Endocrine

, Volume 40, Issue 3, pp 372–378 | Cite as

Association between the T869C polymorphism of transforming growth factor-beta 1 and diabetic nephropathy: a meta-analysis

Original Article

Abstract

Accumulating evidence has suggested that transforming growth factor-beta 1 (TGF-β1) is a functional candidate for diabetic nephropathy (DN). However, association studies investigating the relationship of TGF-β1 gene T869C polymorphism and DN generate inconsistent results. To comprehensively clarify this issue, we performed a meta-analysis to evaluate the impact of the polymorphism on DN. We searched studies from PubMed and China National Knowledge Infrastructure (CNKI) through March 2011. Pooled ORs were calculated under allelic/additive/dominant/recessive/over-dominant genetic models. Nine studies with 1776 cases and 1740 controls were included. Our results indicated that C allele of T869C conferred a significantly increased risk of DN compared with T allele (OR = 1.25, 95% CI: 1.05–1.48) for allelic contrast. Similar results were also found under additive (OR = 1.57, 95% CI: 1.10–2.23) and dominant (OR = 1.40, 95% CI: 1.06–1.85) genetic models. However, subgroup analyses stratified by types of diabetes showed that significantly increased risks were only observed in type 2 diabetic patients, and the association persistently existed in further analysis for Asian populations. As for type 1 diabetic subjects, no significant association was detected under all the genetic models (P > 0.05). Our meta-analysis suggested that the TGF-β1 T869C polymorphism conferred an elevated risk of DN. However, significant associations were only observed in type 2 diabetic patients.

Keywords

Diabetic nephropathy Meta-analysis TGF-β1 Polymorphism 

References

  1. 1.
    A. Jawa, J. Kcomt, V.A. Fonseca, Diabetic nephropathy and retinopathy. Med. Clin. North. Am. 88, 1001–1036 (2004)PubMedCrossRefGoogle Scholar
  2. 2.
    G. Remuzzi, A. Schieppati, P. Ruggenenti, Clinical practice. Nephropathy in patients with type 2 diabetes. N. Engl. J. Med. 346, 1145–1151 (2002)PubMedCrossRefGoogle Scholar
  3. 3.
    S. Yamagishi, K. Fukami, S. Ueda, S. Okuda, Molecular mechanisms of diabetic nephropathy and its therapeutic intervention. Curr. Drug Targets 8, 952–959 (2007)PubMedCrossRefGoogle Scholar
  4. 4.
    F.N. Ziyadeh, Different roles for TGF-beta and VEGF in the pathogenesis of the cardinal features of diabetic nephropathy. Diabetes Res. Clin. Pract. 82, S38–S41 (2008)PubMedCrossRefGoogle Scholar
  5. 5.
    T. Yamamoto, T. Nakamura, N.A. Noble, E. Ruoslahti, W.A. Border, Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc. Natl. Acad. Sci. USA 90, 1814–1818 (1993)CrossRefGoogle Scholar
  6. 6.
    J.B. Kopp, V.M. Factor, M. Mozes, P. Nagy, N. Sanderson, E.P. Bottinger, P.E. Klotman, S.S. Thorgeirsson, Transgenic mice with increased plasma levels of TGF-beta 1 develop progressive renal disease. Lab. Investig. 74, 991–1003 (1996)PubMedGoogle Scholar
  7. 7.
    F.N. Ziyadeh, B.B. Hoffman, D.C. Han, M.C. Iglesias-De La Cruz, S.W. Hong, M. Isono, S. Chen, T.A. McGowan, K. Sharma, Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc. Natl. Acad. Sci. USA 97, 8015–8020 (2000)PubMedCrossRefGoogle Scholar
  8. 8.
    K. Sharma, Y. Jin, J. Guo, F.N. Ziyadeh, Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes 45, 522–530 (1996)PubMedCrossRefGoogle Scholar
  9. 9.
    D. Fujii, J.E. Brissenden, R. Derynck, U. Francke, Transforming growth factor beta gene maps to human chromosome 19 long arm and to mouse chromosome 7. Somat. Cell Mol. Genet. 12, 281–288 (1986)PubMedCrossRefGoogle Scholar
  10. 10.
    Y. Yamada, A. Miyauchi, J. Goto, Y. Takagi, H. Okuizumi, M. Kanematsu, M. Hase, H. Takai, A. Harada, K. Ikeda, Association of a polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to osteoporosis in postmenopausal Japanese women. J. Bone Miner. Res. 13, 1569–1576 (1998)PubMedCrossRefGoogle Scholar
  11. 11.
    M.M. Jahromi, B.A. Millward, A.G. Demaine, Significant correlation between association of polymorphism in codon 10 of transforming growth factor-beta1 T (29) C with type 1 diabetes and patients with nephropathy disorder. J. Interf. Cytokine Res. 30, 59–66 (2010)CrossRefGoogle Scholar
  12. 12.
    E. Zintzaras, J.P. Ioannidis, Heterogeneity testing in meta-analysis of genome searches. Genet. Epidemiol. 28, 123–137 (2005)PubMedCrossRefGoogle Scholar
  13. 13.
    J.P. Higgins, S.G. Thompson, Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002)PubMedCrossRefGoogle Scholar
  14. 14.
    J.L. Fleiss, The statistical basis of meta-analysis. Stat. Methods Med. Res. 2, 121–145 (1993)PubMedCrossRefGoogle Scholar
  15. 15.
    F. Pociot, P.M. Hansen, A.E. Karlsen, B.L. Langdahl, J. Johannesen, J. Nerup, TGF-beta1 gene mutations in insulin-dependent diabetes mellitus and diabetic nephropathy. J. Am. Soc. Nephrol. 9, 2302–2307 (1998)PubMedGoogle Scholar
  16. 16.
    S. Nair, A.O. Phillips, N. Norton, G. Spurlock, H.J. Williams, K.J. Craig, J.D. Williams, N.M. Williams, T. Bowen, Further evidence for the association of MMP9 with nephropathy in type 2 diabetes and application of DNA pooling technology to candidate gene screening. J. Nephrol. 21, 400–405 (2008)PubMedGoogle Scholar
  17. 17.
    P. Prasad, A.K. Tiwari, K.M. Kumar, A.C. Ammini, A. Gupta, R. Gupta, B.K. Thelma, Association of TGFbeta1, TNFalpha, CCR2 and CCR5 gene polymorphisms in type-2 diabetes and renal insufficiency among Asian Indians. BMC Med. Genet. 8, 20–25 (2007)PubMedCrossRefGoogle Scholar
  18. 18.
    Y. Akai, H. Sato, H. Ozaki, M. Iwano, Y. Dohi, M. Kanauchi, Association of transforming growth factor-beta1 T29C polymorphism with the progression of diabetic nephropathy. Am. J. Kidney Dis. 38, S182–S185 (2001)PubMedCrossRefGoogle Scholar
  19. 19.
    A. Patel, W.R. Scott, P.A. Lympany, J.D. Rippin, G.V. Gill, A.H. Barnett, S.C. Bain, The TGF-beta 1 gene codon 10 polymorphism contributes to the genetic predisposition to nephropathy in Type 1 diabetes. Diabet. Med. 22, 69–73 (2005)PubMedCrossRefGoogle Scholar
  20. 20.
    T.Y. Wong, P. Poon, K.M. Chow, C.C. Szeto, M.K. Cheung, P.K. Li, Association of transforming growth factor-beta (TGF-beta) T869C (Leu 10Pro) gene polymorphisms with type 2 diabetic nephropathy in Chinese. Kidney Int. 63, 1831–1835 (2003)PubMedCrossRefGoogle Scholar
  21. 21.
    T.S. Ahluwalia, M. Khullar, M. Ahuja, H.S. Kohli, A. Bhansali, V. Mohan, R., Venkatesan, T.S. Rai, K. Sud, P.K. Singal, Common variants of inflammatory cytokine genes are associated with risk of nephropathy in type 2 diabetes among Asian Indians. PLoS One 4, e5168 (2009).Google Scholar
  22. 22.
    A.J. McKnight, D.A. Savage, C.C. Patterson, D. Sadlier, A.P. Maxwell, Resequencing of genes for transforming growth factor beta1 (TGFB1) type 1 and 2 receptors (TGFBR1, TGFBR2), and association analysis of variants with diabetic nephropathy. BMC Med. Genet. 8, 5–15 (2007)PubMedCrossRefGoogle Scholar
  23. 23.
    M. Buraczynska, I. Baranowicz-Gaszczyk, E. Borowicz, A. Ksiazek, TGF-beta1 and TSC-22 gene polymorphisms and susceptibility to microvascular complications in type 2 diabetes. Nephron Physiol 106, 69–75 (2007)CrossRefGoogle Scholar
  24. 24.
    D.P. Ng, J.H. Warram, A.S. Krolewski, TGF-beta 1 as a genetic susceptibility locus for advanced diabetic nephropathy in type 1 diabetes mellitus: an investigation of multiple known DNA sequence variants. Am. J. Kidney Dis. 41, 22–28 (2003)PubMedCrossRefGoogle Scholar
  25. 25.
    A. Valladares-Salgado, J. Angeles-Martinez, M. Rosas, J. Garcia-Mena, D. Utrera-Barillas, R. Gomez-Diaz, J. Escobedo-de la Pena, E.J. Parra, M. Cruz, Association of polymorphisms within the transforming growth factor-beta1 gene with diabetic nephropathy and serum cholesterol and triglyceride concentrations. Nephrology (Carlton) 15, 644–648 (2010)CrossRefGoogle Scholar
  26. 26.
    Y.S. Wei, Y. Lan, Y.W. You, R.G. Tang, Y. Huang, L. Zhang, B. Luo, The serum level and the genotype of TGF-β1 in patients with type 2 diabetic nephropathy. Chin. J. Lab. Med. 28, 73–77 (2005)Google Scholar
  27. 27.
    M. Wei, Y.S. Lu, S.J. Li, H.C. She, Study of relationship between TGF-β Leu10Pro polymorphism and diabetic nephropathy in type 2 diabetes. Chin. J. Diabetes 16, 538–540 (2008)Google Scholar
  28. 28.
    K. Sharma, F.N. Ziyadeh, B. Alzahabi, T.A. McGowan, S. Kapoor, B.R. Kurnik, P.B. Kurnik, L.S. Weisberg, Increased renal production of transforming growth factor-beta1 in patients with type II diabetes. Diabetes 46, 854–859 (1997)PubMedCrossRefGoogle Scholar
  29. 29.
    K. Sharma, F.N. Ziyadeh, Renal hypertrophy is associated with upregulation of TGF-beta 1 gene expression in diabetic BB rat and NOD mouse. Am. J. Physiol. 267, F1094–F1101 (1994)PubMedGoogle Scholar
  30. 30.
    B.B. Hoffman, K. Sharma, Y. Zhu, F.N. Ziyadeh, Transcriptional activation of transforming growth factor-beta1 in mesangial cell culture by high glucose concentration. Kidney Int. 54, 1107–1116 (1998)PubMedCrossRefGoogle Scholar
  31. 31.
    M. Suthanthiran, B. Li, J.O. Song, R. Ding, V.K. Sharma, J.E. Schwartz, P. August, Transforming growth factor-beta 1 hyperexpression in African-American hypertensives: A novel mediator of hypertension and/or target organ damage. Proc. Natl. Acad. Sci. USA 97, 3479–3484 (2000)PubMedCrossRefGoogle Scholar
  32. 32.
    S. Helmig, A. Belwe, J. Schneider, Association of transforming growth factor beta1 gene polymorphisms and asbestos-induced fibrosis and tumors. J. Investig. Med. 57, 655–661 (2009)PubMedGoogle Scholar
  33. 33.
    J. Gewaltig, K. Mangasser-Stephan, C. Gartung, S. Biesterfeld, A.M. Gressner, Association of polymorphisms of the transforming growth factor-beta1 gene with the rate of progression of HCV-induced liver fibrosis. Clin. Chim. Acta. 316, 83–94 (2002)PubMedCrossRefGoogle Scholar
  34. 34.
    B.A. Perkins, L.H. Ficociello, K.H. Silva, D.M. Finkelstein, J.H. Warram, A.S. Krolewski, Regression of microalbuminuria in type 1 diabetes. N. Engl. J. Med. 348, 2285–2293 (2003)PubMedCrossRefGoogle Scholar
  35. 35.
    D.J. Newman, M.B. Mattock, A.B. Dawnay, S. Kerry, A. McGuire, M. Yaqoob, G.A. Hitman, C. Hawke, Systematic review on urine albumin testing for early detection of diabetic complications. Health Technol. Assess. 9, iii–vi, xiii–163 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Endocrinology and Metabolism, Xijing HospitalFourth Military Medical UniversityXi’anPeople’s Republic of China
  2. 2.Department of Information TechnologyJinan General HospitalJinanPeople’s Republic of China

Personalised recommendations