Uric Acid Nephrolithiasis: A Systemic Metabolic Disorder

  • Michael R. Wiederkehr
  • Orson W. Moe
Original Paper


Uric acid nephrolithiasis is characteristically a manifestation of a systemic metabolic disorder. It has a prevalence of about 10% among all stone formers, the third most common type of kidney stone in the industrialized world. Uric acid stones form primarily due to an unduly acid urine; less deciding factors are hyperuricosuria and a low urine volume. The vast majority of uric acid stone formers have the metabolic syndrome, and not infrequently, clinical gout is present as well. A universal finding is a low baseline urine pH plus insufficient production of urinary ammonium buffer. Persons with gastrointestinal disorders, in particular chronic diarrhea or ostomies, and patients with malignancies with a large tumor mass and high cell turnover comprise a less common but nevertheless important subset. Pure uric acid stones are radiolucent but well visualized on renal ultrasound or computer tomography. A 24 h urine collection for stone risk analysis provides essential insight into the pathophysiology of stone formation and may guide therapy. Management includes a liberal fluid intake and dietary modification. Potassium citrate to alkalinize the urine to a goal pH between 6 and 6.5 is essential, as undissociated uric acid deprotonates into its much more soluble urate form.


Uric acid nephrolithiasis Metabolic syndrome Gout Acid urine Hyperuricosuria pH Urine buffer Ammonium Alkaline Potassium citrate 


  1. 1.
    Balinsky JB. Phylogenetic aspects of purine metabolism. S Afr Med J. 1972;46(29):993–7.PubMedGoogle Scholar
  2. 2.
    Campbell JW, Comparative biochemistry of nitrogen metabolism. In: Campbell JW, editor. The vertebrates, Vol. 2. New York: Academic Press; 1970.Google Scholar
  3. 3.
    Moe OW. Uric acid nephrolithiasis: proton titration of an essential molecule? Curr Opin Nephrol Hypertens. 2006;15(4):366–73.PubMedCrossRefGoogle Scholar
  4. 4.
    Shoemaker VH, et al. Uricotelism and low evaporative water loss in a South American frog. Science. 1972;175(25):1018–20.PubMedCrossRefGoogle Scholar
  5. 5.
    Christen P, et al. Urate oxidase in primates. Folia Primatol (Basel). 1970;13(1):35–9.CrossRefGoogle Scholar
  6. 6.
    Varela-Echavarria A, Montes de Oca-Luna R, Barrera-Saldana HA. Uricase protein sequences: conserved during vertebrate evolution but absent in humans. FASEB J. 1988;2(15):3092–6.PubMedGoogle Scholar
  7. 7.
    Shattock SG. Prehistoric or predynastic Egyptian calculus. Trans Path Sci Lond. 1905;56–62.Google Scholar
  8. 8.
    Moran ME. Uric acid stone disease. Front Biosci. 2003;8:s1339–55.PubMedCrossRefGoogle Scholar
  9. 9.
    Sydenham T. Tractatus de podagra et hydrope. London: Walter Kettibly; 1683.Google Scholar
  10. 10.
    Scheele C. Examen Chemicum Calculi Urinari. Opuscula. 1776;2:73.Google Scholar
  11. 11.
    Coley NG. Medical chemists and the origins of clinical chemistry in Britain (circa 1750–1850). Clin Chem. 2004;50(5):961–72.PubMedCrossRefGoogle Scholar
  12. 12.
    Wollaston WH. On gouty and urinary concretions. Philos Trans R Soc Lond. 1797;87:386–400.CrossRefGoogle Scholar
  13. 13.
    Wollaston WH. On cystic oxide, a new species of urinary calculus. Philos Trans R Soc Lond. 1810;100:223–30.CrossRefGoogle Scholar
  14. 14.
    Pearson G. Experiments and observations, tending to show the composition and properties of urinary concretions. Philos Trans R Soc Lond. 1798;88:15–46.CrossRefGoogle Scholar
  15. 15.
    Smeaton WA (1963) Fourcroy, chemist and revolutionary (1755–1809). 7(3):287.Google Scholar
  16. 16.
    Ellis H. A history of bladder stone. J Royal Soc Med. 1979;72(4):248–51.Google Scholar
  17. 17.
    Osler W. The principles and practice of medicine: designed for the use of practitioners and students of medicine. Young J Pentland: Edinburgh & London; 1892. pp. 765–770.Google Scholar
  18. 18.
    Gutman AB, Yu TF. Uric acid nephrolithiasis. Am J Med. 1968;45(5):756–79.PubMedCrossRefGoogle Scholar
  19. 19.
    Mandel NS, Mandel GS. Urinary tract stone disease in the United States veteran population. II. Geographical analysis of variations in composition. J Urol. 1989; 142(6):1516–21.Google Scholar
  20. 20.
    Gault MH, Chafe L. Relationship of frequency, age, sex, stone weight, composition in 15, 624 stones: comparison of resutls for 1980 to 1983, 1995 to 1998. J Urol. 2000;164(2):302–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Knoll T, et al. Urolithiasis through the ages: data on more than 200, 000 urinary stone analyses. J Urol. 2011;185(4):1304–11.PubMedCrossRefGoogle Scholar
  22. 22.
    Gentle DL, et al. Geriatric urolithiasis. J Urol. 1997;158(6):2221–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Henneman PH, Wallach S, Dempsey EF. The metabolism defect responsible for uric acid stone formation. J Clin Invest. 1962;41:537–42.PubMedCrossRefGoogle Scholar
  24. 24.
    Zaidman JL, Pinto N. Studies on urolithiasis in Israel. J Urol. 1976;115(6):626–7.PubMedGoogle Scholar
  25. 25.
    Portis AJ, et al. Stone disease in the Hmong of Minnesota: initial description of a high-risk population. J Endourol. 2004;18(9):853–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Ansari MS, et al. Spectrum of stone composition: structural analysis of 1050 upper urinary tract calculi from northern India. Int J Urol. 2005;12(1):12–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Hossain RZ, et al. Urolithiasis in Okinawa, Japan: a relatively high prevalence of uric acid stones. Int J Urol. 2003;10(8):411–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Pak CY, et al. Biochemical profile of stone-forming patients with diabetes mellitus. Urology. 2003;61(3):523–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Daudon M, Lacour B, Jungers P. High prevalence of uric acid calculi in diabetic stone formers. Nephrol Dial Transplant. 2005;20(2):468–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Hershfield MS, et al. Treating gout with pegloticase, a PEGylated urate oxidase, provides insight into the importance of uric acid as an antioxidant in vivo. Proc Natl Acad Sci USA. 2010;107(32):14351–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Pession A, Melchionda F, Castellini C. Pitfalls, prevention, and treatment of hyperuricemia during tumor lysis syndrome in the era of rasburicase (recombinant urate oxidase). Biologics. 2008;2(1):129–41.PubMedGoogle Scholar
  32. 32.
    LaRosa C, et al. Acute renal failure from xanthine nephropathy during management of acute leukemia. Pediatr Nephrol. 2007;22(1):132–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Fellstrom B, et al. The influence of a high dietary intake of purine-rich animal protein on urinary urate excretion and supersaturation in renal stone disease. Clin Sci (Lond). 1983;64(4):399–405.Google Scholar
  34. 34.
    Kamel KS, et al. Recurrent uric acid stones. QJM. 2005;98(1):57–68.PubMedCrossRefGoogle Scholar
  35. 35.
    Steele TH, Boner G. Origins of the uricosuric response. J Clin Invest. 1973;52(6):1368–75.PubMedCrossRefGoogle Scholar
  36. 36.
    Enomoto A, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002;417(6887):447–52.PubMedGoogle Scholar
  37. 37.
    Lipkowitz MS, et al. Functional reconstitution, membrane targeting, genomic structure, and chromosomal localization of a human urate transporter. J Clin Invest. 2001;107(9):1103–15.PubMedCrossRefGoogle Scholar
  38. 38.
    Leal-Pinto E, et al. Functional analysis and molecular model of the human urate transporter/channel, hUAT. Am J Physiol Renal Physiol. 2002;283(1):F150–63.PubMedGoogle Scholar
  39. 39.
    Sorensen CM, Chandhoke PS. Hyperuricosuric calcium nephrolithiasis. Endocrinol Metab Clin North Am. 2002;31(4):915–25.PubMedCrossRefGoogle Scholar
  40. 40.
    Robertson WG. Renal stones in the tropics. Semin Nephrol. 2003;23(1):77–87.PubMedCrossRefGoogle Scholar
  41. 41.
    Pak CY, et al. Physicochemical metabolic characteristics for calcium oxalate stone formation in patients with gouty diathesis. J Urol. 2005;173(5):1606–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Pak CY, et al. Biochemical distinction between hyperuricosuric calcium urolithiasis and gouty diathesis. Urology. 2002;60(5):789–94.PubMedCrossRefGoogle Scholar
  43. 43.
    Pak CY, et al. Biochemical profile of idiopathic uric acid nephrolithiasis. Kidney Int. 2001;60(2):757–61.PubMedCrossRefGoogle Scholar
  44. 44.
    Sakhaee K, et al. Pathophysiologic basis for normouricosuric uric acid nephrolithiasis. Kidney Int. 2002;62(3):971–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Sakhaee K, et al. Contrasting effects of potassium citrate and sodium citrate therapies on urinary chemistries and crystallization of stone-forming salts. Kidney Int. 1983;24(3):348–52.PubMedCrossRefGoogle Scholar
  46. 46.
    Jones HB. On the variations of the acidity of the urine in the state of health. Philos Trans R Soc. 1845;135–8.Google Scholar
  47. 47.
    Mills JN, Stanbury SW. Intrinsic diurnal rhythm in urinary electrolyte output. J Physiol. 1951;115(1):18p–9p.PubMedGoogle Scholar
  48. 48.
    Moore-Ede MC, Herd JA. Renal electrolyte circadian rhythms: independence from feeding and activity patterns. Am J Physiol. 1977;232(2):F128–35.PubMedGoogle Scholar
  49. 49.
    Stanbury SW, Thomson AE. Diurnal variation in electrolyte excretion. Clin Sci (Lond). 1951;10(3):267–93.Google Scholar
  50. 50.
    Murayama T, et al. Role of the diurnal variation of urinary pH and urinary calcium in urolithiasis: a study in outpatients. Int J Urol. 2001;8(10):525–31. (discussion 532).PubMedGoogle Scholar
  51. 51.
    Cameron MA et al. Diurnal variation in urinary acidification parameters in normal subjects and uric acid stone formers. 2011: Manuscript in preparation.Google Scholar
  52. 52.
    Cameron MA, et al. Circadian variation in urine pH and uric acid nephrolithiasis risk. Nephrol Dial Transplant. 2007;22(8):2375–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Hamm LL, Simon EE. Roles and mechanisms of urinary buffer excretion. Am J Physiol. 1987; 253(4 Pt 2):F595–605.Google Scholar
  54. 54.
    Kamel KS, Cheema-Dhadli S, Halperin ML. Studies on the pathophysiology of the low urine pH in patients with uric acid stones. Kidney Int. 2002;61(3):988–94.PubMedCrossRefGoogle Scholar
  55. 55.
    Cameron MA, et al. Urine composition in type 2 diabetes: predisposition to uric acid nephrolithiasis. J Am Soc Nephrol. 2006;17(5):1422–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Maalouf NM, et al. Metabolic basis for low urine pH in type 2 diabetes. Clin J Am Soc Nephrol. 2010;5(7):1277–81.PubMedCrossRefGoogle Scholar
  57. 57.
    Ekaratanawong S, et al. Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. J Pharmacol Sci. 2004;94(3):297–304.PubMedCrossRefGoogle Scholar
  58. 58.
    Lieske JC, et al. Diabetes mellitus and the risk of urinary tract stones: a population-based case-control study. Am J Kidney Dis. 2006;48(6):897–904.PubMedCrossRefGoogle Scholar
  59. 59.
    Abate N, et al. The metabolic syndrome and uric acid nephrolithiasis: novel features of renal manifestation of insulin resistance. Kidney Int. 2004;65(2):386–92.PubMedCrossRefGoogle Scholar
  60. 60.
    Bobulescu IA, et al. Effect of renal lipid accumulation on proximal tubule Na +/H + exchange and ammonium secretion. Am J Physiol Renal Physiol. 2008;294(6):F1315–22.PubMedCrossRefGoogle Scholar
  61. 61.
    Bobulescu IA, et al. Reduction of renal triglyceride accumulation: effects on proximal tubule Na+/H+ exchange and urinary acidification. Am J Physiol Renal Physiol. 2009;297(5):F1419–26.PubMedCrossRefGoogle Scholar
  62. 62.
    Curhan GC, Taylor EN. 24-h uric acid excretion and the risk of kidney stones. Kidney Int. 2008;73(4):489–96.PubMedCrossRefGoogle Scholar
  63. 63.
    Calado J, et al. A novel heterozygous missense mutation in the UMOD gene responsible for Familial Juvenile Hyperuricemic Nephropathy. BMC Med Genet. 2005;6:5.PubMedCrossRefGoogle Scholar
  64. 64.
    Bleyer AJ, et al. Renal manifestations of a mutation in the uromodulin (Tamm Horsfall protein) gene. Am J Kidney Dis. 2003;42(2):E20–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Pak CY, et al. Predictive value of kidney stone composition in the detection of metabolic abnormalities. Am J Med. 2003;115(1):26–32.PubMedCrossRefGoogle Scholar
  66. 66.
    Howard SC, Jones DP, Pui CH. The tumor lysis syndrome. N Engl J Med. 2011;364(19):1844–54.PubMedCrossRefGoogle Scholar
  67. 67.
    Diamond HS, et al. Hyperuricosuria and increased tubular secretion of urate in sickle cell anemia. Am J Med. 1975;59(6):796–802.PubMedCrossRefGoogle Scholar
  68. 68.
    Reddy ST, et al. Effect of low-carbohydrate high-protein diets on acid-base balance, stone-forming propensity, and calcium metabolism. Am J Kidney Dis. 2002;40(2):265–74.PubMedCrossRefGoogle Scholar
  69. 69.
    Pak CY, et al. Mechanism for calcium urolithiasis among patients with hyperuricosuria: supersaturation of urine with respect to monosodium urate. J Clin Invest. 1977;59(3):426–31.PubMedCrossRefGoogle Scholar
  70. 70.
    Graff L. A handbook of routine urinalysis. Philadelphia: J.B.Lippincott Company; 1982.Google Scholar
  71. 71.
    Pais VM Jr, et al. Xanthine urolithiasis. Urology 2006; 67(5):1084 e9–11.Google Scholar
  72. 72.
    Coe FL. Treated and untreated recurrent calcium nephrolithiasis in patients with idiopathic hypercalciuria, hyperuricosuria, or no metabolic disorder. Ann Intern Med. 1977;87(4):404–10.PubMedGoogle Scholar
  73. 73.
    Ettinger B, et al. Randomized trial of allopurinol in the prevention of calcium oxalate calculi. N Engl J Med. 1986;315(22):1386–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Becker MA, et al. Febuxostat compared with allopurinol in patients with hyperuricemia and gout. N Engl J Med. 2005;353(23):2450–61.PubMedCrossRefGoogle Scholar
  75. 75.
    Pak CY, Sakhaee K, Fuller C. Successful management of uric acid nephrolithiasis with potassium citrate. Kidney Int. 1986;30(3):422–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Moran ME, et al. Utility of oral dissolution therapy in the management of referred patients with secondarily treated uric acid stones. Urology. 2002;59(2):206–10.PubMedCrossRefGoogle Scholar
  77. 77.
    Rodman JS. Prophylaxis of uric acid stones with alternate day doses of alkaline potassium salts. J Urol. 1991;145(1):97–9.PubMedGoogle Scholar
  78. 78.
    Preminger GM, Sakhaee K, Pak CY. Alkali action on the urinary crystallization of calcium salts: contrasting responses to sodium citrate and potassium citrate. J Urol. 1988;139(2):240–2.PubMedGoogle Scholar
  79. 79.
    Odvina CV. Comparative value of orange juice versus lemonade in reducing stone-forming risk. Clin J Am Soc Nephrol. 2006;1(6):1269–74.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Division of NephrologyBaylor University Medical CenterDallasUSA
  2. 2.Department of Internal Medicine, Division of NephrologyUniversity of Texas Southwestern Medical CenterDallasUSA
  3. 3.Department of PhysiologyUniversity of Texas Southwestern Medical CenterDallasUSA
  4. 4.Charles and Jane Pak Center of Mineral Metabolism and Clinical ResearchUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations