Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Uric Acid Nephrolithiasis: A Systemic Metabolic Disorder

Abstract

Uric acid nephrolithiasis is characteristically a manifestation of a systemic metabolic disorder. It has a prevalence of about 10% among all stone formers, the third most common type of kidney stone in the industrialized world. Uric acid stones form primarily due to an unduly acid urine; less deciding factors are hyperuricosuria and a low urine volume. The vast majority of uric acid stone formers have the metabolic syndrome, and not infrequently, clinical gout is present as well. A universal finding is a low baseline urine pH plus insufficient production of urinary ammonium buffer. Persons with gastrointestinal disorders, in particular chronic diarrhea or ostomies, and patients with malignancies with a large tumor mass and high cell turnover comprise a less common but nevertheless important subset. Pure uric acid stones are radiolucent but well visualized on renal ultrasound or computer tomography. A 24 h urine collection for stone risk analysis provides essential insight into the pathophysiology of stone formation and may guide therapy. Management includes a liberal fluid intake and dietary modification. Potassium citrate to alkalinize the urine to a goal pH between 6 and 6.5 is essential, as undissociated uric acid deprotonates into its much more soluble urate form.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Balinsky JB. Phylogenetic aspects of purine metabolism. S Afr Med J. 1972;46(29):993–7.

  2. 2.

    Campbell JW, Comparative biochemistry of nitrogen metabolism. In: Campbell JW, editor. The vertebrates, Vol. 2. New York: Academic Press; 1970.

  3. 3.

    Moe OW. Uric acid nephrolithiasis: proton titration of an essential molecule? Curr Opin Nephrol Hypertens. 2006;15(4):366–73.

  4. 4.

    Shoemaker VH, et al. Uricotelism and low evaporative water loss in a South American frog. Science. 1972;175(25):1018–20.

  5. 5.

    Christen P, et al. Urate oxidase in primates. Folia Primatol (Basel). 1970;13(1):35–9.

  6. 6.

    Varela-Echavarria A, Montes de Oca-Luna R, Barrera-Saldana HA. Uricase protein sequences: conserved during vertebrate evolution but absent in humans. FASEB J. 1988;2(15):3092–6.

  7. 7.

    Shattock SG. Prehistoric or predynastic Egyptian calculus. Trans Path Sci Lond. 1905;56–62.

  8. 8.

    Moran ME. Uric acid stone disease. Front Biosci. 2003;8:s1339–55.

  9. 9.

    Sydenham T. Tractatus de podagra et hydrope. London: Walter Kettibly; 1683.

  10. 10.

    Scheele C. Examen Chemicum Calculi Urinari. Opuscula. 1776;2:73.

  11. 11.

    Coley NG. Medical chemists and the origins of clinical chemistry in Britain (circa 1750–1850). Clin Chem. 2004;50(5):961–72.

  12. 12.

    Wollaston WH. On gouty and urinary concretions. Philos Trans R Soc Lond. 1797;87:386–400.

  13. 13.

    Wollaston WH. On cystic oxide, a new species of urinary calculus. Philos Trans R Soc Lond. 1810;100:223–30.

  14. 14.

    Pearson G. Experiments and observations, tending to show the composition and properties of urinary concretions. Philos Trans R Soc Lond. 1798;88:15–46.

  15. 15.

    Smeaton WA (1963) Fourcroy, chemist and revolutionary (1755–1809). 7(3):287.

  16. 16.

    Ellis H. A history of bladder stone. J Royal Soc Med. 1979;72(4):248–51.

  17. 17.

    Osler W. The principles and practice of medicine: designed for the use of practitioners and students of medicine. Young J Pentland: Edinburgh & London; 1892. pp. 765–770.

  18. 18.

    Gutman AB, Yu TF. Uric acid nephrolithiasis. Am J Med. 1968;45(5):756–79.

  19. 19.

    Mandel NS, Mandel GS. Urinary tract stone disease in the United States veteran population. II. Geographical analysis of variations in composition. J Urol. 1989; 142(6):1516–21.

  20. 20.

    Gault MH, Chafe L. Relationship of frequency, age, sex, stone weight, composition in 15, 624 stones: comparison of resutls for 1980 to 1983, 1995 to 1998. J Urol. 2000;164(2):302–7.

  21. 21.

    Knoll T, et al. Urolithiasis through the ages: data on more than 200, 000 urinary stone analyses. J Urol. 2011;185(4):1304–11.

  22. 22.

    Gentle DL, et al. Geriatric urolithiasis. J Urol. 1997;158(6):2221–4.

  23. 23.

    Henneman PH, Wallach S, Dempsey EF. The metabolism defect responsible for uric acid stone formation. J Clin Invest. 1962;41:537–42.

  24. 24.

    Zaidman JL, Pinto N. Studies on urolithiasis in Israel. J Urol. 1976;115(6):626–7.

  25. 25.

    Portis AJ, et al. Stone disease in the Hmong of Minnesota: initial description of a high-risk population. J Endourol. 2004;18(9):853–7.

  26. 26.

    Ansari MS, et al. Spectrum of stone composition: structural analysis of 1050 upper urinary tract calculi from northern India. Int J Urol. 2005;12(1):12–6.

  27. 27.

    Hossain RZ, et al. Urolithiasis in Okinawa, Japan: a relatively high prevalence of uric acid stones. Int J Urol. 2003;10(8):411–5.

  28. 28.

    Pak CY, et al. Biochemical profile of stone-forming patients with diabetes mellitus. Urology. 2003;61(3):523–7.

  29. 29.

    Daudon M, Lacour B, Jungers P. High prevalence of uric acid calculi in diabetic stone formers. Nephrol Dial Transplant. 2005;20(2):468–9.

  30. 30.

    Hershfield MS, et al. Treating gout with pegloticase, a PEGylated urate oxidase, provides insight into the importance of uric acid as an antioxidant in vivo. Proc Natl Acad Sci USA. 2010;107(32):14351–6.

  31. 31.

    Pession A, Melchionda F, Castellini C. Pitfalls, prevention, and treatment of hyperuricemia during tumor lysis syndrome in the era of rasburicase (recombinant urate oxidase). Biologics. 2008;2(1):129–41.

  32. 32.

    LaRosa C, et al. Acute renal failure from xanthine nephropathy during management of acute leukemia. Pediatr Nephrol. 2007;22(1):132–5.

  33. 33.

    Fellstrom B, et al. The influence of a high dietary intake of purine-rich animal protein on urinary urate excretion and supersaturation in renal stone disease. Clin Sci (Lond). 1983;64(4):399–405.

  34. 34.

    Kamel KS, et al. Recurrent uric acid stones. QJM. 2005;98(1):57–68.

  35. 35.

    Steele TH, Boner G. Origins of the uricosuric response. J Clin Invest. 1973;52(6):1368–75.

  36. 36.

    Enomoto A, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002;417(6887):447–52.

  37. 37.

    Lipkowitz MS, et al. Functional reconstitution, membrane targeting, genomic structure, and chromosomal localization of a human urate transporter. J Clin Invest. 2001;107(9):1103–15.

  38. 38.

    Leal-Pinto E, et al. Functional analysis and molecular model of the human urate transporter/channel, hUAT. Am J Physiol Renal Physiol. 2002;283(1):F150–63.

  39. 39.

    Sorensen CM, Chandhoke PS. Hyperuricosuric calcium nephrolithiasis. Endocrinol Metab Clin North Am. 2002;31(4):915–25.

  40. 40.

    Robertson WG. Renal stones in the tropics. Semin Nephrol. 2003;23(1):77–87.

  41. 41.

    Pak CY, et al. Physicochemical metabolic characteristics for calcium oxalate stone formation in patients with gouty diathesis. J Urol. 2005;173(5):1606–9.

  42. 42.

    Pak CY, et al. Biochemical distinction between hyperuricosuric calcium urolithiasis and gouty diathesis. Urology. 2002;60(5):789–94.

  43. 43.

    Pak CY, et al. Biochemical profile of idiopathic uric acid nephrolithiasis. Kidney Int. 2001;60(2):757–61.

  44. 44.

    Sakhaee K, et al. Pathophysiologic basis for normouricosuric uric acid nephrolithiasis. Kidney Int. 2002;62(3):971–9.

  45. 45.

    Sakhaee K, et al. Contrasting effects of potassium citrate and sodium citrate therapies on urinary chemistries and crystallization of stone-forming salts. Kidney Int. 1983;24(3):348–52.

  46. 46.

    Jones HB. On the variations of the acidity of the urine in the state of health. Philos Trans R Soc. 1845;135–8.

  47. 47.

    Mills JN, Stanbury SW. Intrinsic diurnal rhythm in urinary electrolyte output. J Physiol. 1951;115(1):18p–9p.

  48. 48.

    Moore-Ede MC, Herd JA. Renal electrolyte circadian rhythms: independence from feeding and activity patterns. Am J Physiol. 1977;232(2):F128–35.

  49. 49.

    Stanbury SW, Thomson AE. Diurnal variation in electrolyte excretion. Clin Sci (Lond). 1951;10(3):267–93.

  50. 50.

    Murayama T, et al. Role of the diurnal variation of urinary pH and urinary calcium in urolithiasis: a study in outpatients. Int J Urol. 2001;8(10):525–31. (discussion 532).

  51. 51.

    Cameron MA et al. Diurnal variation in urinary acidification parameters in normal subjects and uric acid stone formers. 2011: Manuscript in preparation.

  52. 52.

    Cameron MA, et al. Circadian variation in urine pH and uric acid nephrolithiasis risk. Nephrol Dial Transplant. 2007;22(8):2375–8.

  53. 53.

    Hamm LL, Simon EE. Roles and mechanisms of urinary buffer excretion. Am J Physiol. 1987; 253(4 Pt 2):F595–605.

  54. 54.

    Kamel KS, Cheema-Dhadli S, Halperin ML. Studies on the pathophysiology of the low urine pH in patients with uric acid stones. Kidney Int. 2002;61(3):988–94.

  55. 55.

    Cameron MA, et al. Urine composition in type 2 diabetes: predisposition to uric acid nephrolithiasis. J Am Soc Nephrol. 2006;17(5):1422–8.

  56. 56.

    Maalouf NM, et al. Metabolic basis for low urine pH in type 2 diabetes. Clin J Am Soc Nephrol. 2010;5(7):1277–81.

  57. 57.

    Ekaratanawong S, et al. Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. J Pharmacol Sci. 2004;94(3):297–304.

  58. 58.

    Lieske JC, et al. Diabetes mellitus and the risk of urinary tract stones: a population-based case-control study. Am J Kidney Dis. 2006;48(6):897–904.

  59. 59.

    Abate N, et al. The metabolic syndrome and uric acid nephrolithiasis: novel features of renal manifestation of insulin resistance. Kidney Int. 2004;65(2):386–92.

  60. 60.

    Bobulescu IA, et al. Effect of renal lipid accumulation on proximal tubule Na +/H + exchange and ammonium secretion. Am J Physiol Renal Physiol. 2008;294(6):F1315–22.

  61. 61.

    Bobulescu IA, et al. Reduction of renal triglyceride accumulation: effects on proximal tubule Na+/H+ exchange and urinary acidification. Am J Physiol Renal Physiol. 2009;297(5):F1419–26.

  62. 62.

    Curhan GC, Taylor EN. 24-h uric acid excretion and the risk of kidney stones. Kidney Int. 2008;73(4):489–96.

  63. 63.

    Calado J, et al. A novel heterozygous missense mutation in the UMOD gene responsible for Familial Juvenile Hyperuricemic Nephropathy. BMC Med Genet. 2005;6:5.

  64. 64.

    Bleyer AJ, et al. Renal manifestations of a mutation in the uromodulin (Tamm Horsfall protein) gene. Am J Kidney Dis. 2003;42(2):E20–6.

  65. 65.

    Pak CY, et al. Predictive value of kidney stone composition in the detection of metabolic abnormalities. Am J Med. 2003;115(1):26–32.

  66. 66.

    Howard SC, Jones DP, Pui CH. The tumor lysis syndrome. N Engl J Med. 2011;364(19):1844–54.

  67. 67.

    Diamond HS, et al. Hyperuricosuria and increased tubular secretion of urate in sickle cell anemia. Am J Med. 1975;59(6):796–802.

  68. 68.

    Reddy ST, et al. Effect of low-carbohydrate high-protein diets on acid-base balance, stone-forming propensity, and calcium metabolism. Am J Kidney Dis. 2002;40(2):265–74.

  69. 69.

    Pak CY, et al. Mechanism for calcium urolithiasis among patients with hyperuricosuria: supersaturation of urine with respect to monosodium urate. J Clin Invest. 1977;59(3):426–31.

  70. 70.

    Graff L. A handbook of routine urinalysis. Philadelphia: J.B.Lippincott Company; 1982.

  71. 71.

    Pais VM Jr, et al. Xanthine urolithiasis. Urology 2006; 67(5):1084 e9–11.

  72. 72.

    Coe FL. Treated and untreated recurrent calcium nephrolithiasis in patients with idiopathic hypercalciuria, hyperuricosuria, or no metabolic disorder. Ann Intern Med. 1977;87(4):404–10.

  73. 73.

    Ettinger B, et al. Randomized trial of allopurinol in the prevention of calcium oxalate calculi. N Engl J Med. 1986;315(22):1386–9.

  74. 74.

    Becker MA, et al. Febuxostat compared with allopurinol in patients with hyperuricemia and gout. N Engl J Med. 2005;353(23):2450–61.

  75. 75.

    Pak CY, Sakhaee K, Fuller C. Successful management of uric acid nephrolithiasis with potassium citrate. Kidney Int. 1986;30(3):422–8.

  76. 76.

    Moran ME, et al. Utility of oral dissolution therapy in the management of referred patients with secondarily treated uric acid stones. Urology. 2002;59(2):206–10.

  77. 77.

    Rodman JS. Prophylaxis of uric acid stones with alternate day doses of alkaline potassium salts. J Urol. 1991;145(1):97–9.

  78. 78.

    Preminger GM, Sakhaee K, Pak CY. Alkali action on the urinary crystallization of calcium salts: contrasting responses to sodium citrate and potassium citrate. J Urol. 1988;139(2):240–2.

  79. 79.

    Odvina CV. Comparative value of orange juice versus lemonade in reducing stone-forming risk. Clin J Am Soc Nephrol. 2006;1(6):1269–74.

Download references

Author information

Correspondence to Michael R. Wiederkehr.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wiederkehr, M.R., Moe, O.W. Uric Acid Nephrolithiasis: A Systemic Metabolic Disorder. Clinic Rev Bone Miner Metab 9, 207–217 (2011). https://doi.org/10.1007/s12018-011-9106-6

Download citation

Keywords

  • Uric acid nephrolithiasis
  • Metabolic syndrome
  • Gout
  • Acid urine
  • Hyperuricosuria
  • pH
  • Urine buffer
  • Ammonium
  • Alkaline
  • Potassium citrate