, Volume 37, Issue 1, pp 201–208 | Cite as

Relationships between glucose excursion and the activation of oxidative stress in patients with newly diagnosed type 2 diabetes or impaired glucose regulation

  • Fenping Zheng
  • Weina Lu
  • Chengfang Jia
  • Hong LiEmail author
  • Zhou Wang
  • Weiping Jia
Original Article


The effect of glucose excursions on oxidative stress is an important topic in diabetes research. We investigated this relationship by analyzing markers of oxidative stress and glycemic data from a continuous glucose monitoring system (CGMS) in 30 individuals with normal glucose regulation (NGR), 27 subjects with impaired glucose regulation (IGR), and 27 patients with newly diagnosed type 2 diabetes (T2DM). We compared the mean amplitude of glycemic excursion (MAGE), mean postprandial glucose excursion (MPPGE), and mean postprandial incremental area under the curve (IAUC) with plasma levels of oxidative stress markers 8-iso-PGF2α, 8-OH-dG, and protein carbonyl content in the study subjects. Patients with T2DM or IGR had significantly higher glucose excursions and plasma levels of oxidative stress markers compared to normal controls (P < 0.01 or 0.05). Multiple linear regression analyses showed significant relationships between MAGE and plasma 8-iso-PGF2α, and between MPPGE and plasma 8-OH-dG in patients with IGR or T2DM (P < 0.01 or 0.05). Furthermore, 2h-postprandial glucose level and IAUC were related to plasma protein carbonyl content in the study cohort including T2DM and IGR (P < 0.01). We demonstrate that glucose excursions in subjects with IGR and T2DM trigger the activation of oxidative stress.


Glucose excursion Oxidative stress Diabetes Impaired glucose regulation 



We thank Yu Yunxian for his guidance in statistics of the present study. This work was supported by the Shanghai United Developing Technology Project of Municipal Hospitals (SHDC12006101) and by Health Bureau of Zhejiang Province (2009B091).


  1. 1.
    I.M. Stratton, A.I. Adler, H.A. Neil, D.R. Matthews, S.E. Manley, C.A. Cull, D. Hadden, R.C. Turner, R.R. Holman, Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321, 405–412 (2000)CrossRefPubMedGoogle Scholar
  2. 2.
    The Diabetes Control and Complications Trial Research Group, Clustering of long-term complications in families with diabetes in the diabetes control and complications trial. Diabetes 46, 1829–1839 (1997)CrossRefGoogle Scholar
  3. 3.
    M. Brownlee, Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820 (2001)CrossRefPubMedGoogle Scholar
  4. 4.
    A. Ceriello, M. Hanefeld, L. Leiter, L. Monnier, A. Moses, D. Owens, N. Tajima, J. Tuomilehto, Postprandial glucose regulation and diabetic complications. Arch. Intern. Med. 164, 2090–2095 (2004)CrossRefPubMedGoogle Scholar
  5. 5.
    A. Ceriello, J. Davidson, M. Hanefeld, L. Leiter, L. Monnier, D. Owens, N. Tajima, J. Tuomilehto, International Prandial Glucose Regulation Study Group, Postprandial hyperglycaemia and cardiovascular complications of diabetes: an update. Nutr. Metab. Cardiovasc. Dis. 16, 453–456 (2006)CrossRefPubMedGoogle Scholar
  6. 6.
    S. Genuth, Insights from the diabetes control and complications trial/epidemiology of diabetes interventions and complications study on the use of intensive glycemic treatment to reduce the risk of complications of type 1 diabetes. Endocr. Pract. 12(Suppl. 1), 34–41 (2006)PubMedGoogle Scholar
  7. 7.
    I.B. Hirsch, M. Brownlee, Should minimal blood glucose variability become the gold standard of glycemic control? J. Diabetes Complicat. 19, 178–181 (2005)CrossRefPubMedGoogle Scholar
  8. 8.
    I.B. Hirsch, Glycemic variability: it’s not just about A1C anymore!. Diabetes Technol. Ther. 7, 780–783 (2005)CrossRefPubMedGoogle Scholar
  9. 9.
    L. Quagliaro, L. Piconi, R. Assaloni, Intermittent high glucose enhances ICAM-1, VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: the distinct role of protein kinase C and mitochondrial superoxide production. Atherosclerosis 183, 259–267 (2005)CrossRefPubMedGoogle Scholar
  10. 10.
    L. Piconi, L. Quagliaro, R. Assaloni, R. Da Ros, A. Maier, G. Zuodar, A. Ceriello, Constant and intermittent high glucose enhances endothelial cell apoptosis through mitochondrial superoxide overproduction. Diabetes Metab. Res. Rev. 22, 198–203 (2006)CrossRefPubMedGoogle Scholar
  11. 11.
    J. Zhou, H. Li, X. Ran, W. Yang, Q. Li, Y. Peng, Y. Li, X. Gao, X. Luan, W. Wang, W. Jia, Reference values for continuous glucose monitoring in Chinese subjects. Diabetes Care 32, 1188–1193 (2009)CrossRefPubMedGoogle Scholar
  12. 12.
    L.J. Roberts 2nd, T.J. Montine, W.R. Markesbery, A.R. Tapper, P. Hardy, S. Chemtob, W.D. Dettbarn, J.D. Morrow, Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J. Biol. Chem. 273, 13605–13612 (1998)CrossRefPubMedGoogle Scholar
  13. 13.
    Z. Turk, Glycotoxines, carbonyl stress and relevance to diabetes and its complications. Physiol. Res. Jun 19 [Epub ahead of print] (2009)Google Scholar
  14. 14.
    L.L. Wu, C.C. Chiou, P.Y. Chang, J.T. Wu, Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin. Chim. Acta 339, 1–9 (2004)CrossRefPubMedGoogle Scholar
  15. 15.
    L. Monnier, E. Mas, C. Ginet, F. Michel, L. Villon, J.P. Cristol, C. Colette, Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295, 1681–1687 (2006)CrossRefPubMedGoogle Scholar
  16. 16.
    Q.Y. Dong, Y. Cui, L. Chen, J. Song, L. Sun, Urinary 8-hydroxydeoxyguanosine levels in diabetic retinopathy patients. Eur. J. Ophthalmol. 18, 94–98 (2008)PubMedGoogle Scholar
  17. 17.
    G.W. Xu, Q.H. Yao, Q.F. Weng, B.L. Su, X. Zhang, J.H. Xiong, Study of urinary 8-hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in diabetic nephropathy patients. J. Pharm. Biomed. Anal. 36, 101–104 (2004)CrossRefPubMedGoogle Scholar
  18. 18.
    E. Rytter, B. Vessby, R. Asgård, C. Johansson, A. Sjödin, L. Abramsson-Zetterberg, L. Möller, S. Basu, Glycaemic status in relation to oxidative stress and inflammation in well-controlled type 2 diabetes subjects. Br. J. Nutr. 101, 1423–1426 (2009)CrossRefPubMedGoogle Scholar
  19. 19.
    L.J. Roberts, J.D. Morrow, Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo. Free Radic. Biol. Med. 28, 505–513 (2000)CrossRefPubMedGoogle Scholar
  20. 20.
    A. Ceriello, L. Quagliaro, B. Catone, R. Pascon, M. Piazzola, B. Bais, G. Marra, L. Tonutti, C. Taboga, E. Motz, Role of hyperglycemia in nitrotyrosine postprandial generation. Diabetes Care 25, 1439–1443 (2002)CrossRefPubMedGoogle Scholar
  21. 21.
    A. Valavanidis, T. Vlachogianni, C. Fiotakis, 8-Hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J. Environ. Sci. Health C 27, 120–139 (2009)CrossRefGoogle Scholar
  22. 22.
    Y. Hinokio, S. Suzuki, M. Hirai, M. Chiba, A. Hirai, T. Toyota, Oxidative DNA damage in diabetes mellitus: its association with diabetic complications. Diabetologia 42, 995–998 (1999)CrossRefPubMedGoogle Scholar
  23. 23.
    S. Suzuki, Y. Hinokio, K. Komatu, M. Ohtomo, M. Onoda, S. Hirai, M. Hirai, A. Hirai, M. Chiba, S. Kasuga, H. Akai, T. Toyota, Oxidative damage to mitochondrial DNA and its relationship to diabetic complications. Diabetes Res. Clin. Pract. 45, 161–168 (1999)CrossRefPubMedGoogle Scholar
  24. 24.
    A. Telci, U. Cakatay, S. Salman, I. Satman, A. Sivas, Oxidative protein damage in early stage Type 1 diabetic patients. Diabetes Res. Clin. Pract. 50, 213–223 (2000)CrossRefPubMedGoogle Scholar
  25. 25.
    A. Telci, U. Cakatay, R. Kayali, C. Erdoğan, Y. Orhan, A. Sivas, T. Akçay, Oxidative protein damage in plasma of type 2 diabetic patients. Horm. Metab. Res. 32, 40–43 (2000)CrossRefPubMedGoogle Scholar
  26. 26.
    V. Srinivasan, N. Sandhya, R. Sampathkumar, S. Farooq, V. Mohan, M. Balasubramanyam, Glutamine fructose-6-phosphate amidotransferase (GFAT) gene expression and activity in patients with type 2 diabetes: inter-relationships with hyperglycaemia and oxidative stress. Clin. Biochem. 40, 952–957 (2007)CrossRefPubMedGoogle Scholar
  27. 27.
    V. Ramakrishna, R. Jailkhani, Evaluation of oxidative stress in insulin dependent diabetes mellitus (IDDM) patients. Diagn. Pathol. 2, 22 (2007)Google Scholar
  28. 28.
    N. Ahmed, R. Babaei-Jadidi, S.K. Howell, P.J. Thornalley, P.J. Beisswenger, Glycated and oxidized protein degradation products are indicators of fasting and postprandial hyperglycemia in diabetes. Diabetes Care 28, 2465–2471 (2005)CrossRefPubMedGoogle Scholar
  29. 29.
    J. Zhou, W.P. Jia, M. Yu, X.J. Ma, Y.Q. Bao, W. Lu, The features of postprandial glucose state in type 2 diabetes mellitus. Zhonghua Yi Xue Za Zhi 86, 970–975 (2006)PubMedGoogle Scholar
  30. 30.
    C.M. McDonnell, S.M. Donath, S.I. Vidmar, G.A. Werther, F.J. Cameron, A novel approach to continuous glucose analysis utilizing glycemic variation. Diabetes Technol. Ther. 7, 253–263 (2005)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Fenping Zheng
    • 1
  • Weina Lu
    • 1
  • Chengfang Jia
    • 1
  • Hong Li
    • 1
    Email author
  • Zhou Wang
    • 1
  • Weiping Jia
    • 2
  1. 1.Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityHangzhouChina
  2. 2.Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Sixth People’s HospitalJiaotong UniversityShanghaiChina

Personalised recommendations