning, V.D. Vuzevski et al., Dopamine-producing paraganglioma not visualized by iodine-123-MIBG scintigraphy. J. Nucl. Med. 36(4), 620–622 (1995)PubMedGoogle Scholar
  57. 57.
    G. Kaltsas, M. Korbonits, E. Heintz, J.J. Mukherjee, P.J. Jenkins, S.L. Chew et al., Comparison of somatostatin analog and meta-iodobenzylguanidine radionuclides in the diagnosis and localization of advanced neuroendocrine tumors. J. Clin. Endocrinol. Metab. 86(2), 895–902 (2001)PubMedCrossRefGoogle Scholar
  58. 58.
    A. Takano, N. Oriuchi, Y. Tsushima, A. Taketomi-Takahashi, T. Nakajima, Y. Arisaka et al., Detection of metastatic lesions from malignant pheochromocytoma and paraganglioma with diffusion-weighted magnetic resonance imaging: comparison with F-18-FDG positron emission tomography and I-123-MIBG scintigraphy. Ann. Nucl. Med. 22(5), 395–401 (2008)PubMedCrossRefGoogle Scholar
  59. 59.
    D. Wu, A.S. Tischler, R.V. Lloyd, R.A. DeLellis, R. de Krijger, F. van Nederveen et al., Observer variation in the application of the Pheochromocytoma of the Adrenal Gland Scaled Score. Am. J. Surg. Pathol. 33(4), 599–608 (2009)PubMedCrossRefGoogle Scholar
  60. 60.
    Y. Anouar, L. Yon, J. Guillemot, E. Thouennon, L. Barbier, A.P. Gimenez-Roqueplo et al., Development of novel tools for the diagnosis and prognosis of pheochromocytoma using peptide marker immunoassay and gene expression profiling approaches. Ann. N. Y. Acad. Sci. 1073, 533–540 (2006)PubMedCrossRefGoogle Scholar
  61. 61.
    F.M. Brouwers, A.G. Elkahloun, P.J. Munson, G. Eisenhofer, J. Barb, W.M. Linehan et al., Gene expression profiling of benign and malignant pheochromocytoma. Ann. N. Y. Acad. Sci. 1073, 541–556 (2006)PubMedCrossRefGoogle Scholar
  62. 62.
    E. Thouennon, A.G. Elkahloun, J. Guillemot, A.P. Gimenez-Roqueplo, J. Bertherat, A. Pierre et al., Identification of potential gene markers and insights into the pathophysiology of pheochromocytoma malignancy. J. Clin. Endocrinol. Metab. 92(12), 4865–4872 (2007)PubMedCrossRefGoogle Scholar
  63. 63.
    J. Waldmann, V. Fendrich, J. Holler, M. Buchholz, E. Heinmoller, P. Langer et al., Microarray analysis reveals differential expression of benign and malignant pheochromocytoma. Endocr. Relat. Cancer 17(3), 743–756 (2010)PubMedCrossRefGoogle Scholar
  64. 64.
    E. Nakamura, W.G. Kaelin Jr, Recent insights into the molecular pathogenesis of pheochromocytoma and paraganglioma. Endocr. Pathol. 17(2), 97–106 (2006)PubMedCrossRefGoogle Scholar
  65. 65.
    J.F. Powers, M.J. Evinger, J. Zhi, K.L. Picard, A.S. Tischler, Pheochromocytomas in Nf1 knockout mice express a neural progenitor gene expression profile. Neuroscience 147(4), 928–937 (2007)PubMedCrossRefGoogle Scholar
  66. 66.
    V. Hayry, K. Salmenkivi, J. Arola, P. Heikkila, C. Haglund, H. Sariola, High frequency of SNAIL-expressing cells confirms and predicts metastatic potential of phaeochromocytoma. Endocr. Relat. Cancer 16(4), 1211–1218 (2009)PubMedCrossRefGoogle Scholar
  67. 67.
    J. Waldmann, E.P. Slater, P. Langer, M. Buchholz, A. Ramaswamy, M.K. Walz et al., Expression of the transcription factor snail and its target gene twist are associated with malignancy in pheochromocytomas. Ann. Surg. Oncol. 16(7), 1997–2005 (2009)PubMedCrossRefGoogle Scholar
  68. 68.
    G. Moreno-Bueno, F. Portillo, A. Cano, Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 27(55), 6958–6969 (2008)PubMedCrossRefGoogle Scholar
  69. 69.
    V. Fendrich, J. Waldmann, F. Esni, A. Ramaswamy, M. Mullendore, M. Buchholz et al., Snail and Sonic Hedgehog activation in neuroendocrine tumors of the ileum. Endocr. Relat. Cancer 14(3), 865–874 (2007)PubMedCrossRefGoogle Scholar
  70. 70.
    V. Fendrich, J. Waldmann, G. Feldmann, K. Schlosser, A. Konig, A. Ramaswamy et al., Unique expression pattern of the EMT markers Snail, Twist and E-cadherin in benign and malignant parathyroid neoplasia. Eur. J. Endocrinol. 160(4), 695–703 (2009)PubMedCrossRefGoogle Scholar
  71. 71.
    J. Waldmann, G. Feldmann, E.P. Slater, P. Langer, M. Buchholz, A. Ramaswamy et al., Expression of the zinc-finger transcription factor Snail in adrenocortical carcinoma is associated with decreased survival. Br. J. Cancer 99(11), 1900–1907 (2008)PubMedCrossRefGoogle Scholar
  72. 72.
    J. Yang, S.A. Mani, R.A. Weinberg, Exploring a new twist on tumor metastasis. Cancer Res. 66(9), 4549–4552 (2006)PubMedCrossRefGoogle Scholar
  73. 73.
    P.L. Dahia, K.N. Ross, M.E. Wright, C.Y. Hayashida, S. Santagata, M. Barontini et al., A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet. 1(1), 72–80 (2005)PubMedCrossRefGoogle Scholar
  74. 74.
    A.P. Gimenez-Roqueplo, J. Favier, P. Rustin, J.J. Mourad, P.F. Plouin, P. Corvol et al., The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activity of complex II in the mitochondrial respiratory chain and activates the hypoxia pathway. Am. J. Hum. Genet. 69(6), 1186–1197 (2001)PubMedCrossRefGoogle Scholar
  75. 75.
    W.G. Kaelin, Von Hippel–Lindau disease. Annu. Rev. Pathol. 2, 145–173 (2007)PubMedCrossRefGoogle Scholar
  76. 76.
    T. Uchida, F. Rossignol, M.A. Matthay, R. Mounier, S. Couette, E. Clottes et al., Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression in lung epithelial cells: implication of natural antisense HIF-1alpha. J. Biol. Chem. 279(15), 14871–14878 (2004)PubMedCrossRefGoogle Scholar
  77. 77.
    A. Cayre, F. Rossignol, E. Clottes, F. Penault-Llorca, aHIF but not HIF-1alpha transcript is a poor prognostic marker in human breast cancer. Breast Cancer Res. 5(6), R223–R230 (2003)PubMedCrossRefGoogle Scholar
  78. 78.
    P.N. Span, J.U. Rao, S.B. Oude Ophuis, J.W. Lenders, F.C. Sweep, P. Wesseling et al., Overexpression of the natural antisense hypoxia-inducible factor-1alpha transcript is associated with malignant pheochromocytoma/paraganglioma. Endocr. Relat. Cancer 18(3), 323–331 (2011)PubMedCrossRefGoogle Scholar
  79. 79.
    T. Nishikimi, Adrenomedullin in the kidney-renal physiological and pathophysiological roles. Curr. Med. Chem. 14(15), 1689–1699 (2007)PubMedCrossRefGoogle Scholar
  80. 80.
    T. Ishikawa, J. Chen, J. Wang, F. Okada, T. Sugiyama, T. Kobayashi et al., Adrenomedullin antagonist suppresses in vivo growth of human pancreatic cancer cells in SCID mice by suppressing angiogenesis. Oncogene 22(8), 1238–1242 (2003)PubMedCrossRefGoogle Scholar
  81. 81.
    B. Uzan, A. Villemin, J.M. Garel, M. Cressent, Adrenomedullin is anti-apoptotic in osteoblasts through CGRP1 receptors and MEK-ERK pathway. J. Cell Physiol. 215(1), 122–128 (2008)PubMedCrossRefGoogle Scholar
  82. 82.
    E. Thouennon, A. Pierre, Y. Tanguy, J. Guillemot, D.L. Manecka, M. Guerin et al., Expression of trophic amidated peptides and their receptors in benign and malignant pheochromocytomas: high expression of adrenomedullin RDC1 receptor and implication in tumoral cell survival. Endocr. Relat. Cancer 17(3), 637–651 (2010)PubMedCrossRefGoogle Scholar
  83. 83.
    G.Y. Meyer-Rochow, N.E. Jackson, J.V. Conaglen, D.E. Whittle, M. Kunnimalaiyaan, H. Chen et al., MicroRNA profiling of benign and malignant pheochromocytomas identifies novel diagnostic and therapeutic targets. Endocr. Relat. Cancer 17(3), 835–846 (2010)PubMedCrossRefGoogle Scholar
  84. 84.
    P.S. Soon, L.J. Tacon, A.J. Gill, C.P. Bambach, M.S. Sywak, P.R. Campbell et al., miR-195 and miR-483-5p Identified as predictors of poor prognosis in adrenocortical cancer. Clin. Cancer Res. 15(24), 7684–7692 (2009)PubMedCrossRefGoogle Scholar
  85. 85.
    E.E. Elder, D. Xu, A. Hoog, U. Enberg, M. Hou, P. Pisa et al., KI-67 and hTERT Expression can aid in the distinction between malignant and benign pheochromocytoma and paraganglioma. Mod. Pathol. 16(3), 246–255 (2003)PubMedCrossRefGoogle Scholar
  86. 86.
    J. Favier, P.F. Plouin, P. Corvol, J.M. Gasc, Angiogenesis and vascular architecture in pheochromocytomas: distinctive traits in malignant tumors. Am. J. Pathol. 161(4), 1235–1246 (2002)PubMedCrossRefGoogle Scholar
  87. 87.
    R.M. Quiros, A.W. Kim, J. Maxhimer, P. Gattuso, X. Xu, R.A. Prinz, Differential heparanase-1 expression in malignant and benign pheochromocytomas. J. Surg. Res. 108(1), 44–50 (2002)PubMedCrossRefGoogle Scholar
  88. 88.
    A. Khorram-Manesh, H. Ahlman, S. Jansson, O. Nilsson, N-Cadherin expression in adrenal tumors: upregulation in malignant pheochromocytoma and downregulation in adrenocortical carcinoma. Endocr. Pathol. 13(2), 99–110 (2002)PubMedCrossRefGoogle Scholar
  89. 89.
    W. Yuan, W. Wang, B. Cui, T. Su, Y. Ge, L. Jiang et al., Overexpression of ERBB-2 was more frequently detected in malignant than benign pheochromocytomas by multiplex ligation-dependent probe amplification and immunohistochemistry. Endocr. Relat. Cancer 15(1), 343–350 (2008)PubMedCrossRefGoogle Scholar
  90. 90.
    S. Ohta, E.W. Lai, A.L. Pang, F.M. Brouwers, W.Y. Chan, G. Eisenhofer et al., Downregulation of metastasis suppressor genes in malignant pheochromocytoma. Int. J. Cancer 114(1), 139–143 (2005)PubMedCrossRefGoogle Scholar
  91. 91.
    P. Bjorklund, K. Cupisti, M. Fryknas, A. Isaksson, H.S. Willenberg, G. Akerstrom et al., Stathmin as a marker for malignancy in pheochromocytomas. Exp. Clin. Endocrinol. Diabetes 118(1), 27–30 (2010)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK

Personalised recommendations