Endocrine

, 40:181 | Cite as

Role of biological targeted therapies in gastroenteropancreatic neuroendocrine tumours

Mini Review

Abstract

Approximately two-thirds of neuroendocrine tumours (NET) occur in the gastrointestinal tract and over 60% present with metastases. With greater insight into molecular pathways involved in tumour progression, opportunities are presented for the use of targeted therapies in NET. Although a wide array of targeted agents has been investigated, only a handful has emerged as forerunners from recent clinical trials. This literature review focuses on the use of anti-angiogenic monoclonal antibody bevacizumab, as well as small molecule inhibitors sunitinib and everolimus.

Keywords

Bevacizumab Carcinoid Everolimus Neuroendocrine Pancreatic Sunitinib 

Notes

Acknowledgement

NHS funding to the NIHR Biomedical Research Centre is acknowledged.

Conflict of interest

The author has no conflict of interest to declare.

References

  1. 1.
    S. La Rosa, S. Uccella, G. Finzi, L. Albarello, F. Sessa, C. Capella, Localization of vascular endothelial growth factor and its receptors in digestive endocrine tumors: correlation with microvessel density and clinicopathologic features. Hum. Pathol. 34, 2–18 (2003)CrossRefGoogle Scholar
  2. 2.
    B. Terris, J.Y. Scoazec, L. Rubbia, L. Bregeaud, M.S. Pepper, P. Ruszniewski, J. Belghiti, J. Flejou, C. Degott, Expression of vascular endothelial growth factor in digestive neuroendocrine tumours. Histopathology 32, 133–138 (1998)PubMedCrossRefGoogle Scholar
  3. 3.
    J. Zhang, Z. Jia, Q. Li, L. Wang, A. Rashid, Z. Zhu, D.B. Evans, J.N. Vauthey, K. Xie, J.C. Yao, Elevated expression of vascular endothelial growth factor correlates with increased angiogenesis and decreased progression-free survival among patients with low-grade neuroendocrine tumors. Cancer 109, 1478–1486 (2007)PubMedCrossRefGoogle Scholar
  4. 4.
    S.R. Silva, K.A. Bowen, P.G. Rychahou, L.N. Jackson, H.L. Weiss, E.Y. Lee, C.M. Townsend Jr, B.M. Evers, VEGFR-2 expression in carcinoid cancer cells and its role in tumor growth and metastasis. Int. J. Cancer 128, 1045–1056 (2011)Google Scholar
  5. 5.
    T. Shah, D. Hochhauser, R. Frow, A. Quaglia, A.P. Dhillon, Caplin, M.E.: Epidermal growth factor receptor expression and activation in neuroendocrine tumours. J. Neuroendocrinol. 18, 355–360 (2006)PubMedCrossRefGoogle Scholar
  6. 6.
    J.C. Yao, A. Phan, P.M. Hoff, H.X. Chen, C. Charnsangavej, S.C. Yeung, K. Hess, C. Ng, J.L. Abbruzzese, J.A. Ajani, Targeting vascular endothelial growth factor in advanced carcinoid tumor: a random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon alpha-2b. J. Clin. Oncol. 26, 1316–1323 (2008)PubMedCrossRefGoogle Scholar
  7. 7.
    M.H. Kulke, H.J. Lenz, N.J. Meropol, J. Posey, D.P. Ryan, J. Picus, E. Bergsland, K. Stuart, L. Tye, X. Huang, Activity of sunitinib in patients with advanced neuroendocrine tumors. J. Clin. Oncol. 26, 3403–3410 (2008)PubMedCrossRefGoogle Scholar
  8. 8.
    E. Raymond, L. Dahan, J.L. Raoul, Y.J. Bang, I. Borbath, C. Lombard-Bohas, J. Valle, P. Metrakos, D. Smith, A. Vinik, Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. NEJM 364, 501–513 (2011)PubMedCrossRefGoogle Scholar
  9. 9.
    T.J. Hobday, J. Rubin, K. Holen, J. Picus, R. Donehower, R. Marschke, W. Maples, R. Lloyd, M. Mahoney, C. Erlichman, MC044h, a phase II trial of sorafenib in patients (pts) with metastatic neuroendocrine tumors (NET): A phase II Consortium (P2C) study. J. Clin. Oncol. 25, abstract 4504 (2007)Google Scholar
  10. 10.
    I. Duran, J. Kortmansky, D. Singh, H. Hirte, W. Kocha, G. Goss, L. Le, A. Oza, T. Nicklee, J. Ho, A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. Br. J. Cancer 95, 1148–1154 (2006)PubMedCrossRefGoogle Scholar
  11. 11.
    J.C. Yao, A.T. Phan, D.Z. Chang, R.A. Wolff, K. Hess, S. Gupta, C. Jacobs, J.E. Mares, A.N. Landgraf, A. Rashid, Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: Results of a phase II study. J. Clin. Oncol. 26, 4311–4318 (2008)PubMedCrossRefGoogle Scholar
  12. 12.
    J.C. Yao, C. Lombard-Bohas, E. Baudin, L.K. Kvols, P. Rougier, P. Ruszniewski, S. Hoosen, J. St.Peter, T. Haas, D. Lebwohl, Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: A phase II trial. J. Clin. Oncol. 28, 69–76 (2010)PubMedCrossRefGoogle Scholar
  13. 13.
    J.C. Yao, M.H. Shah, T. Ito, C.L. Bohas, E.M. Wolin, E. Van Cutsem, T.J. Hobday, T. Okusaka, J. Capdevila, E.G. de Vries, Everolimus for advanced pancreatic neuroendocrine tumors. NEJM 354, 514–523 (2011)CrossRefGoogle Scholar
  14. 14.
    M.H. Shah, T. Ito, C. Lombard-Bohas, E.M. Wolin, E. Van Cutsem, C. Sachs, R.E. Winkler, J. Lincy, T.J. Hobday, J.C. Yao, Everolimus in patients with advanced pancreatic neuroendocrine tumors (pNET): Updated results of a randomized, double-blind, placebo-controlled, multicenter phase III trial (RADIANT-3). J. Clin. Oncol. 29, 158 (2011)CrossRefGoogle Scholar
  15. 15.
    J.C. Yao, J.D. Hainsworth, E. Baudin, M. Peeters, D. Hoersch, L.B. Anthony, J. Klimovsky, K. Grouss, V. Jehl, M. Pavel, Everolimus plus octreotide LAR (E + O) versus placebo plus octreotide LAR (P + O) in patients with advanced neuroendocrine tumors (NET): Updated results of a randomized, double-blind, placebo-controlled, multicenter phase III trial (RADIANT-2). J Clin Oncol 29, 159 (2011)CrossRefGoogle Scholar
  16. 16.
    J.C. Yao, A.T. Phan, D. Fogleman, C.S. Ng, C.B. Jacobs, C.D. Dagohoy, C. Leary, K.R. Hess, Randomized run-in study of bevacizumab (B) and everolimus (E) in low- to intermediate-grade neuroendocrine tumors (LGNETs) using perfusion CT as functional biomarker. J. Clin. Oncol. 28, abstract 4002 (2010)Google Scholar
  17. 17.
    G. Vitale, W.W. de Herder, P.M. van Koetsveld, M. Waaijers, W. Schoordjk, E. Croze, A. Colao, S.W.J. Lamberts, L.J. Hofland, IFN-β is a highly potent inhibitor of gastroenteropancreatic neuroendocrine tumor cell growth in vitro. Cancer Res. 66(1), 554–562 (2006)PubMedCrossRefGoogle Scholar
  18. 18.
    G. Vitale, P.M. van Koetsveld, W.W. de Herder, K. van der Wansem, J.A. Janssen, A. Colao, G. Lombardi, S.W. Lamberts, L.J. Hofland, Effects of type I interferons on IGF-mediated autocrine/paracrine growth of human neuroendocrine tumor cells. Am. J. Physiol. Endocrinol. Metab. 296(3), E559–E566 (2009)PubMedCrossRefGoogle Scholar
  19. 19.
    A.W. Tolcher, M.L. Rothenberg, J. Rodon, D. Delbeke, A. Patnaik, L. Nguyen, F. Young, Y. Hwang, C. Haqq, I. Puzanov, Phase I, pharmacokinetic, and pharmacodynamic study of AMG 479, a fully human monoclonal antibody to insulin-like growth factor receptor 1. J. Clin. Oncol. 27, 5800–5807 (2009)PubMedCrossRefGoogle Scholar
  20. 20.
    D.L. Reidy, E. Hollywood, M. Segal, L. Saltz, A phase II clinical trial of MK-0646, an insulin-like growth factor-1 receptor inhibitor (IGF-1R), in patients with metastatic well-differentiated neuroendocrine tumors (NETs). ASCO Meeting Abstracts, vol. 28 (2010), p. 4163Google Scholar
  21. 21.
    L. Kvols, B. Wiedenmann, K. Oberg, J. Glusman, T. O’Dorisio, W. de Herder, B. Gao, R. Arnold, L. Anthony, SOM230 Carcinoid Study Group, Safety and efficacy of pasireotide (SOM230) in patients with metastatic carcinoid tumors refractory or resistant to octreotide LAR: Results of a phase II study. ASCO Gastrointestinal Cancers Symposium, Abstract 171, 2006Google Scholar
  22. 22.
    K.E. Oberg, J.C. Reubi, D.J. Kwekkeboom, E.P. Krenning, Role of somatostatins in gastroenteropancreatic neuroendocrine tumor development and therapy. Gastroenterology 139(3), 742–753, 753.e1 (2010)Google Scholar
  23. 23.
    M. Caraglia, M. Marra, P. Tagliaferri, S.W. Lamberts, S. Zappavigna, G. Misso, F. Cavagnini, G. Facchini, A. Abbruzzese, L.J. Hofland, G. Vitale, Emerging strategies to strengthen the anti-tumour activity of type I interferons: overcoming survival pathways. Curr. Cancer Drug Targets 9(5), 690–704 (2009)PubMedCrossRefGoogle Scholar
  24. 24.
    E. Allen, I.B. Walters, D. Hanahan, Brivanib, a dual FGF/VEGF inhibitor, is active both first and second line against mouse pancreatic neuroendocrine tumors developing adaptive/evasive resistance to VEGF inhibition. Clin. Cancer Res. 17(16), 5299–5310 (2011)Google Scholar
  25. 25.
    E.A. Eisenhauer, P. Therasse, J. Bogaerts, L.H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, J. Verweij, New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009)PubMedCrossRefGoogle Scholar
  26. 26.
    P. Therasse, S.G. Arbuck, E.A. Eisenhauer, New guidelines to evaluate the response to treatment in solid tumors (RECIST Guidelines). J. Natl. Cancer Inst. 92, 205–216 (2000)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Gastrointestinal Cancer and Lymphoma Research UnitThe Royal Marsden NHS Foundation TrustLondon, SurreyUK

Personalised recommendations