Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

High serum zinc and serum testosterone levels were associated with excessive erythrocytosis in men at high altitudes

Abstract

Chronic mountain sickness (CMS), a lack of adaptation to altitude characterized by excessive erythrocytosis (EE), is a health problem associated with life at high altitude. The erythropoietic process is regulated by both erythropoietin and testosterone. Zinc (Zn) is known to be related with testosterone and hemoglobin levels; meanwhile, nitric oxide was also associated with adaptation to high altitude. The aim of this study was to determine the relationship of hemoglobin and CMS score with serum levels of zinc, total testosterone (TT), calculated free testosterone (cFT), bioavailable testosterone (BAT), hemoglobin, and nitric oxide in men at high altitude with or without EE. Men residing in Lima (150 m) and Cerro de Pasco (4,340 m), Peru, were divided into three groups: (1) low altitude, (2) high altitude without EE (hemoglobin < 21 g/dl), and (3) high altitude with EE (hemoglobin ≥ 21 g/dl). Adjusted multivariable regression models showed that serum testosterone (total or free) and Zn levels were independently correlated with increased hemoglobin levels. Similarly, hemoglobin was positively related with signs/symptoms of CMS; however, both increased the serum Zn and the nitric oxide levels correlated with reduced risk for signs/symptoms of CMS. In conclusion, higher serum testosterone levels and Zn levels were associated with EE, and low scores of signs/symptoms of CMS were associated with higher Zn and nitric oxide levels.

This is a preview of subscription content, log in to check access.

Abbreviations

BMI:

Body mass index

HA:

High altitude

LA:

Low altitude

Hb:

Hemoglobin

EE:

Excessive erythrocytosis

CMS:

Chronic mountain sickness

TT:

Total testosterone

cFT:

Calculated free testosterone

BAT:

Bioavailable testosterone

Epo:

Erythropoietin

NO:

Nitric oxide

Zn:

Zinc

ALAD:

Delta-aminolevulinic acid dehydratase

HIF:

Hypoxia-inducible factor

References

  1. 1.

    M.C. Monge, Chronic mountain sickness. Physiol. Rev. 23, 166–184 (1943)

  2. 2.

    G. Xing, C. Qualls, L. Huicho, M. Rivera-Ch, T. Stobdan, M. Slessarev, E. Prisman, S. Ito, H. Wu, A. Norboo, D. Dolma, M. Kunzang, T. Norboo, J.L. Gamboa, V.E. Claydon, J. Fisher, G. Zenebe, A. Gebremedhin, R. Hainsworth, A. Verma, O. Appenzeller, Adaptation and mal-adaptation to ambient hypoxia; Andean, Ethiopian and Himalayan patterns. PLoS ONE 3, e2342 (2008)

  3. 3.

    J.T. Reeves, F. Leon-Velarde, Chronic mountain sickness: recent studies of the relationship between hemoglobin concentration and oxygen transport. High Alt. Med. Biol. 5, 147–155 (2004)

  4. 4.

    D. Peñaloza, J. Arias-Stella, The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness. Circulation 115, 1132–1146 (2007)

  5. 5.

    M.A. Pasha, J.H. Newman, High-altitude disorders: pulmonary hypertension: pulmonary vascular disease: the global perspective. Chest 137, 13S–19S (2010)

  6. 6.

    C.C. Monge, A. Arregui, F. León-Velarde, Pathophysiology and epidemiology of chronic mountain sickness. Int. J. Sports Med 13, S79–S81 (1992)

  7. 7.

    F. León-Velarde, M.A. Ramos, J.A. Hernandez, De Idiaquez, D., Munoz, L.S., Gaffo, A., Cordova, S., Durand, D., Monge, C.: The role of menopause in the development of chronic mountain sickness. Am. J. Physiol. 272, R90–R94 (1997)

  8. 8.

    K. Okuyima, R. Sakamoto, Y. Kimura, M. Ishine, Y. Kosaka, T. Wada, C. Wada, M. Naktsuka, Y. Ishimoto, M. Hirosaki, Y. Kasahara, A. Konno, W. Chen, M. Fujisawa, K. Otsuka, M. Nakashima, H. Wang, Q. Dai, A. Yang, H. Qiao, H. Gao, Z. Li, Y. Zhang, R.L. Ge, K. Matsubayashi, Comprehensive geriatric assessment of elderly highlanders in Qinghai, China II: the association of polycythemia with lifestyle-related diseases among the three ethnicities. Geriatr. Gerontol. Int. 9, 342–351 (2009)

  9. 9.

    F. León-Velarde, M. Maggiorini, J.T. Reeves, A. Aldashev, I. Asmus, L. Bernardi, R.L. Ge, P. Hackett, T. Kobayashi, L.G. Moore, D. Penaloza, J.P. Richalet, R. Roach, T. Wu, E. Vargas, G. Zubieta-Castillo, G. Zubieta-Calleja, Consensus statement on chronic and subacute high altitude diseases. High Alt. Med. Biol. 6, 147–157 (2005)

  10. 10.

    T.D. Richmond, M. Chohan, D.L. Barberm, Turning cells red: signal transduction mediated by erythropoietin. Trends Cell Biol. 15, 146–155 (2005)

  11. 11.

    M. Zitsmann, Effects of testosterone replacement and its pharmacogenetics on physical performance and metabolism. Asian J. Androl. 10, 364–372 (2008)

  12. 12.

    R. Favier, H. Spielvogel, E. Caceres, A. Rodriguez, B. Sempore, J. Pequignot, Differential effects of ventilatory stimulation by sex hormones and almitrine on hypoxic erythrocytosis. Pflugers Arch 434, 97–103 (1996)

  13. 13.

    A.D. Coviello, B. Kaplan, K.M. Lakshman, T. Chen, A.B. Singh, S. Bhasin, Effects of graded doses of testosterone on erythropoiesis in healthy young and older men. J. Clin. Endocrinol. Metab. 93, 914–919 (2008)

  14. 14.

    G.F. Gonzales, M. Gasco, V. Tapia, C. Gonzales-Castañeda, High serum testosterone levels are associated with excessive erythrocytosis of chronic mountain sickness in men. Am. J. Physiol. Endocrinol. Metab. 296, E1319–E1325 (2009)

  15. 15.

    S. Banudevi, P. Elumalai, R. Arunkumar, K. Senthilkumar, D.N. Gunadharini, G. Sharmilla, J. Arunakaran, Chemoprotective effect of zinc on prostate carcinogenesis induced by N-methyl-N-nitrosourea and testosterone in adult male Sprague-Dawley rats. J. Cancer Res. Clin. Oncol. 137, 677–686 (2010)

  16. 16.

    A.K. Baltaci, K. Ozyurek, R. Mogulkoc, E. Kurtoglu, E. Oztekin, A. Kul, Effects of zinc deficiency and supplementation on some hematologic parameters of rats performing acute swimming exercise. Acta Physiol. Hung. 90, 125–132 (2003)

  17. 17.

    A.S. Prasad, C.S. Mantzoros, F.W. Beck, J.W. Hess, G.J. Brewer, Zinc status and serum testosterone levels of healthy adults. Nutrition 12, 344–348 (1996)

  18. 18.

    O. Kaya, K. Gokdemir, M. Kilic, A.K. Baltaci, Zinc supplementation in rats subjected to acute swimming exercise: its effect on testosterone levels and relation with lactate. Neuro. Endocrinol. Lett. 27, 267–270 (2006)

  19. 19.

    S.C. Erzurum, S. Ghosh, A.J. Janocha, W. Xu, S. Bauer, N.S. Bryan, J. Tejero, C. Hemann, R. Hille, D.J. Stuehr, M. Feelisch, C.M. Beall, Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans. Proc. Natl. Acad. Sci. USA 104, 17593–17598 (2007)

  20. 20.

    J.Y. Li, X.Y. Li, M. Li, G.K. Zhang, F.L. Ma, Z.M. Liu, N.Y. Zhang, P. Meng, Decline of serum levels of free testosterone in aging healthy Chinese men. Aging Male 8, 203–206 (2005)

  21. 21.

    A. Vermeulen, L. Verdonck, J.M. Kaufman, A critical evaluation of simple methods for the estimation of free testosterone in serum. J. Clin. Endocrinol. Metab. 84, 3666–3672 (1999)

  22. 22.

    J. Sun, X. Zhang, M. Broderick, H. Fein, Measurement of nitric oxide production in biological systems by using Griess reaction assay. Sensors 3, 276–284 (2003)

  23. 23.

    G.F. Gonzales, Peruvian contributions to the study on human reproduction at altitude: from the chronicles of the Spanish conquest to the present. Respir. Physiol. Neurobiol. 158, 172–179 (2007)

  24. 24.

    T.Y. Wu, Chronic mountain sickness on the Qinghai-Tibetan plateau. Chin. Med. J. 118, 161–168 (2005)

  25. 25.

    L. Rice, W. Ruiz, T. Driscoll, C.E. Whitley, R. Tapia, D.L. Hachey, G.F. Gonzales, C.P. Alfrey, Neocytolysis on descent from altitude: a newly recognized mechanism for the control of red cell mass. Ann. Intern. Med. 134, 652–656 (2001)

  26. 26.

    F. León-Velarde, C. Monge, A. Vidal, M. Carcagno, M. Criscuolo, C.E. Bozzini, Serum immunoreactive erythropoietin in high altitude natives with and without excessive erythrocytosis. Exp. Hematol. 19, 257–260 (1991)

  27. 27.

    O.M. Mejía, J.T. Prchal, F. León-Velarde, A. Hurtado, D.W. Stockton, Genetic association analysis of chronic mountain sickness in an Andean high-altitude population. Haematologica 90, 13–19 (2005)

  28. 28.

    G.S. Hwang, S.W. Wang, W.M. Tseng, C.H. Yu, P.S. Wang, Effect of hypoxia on the release of vascular endothelial growth factor and testosterone in mouse TM3 Leydig cells. Am. J. Physiol. Endocrinol. Metab. 292, E1763–E1769 (2007)

  29. 29.

    N.P. Goncharov, G.V. Katsya, N.A. Chagina, L.J. Gooren, Testosterone and obesity in men under the age of 40 years. Andrologia 41, 76–83 (2009)

  30. 30.

    B.B. Yeap, O.P. Almeida, Z. Hyde, P.E. Norman, S.A. Chubb, K. Jamrozik, L. Flicker, In men older than 70 years, total testosterone remains stable while free testosterone declines with age. The health in men study. Eur. J. Endocrinol. 156, 585–594 (2007)

  31. 31.

    C.M. Beall, C.M. Worthman, J. Stallings, K.P. Strohl, G.M. Brittenham, M. Barragan, Salivary testosterone concentration of Aymara men native to 3,600 m. Ann. Hum. Biol. 19, 67–78 (1992)

  32. 32.

    H.G. Li, Y.M. Ren, S.C. Guo, L. Cheng, D.P. Wang, J. Yang, Z.J. Chang, X.Q. Zhao, The protein level of hypoxia-inducible factor-1alpha is increased in the plateau pika (Ochotona curzoniae) inhabiting high altitudes. J. Exp. Zool. 311, 134–141 (2009)

  33. 33.

    T.G. Smith, P.A. Robbins, P.J. Ratcliffe, The human side of hypoxia-inducible factor. Br. J. Haematol. 141, 325–334 (2008)

  34. 34.

    S.H. Li, J.H. Ryu, S.E. Park, Y.S. Cho, J.W. Park, W.J. Lee, Y.S. Chun, Vitamin C supplementation prevents testosterone-induced hyperplasia of rat prostate by down-regulating HIF-1alpha. J. Nutr. Biochem. 21, 801–808 (2010)

  35. 35.

    M. Idei, K. Miyake, Y. Horiuchi, Y. Tabe, N. Miyake, N. Ikeda, T. Miida, Serum zinc concentration decreases with age and is associated with anemia in middle-aged and elderly people. Rinsho Byori 58, 205–210 (2010). (in Japanese)

  36. 36.

    D. Mafra, L. Cuppari, D.I. Fávaro, S.M. Cozzolino, Zinc levels after iron supplementation in patients with chronic kidney disease. J. Ren. Nutr. 14, 164–169 (2004)

  37. 37.

    J.A. Jefferson, E. Escudero, M.E. Hurtado, J. Pando, R. Tapia, E.R. Swenson, J. Prchal, G.F. Schreiner, R.B. Schoene, A. Hurtado, R.J. Johnson, Excessive erythrocytosis, chronic mountain sickness, and serum cobalt levels. Lancet 359, 407–408 (2002)

  38. 38.

    K.H. Astrin, D.F. Bishop, J.G. Wetmur, B. Kaul, B. Davidow, R.J. Desnick, Delta-Aminolevulinic acid dehydratase isozymes and lead toxicity. Ann. N.Y. Acad. Sci. 514, 23–29 (1987)

  39. 39.

    F. Scinicariello, H.E. Murray, D.B. Moffett, H.G. Abadin, M.J. Sexton, B.A. Fowler, Lead and delta-aminolevulinic acid dehydratase polymorphism: where does it lead? A meta-analysis. Environ. Health Perspect. 115, 35–41 (2007)

  40. 40.

    A.S. Prasad, Antioxidant effect of zinc in human. Free Radic. Biol. Med. 37, 1182–1190 (2004)

  41. 41.

    J.A. Jefferson, J. Simoni, E. Escudero, M.E. Hurtado, E.R. Swenson, D.E. Wesson, G.F. Schreiner, R.B. Schoene, R.J. Johnson, A. Hurtado, Increased oxidative stress following acute and chronic high altitude exposure. High Alt. Med. Biol. 5, 61–69 (2004)

  42. 42.

    I. Kim, C.H. Kim, G.H. Seo, H.S. Kim, J. Lee, D.G. Kim, Y.S. Ahn, Inhibitory effect of zinc on hypoxic HIF-1 activation in astrocytes. Neuroreport 19, 1063–1066 (2008)

  43. 43.

    M. McMahon, D.J. Lamont, K.A. Beattie, J.D. Hayes, Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc. Natl. Acad. Sci. USA 107, 18838–188343 (2010)

  44. 44.

    A. Tomat, R. Elesgaray, V. Zago, H. Fasoli, A. Fellet, A.M. Balaszczuk, L. Schreier, M.A. Costa, C. Arranz, Exposure to zinc deficiency in fetal and postnatal life determines nitric oxide system activity and arterial blood pressure levels in adult rats. Br. J. Nutr. 104, 382–389 (2010)

Download references

Acknowledgments

This study was supported by a Grant from the Fogarty Program of The National Institutes of Health of the United States (NIH Research Grant # 5-D43TW005746-04 funded by the Fogarty International Center, National Institutes on Environmental Health Services, National Institute for Occupational Safety and Health, and the Agency for Toxic Substances and Disease Registry).

Conflict of interest

The authors have no conflicts of interest or financial ties to disclose.

Author information

Correspondence to Gustavo F. Gonzales.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gonzales, G.F., Tapia, V., Gasco, M. et al. High serum zinc and serum testosterone levels were associated with excessive erythrocytosis in men at high altitudes. Endocrine 40, 472–480 (2011). https://doi.org/10.1007/s12020-011-9482-1

Download citation

Keywords

  • Testosterone
  • Zinc
  • Nitric oxide
  • High altitude
  • Chronic mountain sickness signs/symptoms
  • Excessive erythrocytosis