Endocrine

, Volume 38, Issue 2, pp 158–166 | Cite as

Follicle-stimulating hormone regulation of microRNA expression on progesterone production in cultured rat granulosa cells

Original Article

Abstract

MicroRNAs (miRNAs) regulate gene expression post-transcriptionally by interacting with the 3′ untranslated regions of their target mRNAs. Previously, miRNAs have been shown to regulate genes involved in cell growth, apoptosis, and differentiation, but their role in ovarian granulosa cell follicle-stimulating hormone (FSH)-stimulated steroidogenesis is unclear. Here we show that expression of 31 miRNAs is altered during FSH-mediated progesterone secretion of cultured granulosa cells. Specifically, 12 h after FSH treatment, miRNAs mir-29a and mir-30d were significantly down-regulated. However, their expression increased after 48 h. Bioinformatic analysis used to predict potential targets of mir-29a and mir-30d revealed a wide array of potential mRNA target genes, including those encoding genes involved in multiple signaling pathways. Taken together, our results pointed to a novel mechanism for the pleiotropic effects of FSH.

Keywords

Granulosa cells FSH miRNA Progesterone 

Notes

Acknowledgments

This study was supported by National Basic Research Program of China (973) (No. 2010CB529504), Important National Science & Technology Specific Projects (No. 2009ZX09308-006), National Nonprofit Institute Research Grant of NRIFP, and the Denaturing High-performance Liquid chromatography System Update and its Application in Chinese Genetic Resource (No. 2006JG006100). Core facilities used in this research were provided by the Department of Genetics, National Research Institute for Family Planning. The authors would like to thank Prof. Yixun Liu and Prof. Jian Xu for help in primary granulosa cell culture.

Supplementary material

12020_2010_9345_MOESM1_ESM.doc (478 kb)
Supplementary material 1 (DOC 478 kb)
12020_2010_9345_MOESM2_ESM.doc (631 kb)
Supplementary material 2 (DOC 631 kb)

References

  1. 1.
    T.R. Kumar, Y. Wang, N. Lu, M.M. Matzuk, Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat. Genet. 15, 201–204 (1997)CrossRefPubMedGoogle Scholar
  2. 2.
    A. Amsterdam, N. Selvaraj, Control of differentiation, transformation, and apoptosis in granulosa cells by oncogenes, oncoviruses, and tumor suppressor genes. Endocr. Rev. 18, 435–461 (1997)CrossRefPubMedGoogle Scholar
  3. 3.
    A. Amsterdam, S. Rotmensch, A. Ben-Ze’ev, Coordinated regulation of morphological and biochemical differentiation in a steroidogenic cell: the granulosa cell model. Trends Biochem. Sci. 14, 377–382 (1989)CrossRefPubMedGoogle Scholar
  4. 4.
    A. Amsterdam, R.S. Gold, K. Hosokawa, Y. Yoshida, R. Sasson, Y. Jung, F. Kotsuji, Crosstalk among multiple signaling pathways controlling ovarian cell death. Trends Endocrinol. Metab. 10, 255–262 (1999)CrossRefPubMedGoogle Scholar
  5. 5.
    R.L. Robker, D.L. Russell, S. Yoshioka, S.C. Sharma, J.P. Lydon, B.W. O’Malley, L.L. Espey, J.S. Richards, Ovulation: a multi-gene, multi-step process. Steroids 65, 559–570 (2000)CrossRefPubMedGoogle Scholar
  6. 6.
    N.A. Grieshaber, C. Ko, S.S. Grieshaber, I. Ji, T.H. Ji, Follicle-stimulating hormone-responsive cytoskeletal genes in rat granulosa cells: class I beta-tubulin, tropomyosin-4, and kinesin heavy chain. Endocrinology 144, 29–39 (2003)CrossRefPubMedGoogle Scholar
  7. 7.
    R. Sasson, A. Dantes, K. Tajima, A. Amsterdam, Novel genes modulated by FSH in normal and immortalized FSH-responsive cells: new insights into the mechanism of FSH action. FASEB J. 17, 1256–1266 (2003)CrossRefPubMedGoogle Scholar
  8. 8.
    M. Tanaka, J.D. Hennebold, K. Miyakoshi, T. Teranishi, K. Ueno, E.Y. Adashi, The generation and characterization of an ovary-selective cDNA library. Mol. Cell. Endocrinol. 202, 67–69 (2003)PubMedGoogle Scholar
  9. 9.
    S. Shimasaki, R.J. Zachow, D. Li, H. Kim, S. Iemura, N. Ueno, K. Sampath, R.J. Chang, G.F. Erickson, A functional bone morphogenetic protein system in the ovary. Proc. Natl. Acad. Sci. USA 96, 7282–7287 (1999)CrossRefPubMedGoogle Scholar
  10. 10.
    N. Yao, C.L. Lu, J.J. Zhao, H.F. Xia, D.G. Sun, X.Q. Shi, C. Wang, D. Li, Y. Cui, X. Ma, A network of miRNAs expressed in the ovary are regulated by FSH. Front Biosci. 14, 3239–3245 (2009)CrossRefPubMedGoogle Scholar
  11. 11.
    M. Lagos-Quintana, R. Rauhut, W. Lendeckel, T. Tuschl, Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001)CrossRefPubMedGoogle Scholar
  12. 12.
    A.M. Cheng, M.W. Byrom, J. Shelton, L.P. Ford, Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 33, 1290–1297 (2005)CrossRefPubMedGoogle Scholar
  13. 13.
    S. Vasudevan, Y. Tong, J.A. Steitz, Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931–1934 (2007)CrossRefPubMedGoogle Scholar
  14. 14.
    A. Cohen, M. Shmoish, L. Levi, U. Cheruti, B. Levavi-Sivan, E. Lubzens, Alterations in micro-ribonucleic acid expression profiles reveal a novel pathway for estrogen regulation. Endocrinology 149, 1687–1696 (2008)CrossRefPubMedGoogle Scholar
  15. 15.
    S.D. Fiedler, M.Z. Carletti, X. Hong, L.K. Christenson, Hormonal regulation of MicroRNA expression in periovulatory mouse mural granulosa cells. Biol. Reprod. 79, 1030–1037 (2008)CrossRefPubMedGoogle Scholar
  16. 16.
    T. Yuen, F. Ruf, T. Chu, S.C. Sealfon, Microtranscriptome regulation by gonadotropin-releasing hormone. Mol. Cell. Endocrinol. 302, 12–17 (2009)CrossRefPubMedGoogle Scholar
  17. 17.
    G. Stefani, F.J. Slack, Small non-coding RNAs in animal development. Nat. Rev. Mol. Cell. Biol. 9, 219–230 (2008)CrossRefPubMedGoogle Scholar
  18. 18.
    M. Otsuka, M. Zheng, M. Hayashi, J.D. Lee, O. Yoshino, S. Lin, J. Han, Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. J. Clin. Invest. 118, 1944–1954 (2008)CrossRefPubMedGoogle Scholar
  19. 19.
    S. Ro, R. Song, C. Park, H. Zheng, K.M. Sanders, W. Yan, Cloning and expression profiling of small RNAs expressed in the mouse ovary. RNA 13, 2366–2380 (2007)CrossRefPubMedGoogle Scholar
  20. 20.
    N.J. Martinez, M.C. Ow, M.I. Barrasa, M. Hammell, R. Sequerra, L. Doucette-Stamm, F.P. Roth, V.R. Ambros, A.J. Walhout, A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes Dev. 22, 2535–2549 (2008)CrossRefPubMedGoogle Scholar
  21. 21.
    S.M. Johnson, S.Y. Lin, F.J. Slack, The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. Dev. Biol. 259, 364–379 (2003)CrossRefPubMedGoogle Scholar
  22. 22.
    K.A. O’Donnell, E.A. Wentzel, K.I. Zeller, C.V. Dang, J.T. Mendell, c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839–843 (2005)CrossRefPubMedGoogle Scholar
  23. 23.
    Y. Sylvestre, V. De Guire, E. Querido, U.K. Mukhopadhyay, V. Bourdeau, F. Major, G. Ferbeyre, P. Chartrand, An E2F/miR-20a autoregulatory feedback loop. J Biol. Chem. 282, 2135–2143 (2007)CrossRefPubMedGoogle Scholar
  24. 24.
    M. Yamakuchi, C.J. Lowenstein, MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle 8, 712–715 (2009)PubMedGoogle Scholar
  25. 25.
    B.P. Lewis, C.B. Burge, D.P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005)CrossRefPubMedGoogle Scholar
  26. 26.
    P.K. Rao, R.M. Kumar, M. Farkhondeh, S. Baskerville, H.F. Lodish, Myogenic factors that regulate expression of muscle-specific microRNAs. Proc. Natl. Acad. Sci. USA 103, 8721–8726 (2006)CrossRefPubMedGoogle Scholar
  27. 27.
    S. Marton, M.R. Garcia, C. Robello, H. Persson, F. Trajtenberg, O. Pritsch, C. Rovira, H. Naya, G. Dighiero, A. Cayota, Small RNAs analysis in CLL reveals a deregulation of miRNA expression and novel miRNA candidates of putative relevance in CLL pathogenesis. Leukemia 22, 330–338 (2008)CrossRefPubMedGoogle Scholar
  28. 28.
    C.A. Gebeshuber, K. Zatloukal, J. Martinez, miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep. 10, 400–405 (2009)CrossRefPubMedGoogle Scholar
  29. 29.
    J. Wang, R. Xu, F. Lin, S. Zhang, G. Zhang, S. Hu, Z. Zheng, MicroRNA: novel regulators involved in the remodeling and reverse remodeling of the heart. Cardiology 113, 81–88 (2009)CrossRefPubMedGoogle Scholar
  30. 30.
    A. He, L. Zhu, N. Gupta, Y. Chang, F. Fang, Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3–L1 adipocytes. Mol. Endocrinol. 21, 2785–2794 (2007)CrossRefPubMedGoogle Scholar
  31. 31.
    X. Tang, L. Muniappan, G. Tang, S. Ozcan, Identification of glucose-regulated miRNAs from pancreatic beta cells reveals a role for miR-30d in insulin transcription. RNA 15, 287–293 (2009)CrossRefPubMedGoogle Scholar
  32. 32.
    A.E. Williams, S.A. Moschos, M.M. Perry, P.J. Barnes, M.A. Lindsay, Maternally imprinted microRNAs are differentially expressed during mouse and human lung development. Dev. Dyn. 236, 572–580 (2007)CrossRefPubMedGoogle Scholar
  33. 33.
    M. Hunzicker-Dunn, E.T. Maizels, FSH signaling pathways in immature granulosa cells that regulate target gene expression: branching out from protein kinase A. Cell. Signal. 18, 1351–1359 (2006)CrossRefPubMedGoogle Scholar
  34. 34.
    C.K. Sites, B. Kessel, A.R. LaBarbera, Adhesion proteins increase cellular attachment, follicle-stimulating hormone receptors, and progesterone production in cultured porcine granulosa cells. Proc. Soc. Exp. Biol. Med. 212, 78–83 (1996)PubMedGoogle Scholar
  35. 35.
    K. Nakano, I. Naito, R. Momota, Y. Sado, H. Hasegawa, Y. Ninomiya, A. Ohtsuka, The distribution of type IV collagen alpha chains in the mouse ovary and its correlation with follicular development. Arch. Histol. Cytol. 70, 243–253 (2007)CrossRefPubMedGoogle Scholar
  36. 36.
    N.B. Gilula, M.L. Epstein, W.H. Beers, Cell-to-cell communication and ovulation. A study of the cumulus-oocyte complex. J. Cell Biol. 78, 58–75 (1978)CrossRefPubMedGoogle Scholar
  37. 37.
    C. Kohler, C.B. Villar, Programming of gene expression by Polycomb group proteins. Trends Cell Biol. 18, 236–243 (2008)CrossRefPubMedGoogle Scholar
  38. 38.
    L.A. Boyer, K. Plath, J. Zeitlinger, T. Brambrink, L.A. Medeiros, T.I. Lee, S.S. Levine, M. Wernig, A. Tajonar, M.K. Ray, G.W. Bell, A.P. Otte, M. Vidal, D.K. Gifford, R.A. Young, R. Jaenisch, Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006)CrossRefPubMedGoogle Scholar
  39. 39.
    P.F. Terranova, F. Garza, Relationship between the preovulatory luteinizing hormone (LH) surge and androstenedione synthesis of preantral follicles in the cyclic hamster: detection by in vitro responses to LH. Biol. Reprod. 29, 630–636 (1983)CrossRefPubMedGoogle Scholar
  40. 40.
    M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubin, G. Sherlock, Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat. Genet. 25, 25–29 (2000)CrossRefPubMedGoogle Scholar
  41. 41.
    M. Kanehisa, S. Goto, M. Hattori, K.F. Aoki-Kinoshita, M. Itoh, S. Kawashima, T. Katayama, M. Araki, M. Hirakawa, From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34, D354–D357 (2006)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Graduate School of Peking Union Medical CollegeBeijingChina
  2. 2.Department of GeneticsNational Research Institute for Family PlanningBeijingChina
  3. 3.Department of Etiology and Carcinogenesis, Cancer Institute (Hospital)Peking Union Medical CollegeBeijingChina
  4. 4.Key Lab Genome Science & Informat, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina

Personalised recommendations