Clinical Reviews in Bone and Mineral Metabolism

, Volume 10, Issue 4, pp 266–276 | Cite as

The Crosstalk Between Bone and Fat in HIV-Infected Patients, with a Focus on Lipodystrophy

Original Paper
  • 124 Downloads

Abstract

Low bone mineral density and osteoporosis are prevalent in cohorts of HIV-positive patients, with increased fracture rates also described. HIV is a disease characterised by abnormalities in body fat metabolism, particularly HIV-associated lipodystrophy, a common long-term side effect of antiretroviral therapy for HIV infection. Given the close metabolic relationships between bone and fat, the presence of these two conditions raises questions as to potential pathogenic links between the two. This review discusses both conditions and identifies potential factors that may link abnormalities in fat distribution with decreased bone mineral density.

Keywords

Adipose tissue Fat Bone mineral density Body composition Adipokines 

References

  1. 1.
    Carr A, Samaras K, Burton S, Law M, Freund J, Chisholm DJ, et al. A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors. AIDS. 1998;12(7):F51–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Carr A, Miller J, Eisman JA, Cooper DA. Osteopenia in HIV-infected men: association with asymptomatic lactic acidemia and lower weight pre-antiretroviral therapy. AIDS. 2001;15(6):703–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Guaraldi G, Ventura P, Albuzza M, Orlando G, Bedini A, Amorico G, et al. Pathological fractures in AIDS patients with osteopenia and osteoporosis induced by antiretroviral therapy. AIDS. 2001;15(1):137–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Huang JS, Wilkie SJ, Sullivan MP, Grinspoon S. Reduced bone density in androgen-deficient women with acquired immune deficiency syndrome wasting. J Clin Endocrinol Metab. 2001;86(8):3533–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW. Relationship of obesity with osteoporosis. J Clin Endocrinol Metab. 2007;92(5):1640–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Fairfield WP, Finkelstein JS, Klibanski A, Grinspoon SK. Osteopenia in eugonadal men with acquired immune deficiency syndrome wasting syndrome. J Clin Endocrinol Metab. 2001;86(5):2020–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Huang JS, Rietschel P, Hadigan CM, Rosenthal DI, Grinspoon S. Increased abdominal visceral fat is associated with reduced bone density in HIV-infected men with lipodystrophy. AIDS. 2001;15(8):975–82.PubMedCrossRefGoogle Scholar
  8. 8.
    Mallon PW, Carr A, Cooper DA. HIV-associated lipodystrophy: description, pathogenesis, and molecular pathways. Curr Diab Rep. 2002;2(2):116–24.PubMedCrossRefGoogle Scholar
  9. 9.
    Palella FJ Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med. 1998;338(13):853–60.PubMedCrossRefGoogle Scholar
  10. 10.
    Carr A, Miller J, Law M, Cooper DA. A syndrome of lipoatrophy, lactic acidaemia and liver dysfunction associated with HIV nucleoside analogue therapy: contribution to protease inhibitor-related lipodystrophy syndrome. AIDS. 2000;14(3):F25–32.PubMedCrossRefGoogle Scholar
  11. 11.
    Mallon PW, Wand H, Law M, Miller J, Cooper DA, Carr A. Buffalo hump seen in HIV-associated lipodystrophy is associated with hyperinsulinemia but not dyslipidemia. J Acquir Immune Defic Syndr. 2005;38(2):156–62.PubMedCrossRefGoogle Scholar
  12. 12.
    Mallon PW, Miller J, Cooper DA, Carr A. Prospective evaluation of the effects of antiretroviral therapy on body composition in HIV-1-infected men starting therapy. AIDS. 2003;17(7):971–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Dube MP, Parker RA, Tebas P, Grinspoon SK, Zackin RA, Robbins GK, et al. Glucose metabolism, lipid, and body fat changes in antiretroviral-naive subjects randomized to nelfinavir or efavirenz plus dual nucleosides. AIDS. 2005;19(16):1807–18.PubMedCrossRefGoogle Scholar
  14. 14.
    Grunfeld C, Rimland D, Gibert CL, Powderly WG, Sidney S, Shlipak MG, et al. Association of upper trunk and visceral adipose tissue volume with insulin resistance in control and HIV-infected subjects in the FRAM study. J Acquir Immune Defic Syndr. 2007;46(3):283–90.PubMedCrossRefGoogle Scholar
  15. 15.
    Carr A. HIV protease inhibitor-related lipodystrophy syndrome. Clin Infect Dis. 2000;30(Suppl 2):S135–42.PubMedCrossRefGoogle Scholar
  16. 16.
    Gallant JE, DeJesus E, Arribas JR, Pozniak AL, Gazzard B, Campo RE, et al. Tenofovir DF, emtricitabine, and efavirenz vs. zidovudine, lamivudine, and efavirenz for HIV. N Engl J Med. 2006;354(3):251–60.PubMedCrossRefGoogle Scholar
  17. 17.
    Gallant JE, Staszewski S, Pozniak AL, DeJesus E, Suleiman JM, Miller MD, et al. Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients: a 3-year randomized trial. JAMA. 2004;292(2):191–201.PubMedCrossRefGoogle Scholar
  18. 18.
    Brinkman K, Smeitink JA, Romijn JA, Reiss P. Mitochondrial toxicity induced by nucleoside-analogue reverse-transcriptase inhibitors is a key factor in the pathogenesis of antiretroviral-therapy-related lipodystrophy. Lancet. 1999;354(9184):1112–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Adolescents. PoAGfAa. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services. 2011; October 14, 2011, p. 1–167. Available at http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf.
  20. 20.
    Gazzard BG, British HIV. Association Guidelines for the treatment of HIV-1-infected adults with antiretroviral therapy 2008. HIV Med. 2008;9(8):563–608.PubMedCrossRefGoogle Scholar
  21. 21.
    Carr A, Workman C, Smith DE, Hoy J, Hudson J, Doong N, et al. Abacavir substitution for nucleoside analogs in patients with HIV lipoatrophy: a randomized trial. JAMA. 2002;288(2):207–15.PubMedCrossRefGoogle Scholar
  22. 22.
    Brown TT, Qaqish RB. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS. 2006;20(17):2165–74.PubMedCrossRefGoogle Scholar
  23. 23.
    Mallon PW. HIV and bone mineral density. Curr Opin Infect Dis. 2010;23(1):1–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Bolland MJ, Grey AB, Gamble GD, Reid IR. Clinical review #: low body weight mediates the relationship between HIV infection and low bone mineral density: a meta-analysis. J Clin Endocrinol Metab. 2007;92(12):4522–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Cotter AG, Mallon PW. Therapeutic options for low bone mineral density in HIV-infected subjects. Curr HIV/AIDS Rep. 2012;9(2):148–59.PubMedCrossRefGoogle Scholar
  26. 26.
    Stellbrink HJ, Orkin C, Arribas JR, Compston J, Gerstoft J, Van Wijngaerden E, et al. Comparison of changes in bone density and turnover with abacavir-lamivudine versus tenofovir-emtricitabine in HIV-infected adults: 48-week results from the ASSERT study. Clin Infect Dis. 2010;51(8):963–72.PubMedCrossRefGoogle Scholar
  27. 27.
    van Vonderen MG, Lips P, van Agtmael MA, Hassink EA, Brinkman K, Geerlings SE, et al. First line zidovudine/lamivudine/lopinavir/ritonavir leads to greater bone loss compared to nevirapine/lopinavir/ritonavir. AIDS. 2009;23(11):1367–76.PubMedCrossRefGoogle Scholar
  28. 28.
    McComsey GA, Kitch D, Daar ES, Tierney C, Jahed NC, Tebas P, et al. Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir: aids clinical trials group A5224s, a substudy of ACTG A5202. J Infect Dis. 2011;203(12):1791–801.PubMedCrossRefGoogle Scholar
  29. 29.
    Cotter AG, Vrouenraets S, Brady J, F. W, Fux C, Furrer H, et al. Impact of switching from Zidovudine to Tenofovir/Emtricitabine on bone mineral density and bone metabolism in virologically suppressed HIV-1 + patients: a sub-study of the PREPARE study. 19th Conference on retroviruses and opportunistic infections. 2012: Abstract O-1008.Google Scholar
  30. 30.
    Martin A, Bloch M, Amin J, Baker D, Cooper DA, Emery S, et al. Simplification of antiretroviral therapy with tenofovir-emtricitabine or abacavir-Lamivudine: a randomized, 96-week trial. Clin Infect Dis. 2009;49(10):1591–601.PubMedCrossRefGoogle Scholar
  31. 31.
    Duvivier C, Kolta S, Assoumou L, Ghosn J, Rozenberg S, Murphy RL, et al. Greater decrease in bone mineral density with protease inhibitor regimens compared with nonnucleoside reverse transcriptase inhibitor regimens in HIV-1 infected naive patients. AIDS. 2009;23(7):817–24.PubMedCrossRefGoogle Scholar
  32. 32.
    Hwang YC, Jeong IK, Ahn KJ, Chung HY. Circulating osteocalcin level is associated with improved glucose tolerance, insulin secretion and sensitivity independent of the plasma adiponectin level. Osteoporos Int. 2012;23(4):1337–42.Google Scholar
  33. 33.
    Felson DT, Zhang Y, Hannan MT, Anderson JJ. Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Miner Res. 1993;8(5):567–73.PubMedCrossRefGoogle Scholar
  34. 34.
    Marcus R, Greendale G, Blunt BA, Bush TL, Sherman S, Sherwin R, et al. Correlates of bone mineral density in the postmenopausal estrogen/progestin interventions trial. J Bone Miner Res. 1994;9(9):1467–76.PubMedCrossRefGoogle Scholar
  35. 35.
    Reid IR, Ames R, Evans MC, Sharpe S, Gamble G, France JT, et al. Determinants of total body and regional bone mineral density in normal postmenopausal women—a key role for fat mass. J Clin Endocrinol Metab. 1992;75(1):45–51.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang MC, Bachrach LK, Van Loan M, Hudes M, Flegal KM, Crawford PB. The relative contributions of lean tissue mass and fat mass to bone density in young women. Bone. 2005;37(4):474–81.PubMedCrossRefGoogle Scholar
  37. 37.
    Reid IR, Plank LD, Evans MC. Fat mass is an important determinant of whole body bone density in premenopausal women but not in men. J Clin Endocrinol Metab. 1992;75(3):779–82.PubMedCrossRefGoogle Scholar
  38. 38.
    Khosla S, Atkinson EJ, Riggs BL, Melton LJ III. Relationship between body composition and bone mass in women. J Bone Miner Res. 1996;11(6):857–63.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhao LJ, Jiang H, Papasian CJ, Maulik D, Drees B, Hamilton J, et al. Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res. 2008;23(1):17–29.PubMedCrossRefGoogle Scholar
  40. 40.
    Hsu YH, Venners SA, Terwedow HA, Feng Y, Niu T, Li Z, et al. Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin Nutr. 2006;83(1):146–54.PubMedGoogle Scholar
  41. 41.
    Reid IR. Fat and bone. Arch Biochem Biophys. 2010;503(1):20–7.Google Scholar
  42. 42.
    Gilsanz V, Chalfant J, Mo AO, Lee DC, Dorey FJ, Mittelman SD. Reciprocal relations of subcutaneous and visceral fat to bone structure and strength. J Clin Endocrinol Metab. 2009;94(9):3387–93.PubMedCrossRefGoogle Scholar
  43. 43.
    Lecka-Czernik B. PPARs in bone: the role in bone cell differentiation and regulation of energy metabolism. Curr Osteoporos Rep. 2010;8(2):84–90.PubMedCrossRefGoogle Scholar
  44. 44.
    Lecka-Czernik B, Gubrij I, Moerman EJ, Kajkenova O, Lipschitz DA, Manolagas SC, et al. Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARgamma2. J Cell Biochem. 1999;74(3):357–71.PubMedCrossRefGoogle Scholar
  45. 45.
    Rosen CJ, Ackert-Bicknell C, Beamer WG, Nelson T, Adamo M, Cohen P, et al. Allelic differences in a quantitative trait locus affecting insulin-like growth factor-I impact skeletal acquisition and body composition. Pediatr Nephrol. 2005;20(3):255–60.PubMedCrossRefGoogle Scholar
  46. 46.
    Rosen CJ, Ackert-Bicknell CL, Adamo ML, Shultz KL, Rubin J, Donahue LR, et al. Congenic mice with low serum IGF-I have increased body fat, reduced bone mineral density, and an altered osteoblast differentiation program. Bone. 2004;35(5):1046–58.PubMedCrossRefGoogle Scholar
  47. 47.
    Meunier P, Aaron J, Edouard C, Vignon G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res. 1971;80:147–54.PubMedCrossRefGoogle Scholar
  48. 48.
    Mallon PW, Unemori P, Sedwell R, Morey A, Rafferty M, Williams K, et al. In vivo, nucleoside reverse-transcriptase inhibitors alter expression of both mitochondrial and lipid metabolism genes in the absence of depletion of mitochondrial DNA. J Infect Dis. 2005;191(10):1686–96.PubMedCrossRefGoogle Scholar
  49. 49.
    Kannisto K, Sutinen J, Korsheninnikova E, Fisher RM, Ehrenborg E, Gertow K, et al. Expression of adipogenic transcription factors, peroxisome proliferator-activated receptor gamma co-activator 1, IL-6 and CD45 in subcutaneous adipose tissue in lipodystrophy associated with highly active antiretroviral therapy. AIDS. 2003;17(12):1753–62.PubMedCrossRefGoogle Scholar
  50. 50.
    Riis BJ, Rodbro P, Christiansen C. The role of serum concentrations of sex steroids and bone turnover in the development and occurrence of postmenopausal osteoporosis. Calcif Tissue Int. 1986;38(6):318–22.PubMedCrossRefGoogle Scholar
  51. 51.
    Dolan SE, Kanter JR, Grinspoon S. Longitudinal analysis of bone density in human immunodeficiency virus-infected women. J Clin Endocrinol Metab. 2006;91(8):2938–45.PubMedCrossRefGoogle Scholar
  52. 52.
    Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature. 1997;387(6636):903–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Steppan CM, Crawford DT, Chidsey-Frink KL, Ke H, Swick AG. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept. 2000;92(1–3):73–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Cornish J, Callon KE, Bava U, Lin C, Naot D, Hill BL, et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol. 2002;175(2):405–15.PubMedCrossRefGoogle Scholar
  55. 55.
    Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111(3):305–17.PubMedCrossRefGoogle Scholar
  56. 56.
    Burguera B, Hofbauer LC, Thomas T, Gori F, Evans GL, Khosla S, et al. Leptin reduces ovariectomy-induced bone loss in rats. Endocrinology. 2001;142(8):3546–53.PubMedCrossRefGoogle Scholar
  57. 57.
    Hamrick MW, Della-Fera MA, Choi YH, Pennington C, Hartzell D, Baile CA. Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin-deficient ob/ob mice. J Bone Miner Res. 2005;20(6):994–1001.PubMedCrossRefGoogle Scholar
  58. 58.
    Elefteriou F, Takeda S, Ebihara K, Magre J, Patano N, Kim CA, et al. Serum leptin level is a regulator of bone mass. Proc Natl Acad Sci USA. 2004;101(9):3258–63.PubMedCrossRefGoogle Scholar
  59. 59.
    Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100(2):197–207.PubMedCrossRefGoogle Scholar
  60. 60.
    Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434(7032):514–20.PubMedCrossRefGoogle Scholar
  61. 61.
    Goulding A, Taylor RW. Plasma leptin values in relation to bone mass and density and to dynamic biochemical markers of bone resorption and formation in postmenopausal women. Calcif Tissue Int. 1998;63(6):456–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Pasco JA, Henry MJ, Kotowicz MA, Collier GR, Ball MJ, Ugoni AM, et al. Serum leptin levels are associated with bone mass in nonobese women. J Clin Endocrinol Metab. 2001;86(5):1884–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Prouteau S, Benhamou L, Courteix D. Relationships between serum leptin and bone markers during stable weight, weight reduction and weight regain in male and female judoists. Eur J Endocrinol. 2006;154(3):389–95.PubMedCrossRefGoogle Scholar
  64. 64.
    Roux C, Arabi A, Porcher R, Garnero P. Serum leptin as a determinant of bone resorption in healthy postmenopausal women. Bone. 2003;33(5):847–52.PubMedCrossRefGoogle Scholar
  65. 65.
    Zoico E, Zamboni M, Adami S, Vettor R, Mazzali G, Tosoni P, et al. Relationship between leptin levels and bone mineral density in the elderly. Clin Endocrinol (Oxf). 2003;59(1):97–103.CrossRefGoogle Scholar
  66. 66.
    Biver E, Salliot C, Combescure C, Gossec L, Hardouin P, Legroux-Gerot I, et al. Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2011;96(9):2703–13.Google Scholar
  67. 67.
    Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med. 1999;341(12):879–84.PubMedCrossRefGoogle Scholar
  68. 68.
    Kosmiski L, Kuritzkes D, Lichtenstein K, Eckel R. Adipocyte-derived hormone levels in HIV lipodystrophy. Antivir Ther. 2003;8(1):9–15.PubMedGoogle Scholar
  69. 69.
    Nagy GS, Tsiodras S, Martin LD, Avihingsanon A, Gavrila A, Hsu WC, et al. Human immunodeficiency virus type 1-related lipoatrophy and lipohypertrophy are associated with serum concentrations of leptin. Clin Infect Dis. 2003;36(6):795–802.PubMedCrossRefGoogle Scholar
  70. 70.
    Estrada V, Serrano-Rios M, Martinez Larrad MT, Villar NG, Gonzalez Lopez A, Tellez MJ, et al. Leptin and adipose tissue maldistribution in HIV-infected male patients with predominant fat loss treated with antiretroviral therapy. J Acquir Immune Defic Syndr. 2002;29(1):32–40.PubMedGoogle Scholar
  71. 71.
    Madeddu G, Spanu A, Chessa F, Calia GM, Lovigu C, Mannazzu M, et al. Serum leptin and bone metabolism in HIV patients treated with highly active antiretroviral therapy. Q J Nucl Med Mol Imaging. 2009;53(3):290–301.PubMedGoogle Scholar
  72. 72.
    Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999;257(1):79–83.PubMedCrossRefGoogle Scholar
  73. 73.
    Funahashi T, Nakamura T, Shimomura I, Maeda K, Kuriyama H, Takahashi M, et al. Role of adipocytokines on the pathogenesis of atherosclerosis in visceral obesity. Int Med. 1999;38(2):202–6.CrossRefGoogle Scholar
  74. 74.
    Jurimae J, Rembel K, Jurimae T, Rehand M. Adiponectin is associated with bone mineral density in perimenopausal women. Horm Metab Res. 2005;37(5):297–302.PubMedCrossRefGoogle Scholar
  75. 75.
    Lenchik L, Register TC, Hsu FC, Lohman K, Nicklas BJ, Freedman BI, et al. Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone. 2003;33(4):646–51.PubMedCrossRefGoogle Scholar
  76. 76.
    Richards JB, Valdes AM, Burling K, Perks UC, Spector TD. Serum adiponectin and bone mineral density in women. J Clin Endocrinol Metab. 2007;92(4):1517–23.PubMedCrossRefGoogle Scholar
  77. 77.
    Berner HS, Lyngstadaas SP, Spahr A, Monjo M, Thommesen L, Drevon CA, et al. Adiponectin and its receptors are expressed in bone-forming cells. Bone. 2004;35(4):842–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Shinoda Y, Yamaguchi M, Ogata N, Akune T, Kubota N, Yamauchi T, et al. Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J Cell Biochem. 2006;99(1):196–208.PubMedCrossRefGoogle Scholar
  79. 79.
    Oshima K, Nampei A, Matsuda M, Iwaki M, Fukuhara A, Hashimoto J, et al. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun. 2005;331(2):520–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Yamaguchi N, Kukita T, Li YJ, Martinez Argueta JG, Saito T, Hanazawa S, et al. Adiponectin inhibits osteoclast formation stimulated by lipopolysaccharide from Actinobacillus actinomycetemcomitans. FEMS Immunol Med Microbiol. 2007;49(1):28–34.PubMedCrossRefGoogle Scholar
  81. 81.
    Williams GA, Wang Y, Callon KE, Watson M, Lin JM, Lam JB, et al. In vitro and in vivo effects of adiponectin on bone. Endocrinology. 2009;150(8):3603–10.PubMedCrossRefGoogle Scholar
  82. 82.
    Das S, Shahmanesh M, Stolinski M, Shojaee-Moradie F, Jefferson W, Jackson NC, et al. In treatment-naive and antiretroviral-treated subjects with HIV, reduced plasma adiponectin is associated with a reduced fractional clearance rate of VLDL, IDL and LDL apolipoprotein B-100. Diabetologia. 2006;49(3):538–42.PubMedCrossRefGoogle Scholar
  83. 83.
    Dolan SE, Hadigan C, Killilea KM, Sullivan MP, Hemphill L, Lees RS, et al. Increased cardiovascular disease risk indices in HIV-infected women. J Acquir Immune Defic Syndr. 2005;39(1):44–54.PubMedCrossRefGoogle Scholar
  84. 84.
    Giralt M, Domingo P, Guallar JP, Rodriguez de la Concepcion ML, Alegre M, Domingo JC, et al. HIV-1 infection alters gene expression in adipose tissue, which contributes to HIV-1/HAART-associated lipodystrophy. Antivir Ther. 2006;11(6):729–40.PubMedGoogle Scholar
  85. 85.
    Jan V, Cervera P, Maachi M, Baudrimont M, Kim M, Vidal H, et al. Altered fat differentiation and adipocytokine expression are inter-related and linked to morphological changes and insulin resistance in HIV-1-infected lipodystrophic patients. Antivir Ther. 2004;9(4):555–64.PubMedGoogle Scholar
  86. 86.
    Carr A, Workman C, Carey D, Rogers G, Martin A, Baker D, et al. No effect of rosiglitazone for treatment of HIV-1 lipoatrophy: randomised, double-blind, placebo-controlled trial. Lancet. 2004;363(9407):429–38.PubMedCrossRefGoogle Scholar
  87. 87.
    Kamin D, Hadigan C, Lehrke M, Mazza S, Lazar MA, Grinspoon S. Resistin levels in human immunodeficiency virus-infected patients with lipoatrophy decrease in response to rosiglitazone. J Clin Endocrinol Metab. 2005;90(6):3423–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Schindler K, Rieger A, Tura A, Gmeinhardt B, Touzeau-Romer V, Haider D, et al. The effect of rosiglitazone on insulin sensitivity, beta cell function, bone mineral density, and body composition in HIV-positive patients on highly-active antiretroviral therapy (HAART). Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2009; 41(7):573–9.Google Scholar
  89. 89.
    Thommesen L, Stunes AK, Monjo M, Grosvik K, Tamburstuen MV, Kjobli E, et al. Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism. J Cell Biochem. 2006;99(3):824–34.PubMedCrossRefGoogle Scholar
  90. 90.
    Fisher A, Southcott E, Li R, Srikusalanukul W, Davis M, Smith P. Serum resistin in older patients with hip fracture: relationship with comorbidity and biochemical determinants of bone metabolism. Cytokine. 2011; 56(2):157–66.Google Scholar
  91. 91.
    Reid IR, Evans MC, Cooper GJ, Ames RW, Stapleton J. Circulating insulin levels are related to bone density in normal postmenopausal women. Am J Physiol. 1993;265(4 Pt 1):E655–9.PubMedGoogle Scholar
  92. 92.
    Stolk RP, Van Daele PL, Pols HA, Burger H, Hofman A, Birkenhager JC, et al. Hyperinsulinemia and bone mineral density in an elderly population: the Rotterdam Study. Bone. 1996;18(6):545–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Haffner SM, Bauer RL. The association of obesity and glucose and insulin concentrations with bone density in premenopausal and postmenopausal women. Metabolism. 1993;42(6):735–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Abrahamsen B, Rohold A, Henriksen JE, Beck-Nielsen H. Correlations between insulin sensitivity and bone mineral density in non-diabetic men. Diabet Med. 2000;17(2):124–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Ahmed LA, Joakimsen RM, Berntsen GK, Fonnebo V, Schirmer H. Diabetes mellitus and the risk of non-vertebral fractures: the Tromso study. Osteoporos Int. 2006;17(4):495–500.PubMedCrossRefGoogle Scholar
  96. 96.
    Grey A, Bolland M, Gamble G, Wattie D, Horne A, Davidson J, et al. The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab. 2007;92(4):1305–10.PubMedCrossRefGoogle Scholar
  97. 97.
    Noor MA, Parker RA, O’Mara E, Grasela DM, Currie A, Hodder SL, et al. The effects of HIV protease inhibitors atazanavir and lopinavir/ritonavir on insulin sensitivity in HIV-seronegative healthy adults. AIDS. 2004;18(16):2137–44.PubMedCrossRefGoogle Scholar
  98. 98.
    Noor MA, Seneviratne T, Aweeka FT, Lo JC, Schwarz JM, Mulligan K, et al. Indinavir acutely inhibits insulin-stimulated glucose disposal in humans: a randomized, placebo-controlled study. AIDS. 2002;16(5):F1–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Gavrila A, Hsu W, Tsiodras S, Doweiko J, Gautam S, Martin L, et al. Improvement in highly active antiretroviral therapy-induced metabolic syndrome by treatment with pioglitazone but not with fenofibrate: a 2 x 2 factorial, randomized, double-blinded, placebo-controlled trial. Clin Infect Dis. 2005;40(5):745–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Hadigan C, Yawetz S, Thomas A, Havers F, Sax PE, Grinspoon S. Metabolic effects of rosiglitazone in HIV lipodystrophy: a randomized, controlled trial. Ann Int Med. 2004;140(10):786–94.PubMedGoogle Scholar
  101. 101.
    Arioglu E, Duncan-Morin J, Sebring N, Rother KI, Gottlieb N, Lieberman J, et al. Efficacy and safety of troglitazone in the treatment of lipodystrophy syndromes. Ann Int Med. 2000;133(4):263–74.PubMedGoogle Scholar
  102. 102.
    Mallon PW, Sedwell R, Rogers G, Nolan D, Unemori P, Hoy J, et al. Effect of rosiglitazone on peroxisome proliferator-activated receptor gamma gene expression in human adipose tissue is limited by antiretroviral drug-induced mitochondrial dysfunction. J Infect Dis. 2008;198(12):1794–803.PubMedCrossRefGoogle Scholar
  103. 103.
    Cornish J, Callon KE, Bava U, Watson M, Xu X, Lin JM, et al. Preptin, another peptide product of the pancreatic beta-cell, is osteogenic in vitro and in vivo. Am J Physiol Endocrinol Metab. 2007;292(1):E117–22.PubMedCrossRefGoogle Scholar
  104. 104.
    Cornish J, Callon KE, Cooper GJ, Reid IR. Amylin stimulates osteoblast proliferation and increases mineralized bone volume in adult mice. Biochem Biophys Res Commun. 1995;207(1):133–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Cornish J, Callon KE, King AR, Cooper GJ, Reid IR. Systemic administration of amylin increases bone mass, linear growth, and adiposity in adult male mice. Am J Physiol. 1998;275(4 Pt 1):E694–9.PubMedGoogle Scholar
  106. 106.
    Horcajada-Molteni MN, Chanteranne B, Lebecque P, Davicco MJ, Coxam V, Young A, et al. Amylin and bone metabolism in streptozotocin-induced diabetic rats. J Bone Miner Res. 2001;16(5):958–65.PubMedCrossRefGoogle Scholar
  107. 107.
    Horcajada-Molteni MN, Davicco MJ, Lebecque P, Coxam V, Young AA, Barlet JP. Amylin inhibits ovariectomy-induced bone loss in rats. J Endocrinol. 2000;165(3):663–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Ihle R, Loucks AB. Dose–response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res. 2004;19(8):1231–40.PubMedCrossRefGoogle Scholar
  109. 109.
    Reid IR. Relationships between fat and bone. Osteoporos Int. 2008;19(5):595–606.PubMedCrossRefGoogle Scholar
  110. 110.
    Ginde AA, Liu MC, Camargo CA Jr. Demographic differences and trends of vitamin D insufficiency in the US population, 1988–2004. Arch Intern Med. 2009;169(6):626–32.PubMedCrossRefGoogle Scholar
  111. 111.
    Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM. Prevalence of overweight and obesity in the United States, 1999–2004. JAMA. 2006;295(13):1549–55.PubMedCrossRefGoogle Scholar
  112. 112.
    Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808.PubMedGoogle Scholar
  113. 113.
    Zhao L, Huang J, Zhang H, Wang Y, Matesic LE, Takahata M, et al. Tumor necrosis factor inhibits mesenchymal stem cell differentiation into osteoblasts via the ubiquitin E3 ligase Wwp1. Stem Cells. 2011;29(10):1601–10.PubMedCrossRefGoogle Scholar
  114. 114.
    Kaneki H, Guo R, Chen D, Yao Z, Schwarz EM, Zhang YE, et al. Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts. J Biol Chem. 2006;281(7):4326–33.PubMedCrossRefGoogle Scholar
  115. 115.
    Schott AM, Cormier C, Hans D, Favier F, Hausherr E, Dargent-Molina P, et al. How hip and whole-body bone mineral density predict hip fracture in elderly women: the EPIDOS prospective study. Osteoporos Int. 1998;8(3):247–54.PubMedCrossRefGoogle Scholar
  116. 116.
    Lau EM, Chan YH, Chan M, Woo J, Griffith J, Chan HH, et al. Vertebral deformity in Chinese men: prevalence, risk factors, bone mineral density, and body composition measurements. Calcif Tissue Int. 2000;66(1):47–52.PubMedCrossRefGoogle Scholar
  117. 117.
    De Laet C, Kanis JA, Oden A, Johanson H, Johnell O, Delmas P, et al. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int. 2005;16(11):1330–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Goulding A. Risk factors for fractures in normally active children and adolescents. Med Sport Sci. 2007;51:102–20.PubMedCrossRefGoogle Scholar
  119. 119.
    Triant VA, Brown TT, Lee H, Grinspoon SK. Fracture prevalence among human immunodeficiency virus (HIV)-infected versus non-HIV-infected patients in a large U.S. healthcare system. J Clin Endocrinol Metab. 2008;93(9):3499–504.PubMedCrossRefGoogle Scholar
  120. 120.
    Volk J, Localio R, Newcomb C, Yang Y, Hennessy S, Kostman J, et al. Risk of fractures associated with HIV/hepatitis C coinfection. 18th Conference on retroviruses and opportunistic infections. 2011; February 27–March 2, 2011, Abstract 914.Google Scholar
  121. 121.
    Arnsten JH, Freeman R, Howard AA, Floris-Moore M, Lo Y, Klein RS. Decreased bone mineral density and increased fracture risk in aging men with or at risk for HIV infection. AIDS. 2007;21(5):617–23.PubMedCrossRefGoogle Scholar
  122. 122.
    Prior J, Burdge D, Maan E, Milner R, Hankins C, Klein M, et al. Fragility fractures and bone mineral density in HIV positive women: a case–control population-based study. Osteoporos Int. 2007;18(10):1345–53.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.HIV Molecular Research Group, School of Medicine and Medical ScienceUniversity College DublinDublinIreland
  2. 2.Department of Infectious DiseasesMater Misericordiae University HospitalDublinIreland
  3. 3.Catherine McAuley Education and Research CentreMater Misericordiae University HospitalDublin 7Ireland

Personalised recommendations