Endocrine

, Volume 40, Issue 3, pp 462–471 | Cite as

Biochemical and histological liver changes occurred after iron supplementation and possible remediation by garlic consumption

  • Héla Ghorbel
  • Ines Feki
  • Ines Friha
  • Abdel Majid Khabir
  • Tahya Boudawara
  • Mohamed Boudawara
  • Sami Sayadi
Original Article

Abstract

Iron liver excess is associated to biochemical and histological liver perturbations. Our aim was to know even if fresh garlic consumption can remediate these problems. Three groups of rats were utilized: control group A, iron overload group B and garlic and iron overload group C. Important morphological and biochemical modifications were obtained in group B rats comparatively to control group A. Indeed, body and liver weights and liver iron contents increased, respectively, by 12.5 ± 0.06%; 17 ± 0.25% and 35 ± 0.11% comparatively to controls. Radical cation scavenging ability in liver cytosol of group B rats was significantly low (54 ± 0,1%) in comparison to group A. Garlic consumption allowed the group C to achieve an increase by 46 ± 0,11 and 75 ± 0,14% of total antioxidant capacity comparatively to group A and B rats. For the serum ALAT, ASAT, triglyceride and LDH levels, they increased in iron-treated rats, respectively, by 25 ± 0.21; 15 ± 0.12; 30 ± 0.14 and 22 ± 0.16% comparatively to controls. These perturbations were accompanied by deep histological changes. After food fresh garlic supplementation, we had found a deep regulation of all modified parameters showing a hepatoprotective effect of garlic against iron liver excess. Garlic chemical compounds have curative effects on iron liver excess.

Keywords

Liver Iron Garlic Rat Histopathology ASAT ALAT Triglyceride Total antioxidant capacity 

References

  1. 1.
    N.C. Andrews, Disorders of iron metabolism. N. Engl. J. Med. 341, 1986–1995 (1999)PubMedCrossRefGoogle Scholar
  2. 2.
    I. Domenico, D.M. Ward, J. Kaplan, Hepcidin regulation: ironing out the details. J. Clin. Invest. 117, 1755–1758 (2007)PubMedCrossRefGoogle Scholar
  3. 3.
    G. Cairo, A. Pietrangelo, Iron regulatory proteins in pathobiology. Biochem. J. 352, 241–250 (2000)PubMedCrossRefGoogle Scholar
  4. 4.
    P. Brissot, M.B. Troadec, O. Loréal, Intestinal absorption of iron in HFE-1 hemochromatosis: local or systemic process? J. Hepatol. 40, 702–709 (2004)PubMedCrossRefGoogle Scholar
  5. 5.
    N.C. Andrews, P.J. Schmidt, Iron homeostasis. Annu. Rev. Physiol. 69, 69–85 (2007)PubMedCrossRefGoogle Scholar
  6. 6.
    N.C. Andrews, Intestinal iron absorption. Digest Liver Dis. 32, 56–61 (2000)CrossRefGoogle Scholar
  7. 7.
    X. Huang, Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutat. Res. 533, 153–171 (2003)PubMedCrossRefGoogle Scholar
  8. 8.
    A. Scalbert, C. Morand, C. Manach, C. Rémésy, Absorption and metabolism of polyphenols in the gut and impact on health. Biomed. Pharmacother. 56, 276–282 (2002)PubMedCrossRefGoogle Scholar
  9. 9.
    A. Dairam, R. Fogel, S. Dava, J.L. Limson, Antioxidant and iron-binding properties of curcumin, and s-allylcysteine reduce oxidative stress in rat brain homogenate. J. Agric. Food Chem. 56, 3350–3356 (2008)CrossRefGoogle Scholar
  10. 10.
    N. Morihara, I. Sumioka, N. Ide, T. Moriguchi, N. Uda, E. Kyo, Aged garlic extract maintains cardiovascular homeostasis in mice and rats. J. Nutr. 136, 777S–781S (2006)PubMedGoogle Scholar
  11. 11.
    L. Hoareau, E.J. DaSilva, Medicinal plants: a re-emerging health aid. Electron. J. Biotechnol. 2, 56–70 (1999)Google Scholar
  12. 12.
    J. Antosiewicz, A.H. Antosiewicz, S.W. Marynowski, S.V. Singh, C-jun NH2-terminal kinase signalling axis regulates diallyl trisulfide-induced generation of reactive oxygen species and cell cycle arrest in human prostate cancer cells. Cancer Res. 66, 5379–5386 (2006)PubMedCrossRefGoogle Scholar
  13. 13.
    G. Block, S. Ahmed, M.K. Jain, R.W. Crecely, R. Apitz-Castro, M.R. Cruz, A. Joene, A potent antithrombotic agent from garlic. J. Am. Chem. Soc. 106, 8295–8296 (1984)CrossRefGoogle Scholar
  14. 14.
    G.R. Fenwick, A.B. Hanley, The genus Allium. Crit. Rev. Food Sci. Nutr. 22, 273–377 (1985)PubMedCrossRefGoogle Scholar
  15. 15.
    M. Thomas, P. Zhang, M.L. Noordine, P. Vaugelade, C. Chaumontet, P.H. Duée, Diallyl disulfide increases rat h-ferritin, l-Ferritin and transferring receptor genes in vitro in hepatic cells and in vivo in liver. J. Nutr. 132, 3638–3641 (2002)PubMedGoogle Scholar
  16. 16.
    K.V. Kowdley, Iron, hemochromatosis, and hepatocellular carcinoma. Gastroenterology 127, 79–86 (2004)CrossRefGoogle Scholar
  17. 17.
    D.J. Messner, K.V. Kowdley, Neoplastic transformation of rat liver epithelial cells is enhanced by nontransferrin-bound iron. BMC Gastroenterol. 8, 2 (2002)CrossRefGoogle Scholar
  18. 18.
    M.S. Chi, E.T. Koh, T.J. Stewart, Effect of garlic on lipid metabolism in rats fed cholesterol or lard. J. Nutr. 112, 241–248 (1982)PubMedGoogle Scholar
  19. 19.
    A. Shoeton, K.T. Augusti, P.K. Joseph, Hypolipidemic effects of garlic oil in rats fed ethanol and a high lipid diet. Experientia 40, 261–263 (1984)CrossRefGoogle Scholar
  20. 20.
    G.A. Ramm, R.G. Ruddell, Hepatotoxicity of iron overload: mechanisms of iron-induced hepatic fibrogenesis. Semin. Liver Dis. 25, 433–449 (2005)PubMedCrossRefGoogle Scholar
  21. 21.
    M. Mendler, B. Turlin, R. Moirand, A. Jouanolle, T. Sapey, D. Guyader et al., Insulin resistance-associated hepatic iron overload. Gastroenterology 117, 1115–1163 (1999). 5CrossRefGoogle Scholar
  22. 22.
    A. Lonardo, Fatty liver and non-alcoholic steatohepatitis: where do we stand and where are we going? Dig. Dis. 17, 80–89 (1999)PubMedCrossRefGoogle Scholar
  23. 23.
    A.J. Sanyal, C. Campbell-Sargent, F. Mirshahi, W.B. Rizzo, M.J. Contos, R.K. Sterling et al., Nonalcoholic steatohepatitis: association of insulin resistance and mitochondria abnormalities. Gastroenterology 120, 1281–1285 (2001)CrossRefGoogle Scholar
  24. 24.
    H.L. Bonkovski, Q. Jawaid, K. Tortorelli, P. Le Clair, J. Cobb, R.W. Lambrecht et al., Non-alcoholic steathepatitis and iron: increased prevalence of the HFE gene in non-alcoholic steatohepatitis. J. Hepatol. 31, 421–429 (1999)CrossRefGoogle Scholar
  25. 25.
    F.S. Fecchini, N.W. Hua, R.A. Stoohs, Effect of iron depletion in carbohydrate-intolerant patients with clinical evidence of non-alcoholic fatty liver disease. Gastroenterology 122, 931–939 (2002)CrossRefGoogle Scholar
  26. 26.
    L. Valenti, A.L. Fracanzani, P. Dongiovanni, G. Buggianesi, G. Marchesini, E. Manzini et al., Iron depletion by phlebotomy improves insulin resistance in patients with nonalcoholic fatty liver disease and hyperferritinemia: evidence from a case-control study. Am. J. Gastroenterol. 102, 1251–1258 (2007)PubMedCrossRefGoogle Scholar
  27. 27.
    C. Gardi, B. Arezzini, V. Fortino, M. Comporti, Effect of free iron on collagen synthesis, cell proliferation and MMP-2 expression in rat hepatic stellate cells. Biochem. Pharmacol. 64, 1139–1145 (2002)PubMedCrossRefGoogle Scholar
  28. 28.
    M. Iqbal, M. Athar, Attenuation of iron-nitrilotriacetate (Fe-NTA)-mediated renal oxidative stress, toxicity and hyperproliferative response by the prophylactic treatment of rats with garlic oil. Food Chem. Toxicol. 36, 485–495 (1998)PubMedCrossRefGoogle Scholar
  29. 29.
    T. Baluchnejadmojarad, M. Roghani, H. Homayounfar, M. Hosseini, Beneficial effect of aqueous garlic on the vascular reactivity of streptozotocin-diabetic rats. J. Ethnopharmacol. 85, 139–144 (2003)PubMedCrossRefGoogle Scholar
  30. 30.
    C.T. Liu, H. Hse, C.K. Lii, P.S. Chen, L.Y. Sheen, Effects of garlic and diallyl trisulfide on glycemic control in diabetic rats. Eur. J. Pharmacol. 516, 165–173 (2005)PubMedCrossRefGoogle Scholar
  31. 31.
    T. Ganz, E. Nemeth, Regulation of iron acquisition and iron distribution in mammals. Biochem. Biophys. Acta 1763, 690–699 (2006)PubMedCrossRefGoogle Scholar
  32. 32.
    D. Barisani, S. Pelucchi, R. Mariani, S. Galimberti, P. Trombini, D. Fumagalli et al., Hepcidin and iron-related gene expression in subjects with dysmetabolic hepatic iron overload. J. Hepatol. 49, 123–133 (2008)PubMedCrossRefGoogle Scholar
  33. 33.
    C. Halleux, Y.J. Schneider, Iron absorption by intestinal epithelial cells: Caco-2 cell cultivated in serum membrane, as an in vitro model. In vitro cell. Dev. Biol. 27, 293–302 (1991)CrossRefGoogle Scholar
  34. 34.
    S. Tuntipopipat, C. Zeder, P. Siriprapa, S. Charoenkiatkul, Inhibitory effects of spices and herbs on iron availability. Int. J. Food Sci. Nutr. 24, 1–13 (2008)Google Scholar
  35. 35.
    A. Sackmann, D. Formanowicz, P. Formanowicz, J. Blazewicz, New insight into the human body iron metabolism analysed by Petri net based approach. Biosystems 96, 104–113 (2008)PubMedCrossRefGoogle Scholar
  36. 36.
    P. Stal, Iron as a hepatotoxin. Dig. Dis. 13, 205–222 (1995)PubMedCrossRefGoogle Scholar
  37. 37.
    M. Valko, H. Morris, M.T. Cronin, Metal, toxicity and oxidative stress. Curr. Med. Chem. 12, 1161–1208 (2005)PubMedCrossRefGoogle Scholar
  38. 38.
    J.W. Eaton, M. Qian, Molecular bases of cellular iron toxicity. Free Radic. Biol. Med. 32, 833–840 (2002)PubMedCrossRefGoogle Scholar
  39. 39.
    S.P. Hussain, K. Raja, P.A. Amstad, M. Sawyer, L.J. Trudel, G.N. Wogan et al., Increased p53 mutation lod in nontumorous human liver of Wilson disease and hemochromatosis: oxyradical overload diseases. Proc. Natl. Acad. Sci. USA 97, 12770–12777 (2000)CrossRefGoogle Scholar
  40. 40.
    G. Atmaca, Antioxidant effects of sulphur containing amino acids. Yonsei Med. J. 45, 776–788 (2004)PubMedGoogle Scholar
  41. 41.
    S.M. Kim, K. Kubota, A. Kobayashi, Antioxidative activity of sulphur-containing flavour compounds in garlic. Biosci. Biotechnol. Biochem. 61, 1482–1485 (1997)CrossRefGoogle Scholar
  42. 42.
    R. Qi, Z. Wang, Pharmacological effects of garlic extract. Trends Pharmacol. Sci. 24, 62–63 (2003)PubMedCrossRefGoogle Scholar
  43. 43.
    G.A. Asare, M.C. Kew, K.S. Mossanda, A.C. Paterson, K. Siziba, C.P. Kahler-Venter, Effects of exogenous antioxidants on dietary iron overload. J. Clin. Biochem. Nutr. 44, 85–94 (2009)PubMedCrossRefGoogle Scholar
  44. 44.
    S. Madra, J. Styles, A.G. Smith, Perturbation of hepatocyte nuclear population induced by iron and polychlorinated biphenyls in G57BL/10ScSn mice during carcinogenesis. Carcinogenesis 16, 719–727 (1995)PubMedCrossRefGoogle Scholar
  45. 45.
    C. Niederau, R. Fischer, A. Sonnenberg, W. Stremmel, H.J. Trampisch, G. Strohmeyer, Survival and causes of death in cirrhotic and in noncirrhotic patients with primary hemochromatosis. N. Engl. J. Med. 313, 1256–1262 (1985)PubMedCrossRefGoogle Scholar
  46. 46.
    M. Silva, M.E. Silva, H. Paula, C.M. Carneiroc, M.L. Pedrosa, Iron overload alters glucose homeostasis, causes liver steatosis, and increases serum triacylglycerols in rats. Nutr. Res. 28, 391–398 (2008)PubMedCrossRefGoogle Scholar
  47. 47.
    J.J. Hutton, A.L. Trappel, S. Udenfriend, Cofactor and substrate requirements of collagen praline hydroxylase. Arch. Biochem. Biophys. 118, 231–240 (1967)CrossRefGoogle Scholar
  48. 48.
    L.R. Weintraub, A. Goral, J. Grasso, C. Franzblau, A. Sullivan, S. Sullivan, Pathogenesis of hepatic fibrosis in experimental iron overload. Br. J. Haematol. 59, 321–331 (1985)PubMedCrossRefGoogle Scholar
  49. 49.
    S.H. Ki, J.H. Choi, C.W. Kim, S.G. Kim, Combined metadoxine and garlic oil treatment efficaciously abrogates alcoholic steatosis and CYP2E1 induction in rat liver with restoration of AMPK activity. Chem. Biol. Interact. 169, 80–90 (2007)PubMedCrossRefGoogle Scholar
  50. 50.
    P. Sorrentino, S. D’Angelo, U. Ferbo, P. Micheli, A. Bracigliano, R. Vecchione, Liver iron excess in patients with hepatocellular carcinoma developed on non-alcoholic steato-heatitis. J. Hepatol. 50, 351–357 (2009)PubMedCrossRefGoogle Scholar
  51. 51.
    J.W. Gofman, W. Young, R. Tandy, Ischemic heart disease, artheroslerosis and longevity. Circulation 34, 679–685 (1966)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Héla Ghorbel
    • 1
  • Ines Feki
    • 1
  • Ines Friha
    • 1
  • Abdel Majid Khabir
    • 2
  • Tahya Boudawara
    • 2
  • Mohamed Boudawara
    • 3
  • Sami Sayadi
    • 1
  1. 1.Laboratoire des Bioprocédés Environnemtaux, Pôle d’excellence régional AUF (PER-LBP), Center de biotechnologie de Sfax (CBS)Université de SfaxSfaxTunisia
  2. 2.Laboratoire de Pathologie, CHU Habib BourguibaSfaxTunisia
  3. 3.Service de Biologie CliniqueCNSSSfaxTunisia

Personalised recommendations