Mechanisms of Stone Formation

  • Vishal N. Ratkalkar
  • Jack G. KleinmanEmail author
Original Paper


We have reviewed the general mechanisms involved in kidney stone formation, with reference to those composed of calcium oxalate or phosphate, uric acid, and cystine. These processes include nucleation of individual crystals, aggregation or secondary nucleation to produce small intrarenal multicrystalline aggregates, fixation within the kidney, and further aggregation and secondary nucleation to produce the clinical stone. The factors regulating these processes have been discussed as well as the effects of tubular fluid or urine pH and promoters or inhibitors, including urate or uric acid in the case of calcium oxalate stones, citrate, pyrophosphate, phytate, and urinary proteins. We also discuss the potential for macromolecular inhibitors to actually promote stone formation when they are fixed to some intrarenal structure or if they themselves become aggregated into protein–protein complexes.


Nephrolithiasis Calcium oxalate Calcium phosphate Uric acid Cystine Osteopontin Tamm-Horsfall protein Magnesium pH Urinary prothrombin fragment 1 Bikunin Phytate Pyrophosphate 


  1. 1.
    Coe FL, Parks JH, Asplin JR. The pathogenesis and treatment of kidney stones. N Engl J Med. 1992;327:1141–52.PubMedCrossRefGoogle Scholar
  2. 2.
    Lemann J Jr, Pleuss JA, Worcester EM, Hornick L, Schrab D, Hoffmann RG. Urinary oxalate excretion increases with body size and decreases with increasing dietary calcium intake among healthy adults. Kidney Int. 1996;49:200–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Asplin J, Mandel N, Coe F. Evidence for calcium phosphate supersaturation in the loop of Henle. Am J Physiol. 1996;270:F604–13.PubMedGoogle Scholar
  4. 4.
    Kok DJ, Khan SR. Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int. 1994;46:847–54.PubMedCrossRefGoogle Scholar
  5. 5.
    Pak CY, Holt K. Nucleation and growth of brushite and calcium oxalate in urine of stone-formers. Metabolism. 1976;25:665–73.PubMedCrossRefGoogle Scholar
  6. 6.
    Ryall RL, Harnett RM, Marshall VR. The effect of urine, pyrophosphate, citrate, magnesium and glycosaminoglycans on the growth and aggregation of calcium oxalate crystals in vitro. Clin Chim Acta. 1981;112:349–56.PubMedCrossRefGoogle Scholar
  7. 7.
    Worcester EM, Beshensky AM. Osteopontin inhibits nucleation of calcium oxalate crystals. Ann NY Acad Sci. 1995;760:375–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Evan AP, Coe FL, Lingeman JE, Shao Y, Sommer AJ, Bledsoe SB, Anderson JC, Worcester EM. Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec (Hoboken). 2007;290:1315–23.CrossRefGoogle Scholar
  9. 9.
    Asplin JR, Parks JH, Coe FL. Dependence of upper limit of metastability on supersaturation in nephrolithiasis. Kidney Int. 1997;52:1602–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Khan SR. Calcium oxalate crystal interaction with renal tubular epithelium, mechanism of crystal adhesion and its impact on stone development [editorial]. [Review]. Urol Res. 1995;23:71–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Olszta MJ, Odom DJ, Douglas EP, Gower LB. A new paradigm for biomineral formation: mineralization via an amorphous liquid-phase precursor. Connect Tissue Res. 2003;44(Suppl 1):326–34.PubMedGoogle Scholar
  12. 12.
    Lieske JC, Hammes MS, Toback FG. Role of calcium oxalate monohydrate crystal interactions with renal epithelial cells int he pathogenesis of nephrolithiasis: a review. Scanning Microsc. 1998;10:519–34.Google Scholar
  13. 13.
    Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, Sommer AJ, Paterson RF, Kuo RL, Grynpas M. Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest. 2003;111:607–16.PubMedGoogle Scholar
  14. 14.
    Sandersius S, Rez P. Morphology of crystals in calcium oxalate monohydrate kidney stones. Urol Res. 2007;35:287–93.PubMedCrossRefGoogle Scholar
  15. 15.
    Gower LB, Amos FF, Khan SR. Mineralogical signatures of stone formation mechanisms. Urol Res. 2010;38:281–92.PubMedCrossRefGoogle Scholar
  16. 16.
    Dorian HH, Rez P, Drach GW. Evidence for aggregation in oxalate stone formation: atomic force and low voltage scanning electron microscopy. J Urol. 1996;156:1833–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Grases F, Costa-Bauza A, Conte A. Studies on structure of calcium oxalate monohydrate renal papillary calculi. Mechanism of formation. Scanning Microsc. 1993;7:1067–74.PubMedGoogle Scholar
  18. 18.
    Khan SR, Hackett RL. Role of organic matrix in urinary stone formation: an ultrastructural study of crystal matrix interface of calcium oxalate monohydrate stones. J Urol. 1993;150:239–45.PubMedGoogle Scholar
  19. 19.
    Asplin JR, Mandel NS, Coe FL. Evidence of calcium phosphate supersaturation in the loop of Henle. Am J Physiol. 1996;270:F604–13.PubMedGoogle Scholar
  20. 20.
    Robertson WG, Peacock M, Nordin BEC. Calcium crystalluria in recurrent renal stone formers. Lancet. 1969;2(7610):21–4.PubMedCrossRefGoogle Scholar
  21. 21.
    de Bruijn WC, Boeve ER, van Run PRWA, van Miert PPMC, de Water R, Romijn JC, Verkoelen CF, Cao LC, Van ‘t N, Schroder FH. Etiology of calcium oxalate nephrolithiasis in rats. II. The role of the papilla in stone formation. Scanning Microsc. 1995;9:115–25.PubMedGoogle Scholar
  22. 22.
    de Bruijn WC, Boeve ER, van Run PR, van Miert PP, de Water R, RomijnJC VerkoelenCF, Cao LC, Schroder FH. Etiology of calcium oxalate nephrolithiasis in rats. I. Can this be a model for human stone formation? Scanning Microsc. 1995;9:103–14.PubMedGoogle Scholar
  23. 23.
    Koul HK, Menon M, Chaturvedi LS, Koul S, Sekhon A, Bhandari A, Huang M. COM crystals activate the p38 mitogen-activated protein kinase signal transduction pathway in renal epithelial cells. J Biol Chem. 2002;277:36845–52.PubMedCrossRefGoogle Scholar
  24. 24.
    Mandel N. Crystal-membrane interaction in kidney stone disease. J Am Soc Nephrol. 1994;5:S37–45.PubMedGoogle Scholar
  25. 25.
    Riese RJ, Riese JW, Kleinman JG, Wiessner JH, Mandel GS, Mandel NS. Specificity in calcium oxalate adherence to papillary epithelial cells in cultures. Am J Physiol. 1988;255:F1025–32.PubMedGoogle Scholar
  26. 26.
    Riese RJ. Adherence of kidney stone microcrystals to renal papillary collecting tubule cells in primary culture. ed 0, 1989.Google Scholar
  27. 27.
    Riese RJ, Kleinman JG, Wiessner JH, Mandel GS, Mandel NS. Uric acid crystal binding to renal inner medullary collecting duct cells in primary culture. J Am Soc Nephrol. 1990;1:187–92.PubMedGoogle Scholar
  28. 28.
    Riese RJ, Mandel NS, Wiessner JH, Mandel GS, Becker CG, Kleinman JG. Cell polarity and calcium oxalate crystal adherence to cultured collecting duct cells. Am J Physiol (Renal Fluid Electrolyte Physiol). 1992;262/31:F117–84.Google Scholar
  29. 29.
    Bigelow MW, Wiessner JH, Kleinman JG, Mandel NS. Surface exposure of phosphatidylserine increases calcium oxalate crystal attachment to IMCD cells. Am J Physiol (Renal Fluid Electrolyte Physiol). 1997;272:F55–62.Google Scholar
  30. 30.
    Asselman M, Verhulst A, De Broe ME, Verkoelen CF. Calcium oxalate crystal adherence to Hyaluronan-, Osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys. J Am Soc Nephrol. 2003;14:3155–66.PubMedCrossRefGoogle Scholar
  31. 31.
    Sorokina EA, Wesson JA, Kleinman JG. An acidic peptide sequence of nucleolin-related protein can mediate the attachment of calcium oxalate to renal tubule cells. J Am Soc Nephrol. 2004;15:2057–65.PubMedCrossRefGoogle Scholar
  32. 32.
    Kumar V, Farell G, Deganello S, Lieske JC. Annexin II is present on renal epithelial cells and binds calcium oxalate monohydrate crystals. J Amer Soc Neph. 2003;14:289–97.CrossRefGoogle Scholar
  33. 33.
    Sheng X, Ward MD, Wesson JA. Crystal surface adhesion explains the pathological activity of calcium oxalate hydrates in kidney stone formation. J Am Soc Nephrol. 2005;16:1904–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Grover PK, Marshall VR, Ryall RL. Dissolved urate salts out calcium oxalate in undiluted human urine in vitro: implications for calcium oxalate stone genesis. Chem Biol. 2003;10:271–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Pak CY, Sakhaee K, Peterson RD, Poindexter JR, Frawley WH. Biochemical profile of idiopathic uric acid nephrolithiasis. Kidney Int. 2001;60:757–61.PubMedCrossRefGoogle Scholar
  36. 36.
    Grover P, Ryall R, Marshall V. Calcium oxalate crystallization in urine. Role of urate and glycosaminoglycans. Kidney Int. 1992;41:149–54.PubMedCrossRefGoogle Scholar
  37. 37.
    Farell G, Huang E, Kim SY, Horstkorte R, Lieske JC. Modulation of proliferating renal epithelial cell affinity for calcium oxalate monohydrate crystals. J Am Soc Nephrol. 2004;15:3052–62.PubMedCrossRefGoogle Scholar
  38. 38.
    Moe OW, Abate N, Sakhaee K. Pathophysiology of uric acid nephrolithiasis. Endocrinol Metab Clin North Am. 2002;31:895–914.PubMedCrossRefGoogle Scholar
  39. 39.
    Ebrahimpour A, Perez L, Nancollas GH. Induced crystal growth of calcium oxalate monohydrate at hydroxyapatite surfaces. The influence of human serum albumin, citrate, and magnesium. Langmuir. 1991;7:577–83.CrossRefGoogle Scholar
  40. 40.
    Dent CE, Senior B. Studies on the treatment of cystinuria. Br J Urol. 1955;27:317–32.PubMedCrossRefGoogle Scholar
  41. 41.
    Kok DJ, Papapoulos SE, Blomen LJMJ, Bijvoet OLM. Modulation of calcium oxalate monohydrate crystallization kinetics in vitro. Kidney Int. 1988;34:346–50.PubMedCrossRefGoogle Scholar
  42. 42.
    Lieske JC, Leonard R, Toback FG. Adhesion of calcium oxalate monohydrate crystals to renal epithelial cells is inhibitied by specific anions. Am J Physiol (Renal Fluid Electrolyte Physiol). 1995;268/37:F604–12.Google Scholar
  43. 43.
    Fleisch H. Inhibitors and promoters of stone formation. Kidney Int. 1978;13:361–71.PubMedCrossRefGoogle Scholar
  44. 44.
    Grases F, Conte A. Urolithiasis, inhibitors and promoters. Urol Res. 1992;20:86–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Ryall RL, Harnett RM, Marshall VR. The effect of urine, pyrophosphate, citrate, magnesium and glycosaminoglycans on the growth and aggregation of calcium oxalate crystals in vitro. Clin Chim Acta. 1981;112:349–56.PubMedCrossRefGoogle Scholar
  46. 46.
    Grases F, Isern B, Sanchis P, Perello J, Torres JJ, Costa-Bauza A. Phytate acts as an inhibitor in formation of renal calculi. Front Biosci. 2007;12:2580–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Lieske JC, Farell G, Deganello S. The effect of ions at the surface of calcium oxalate monohydrate crystals on cell-crystal interactions. Urol Res. 2004;32:117–23.PubMedCrossRefGoogle Scholar
  48. 48.
    Faragalla FF, Gershoff SN. Interelations among magnesium, Vitamin B6, sulfur and phosphorus in the formation of kidney stones in the rat. J Nutr. 1963;81:60–6.PubMedGoogle Scholar
  49. 49.
    Massey L. Magnesium therapy for nephrolithiasis. Magnes Res. 2005;18:123–6.PubMedGoogle Scholar
  50. 50.
    Worcester EM, Blumenthal SS, Beshensky AM, Lewand DL. The calcium oxalate crystal growth inhibitor protein produced by mouse kidney cortical cells in culture is osteopontin. J Bone Miner Res. 1992;7:1029–36.PubMedCrossRefGoogle Scholar
  51. 51.
    Worcester EM, Kleinman JG, Beshensky AM. Osteopontin production by cultured kidney cells. Ann NY Acad Sci. 1995;760:266–78.PubMedCrossRefGoogle Scholar
  52. 52.
    Hoyer JR, Asplin JR, LJr Otvos. Phosphorylated osteopontin peptides suppress crystallization by inhibiting the growth of calcium oxalate crystals. Kidney Int. 2001;60:77–82.PubMedCrossRefGoogle Scholar
  53. 53.
    Yamate T, Kohri K, Umekawa T, Amasaki N, Isikawa Y, Kurita T. The effect of osteopontin on the adhesion of calcium oxalate crystals to Madin-Darby canine kidney cells. Eur Urol. 1996;30:388–93.PubMedGoogle Scholar
  54. 54.
    Yamate T, Kohri K, Umekawa T, Iguchi M, Kurita T. Osteopontin antisense oligonucleotide inhibits adhesion of calcium oxalate crystals in Madin-Darby canine kidney cell. J Urol. 1998;160:1506–12.PubMedCrossRefGoogle Scholar
  55. 55.
    Wesson JA, Ganne V, Beshensky AM, Kleinman JG. Regulation by macromolecules of calcium oxalate crystal aggregation in stone formers. Urol Res. 2005;33:206–12.PubMedCrossRefGoogle Scholar
  56. 56.
    van Rooijen JJ, Voskamp AF, Kamerling JP, Vliegenthart JF. Glycosylation sites and site-specific glycosylation in human Tamm-Horsfall glycoprotein. Glycobiology. 1999;9:21–30.PubMedCrossRefGoogle Scholar
  57. 57.
    Hess B, Nakagawa Y, Parks JH, Coe FL. Molecular abnormality of Tamm-Horsfall glycoprotein in calcium oxalate nephrolithiasis. Am J Physiol. 1991;260:F569–78.PubMedGoogle Scholar
  58. 58.
    Viswanathan PRJDKAMWMDKJGWJD. Calcium oxalate monohydrate aggregation induced by aggregation of desialylated Tamm-Horsfall protein. Urol Res. In press.Google Scholar
  59. 59.
    Kumar V, Farell G, Lieske JC. Whole urinary proteins coat calcium oxalate monohydrate crystals to greatly decrease their adhesion to renal cells. J Urol. 2003;170:221–5.PubMedCrossRefGoogle Scholar
  60. 60.
    Konya E, Amasaki N, Umekawa T, Iguchi M, Kurita T. Influence of urinary sialic acid on calcium oxalate crystal formation. Urol Int. 2002;68:281–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Webber D, Radcliffe CM, Royle L, Tobiasen G, Merry AH, Rodgers AL, Sturrock ED, Wormald MR, Harvey DJ, Dwek RA, Rudd PM. Sialylation of urinary prothrombin fragment 1 is implicated as a contributory factor in the risk of calcium oxalate kidney stone formation. FEBS J. 2006;273:3024–37.PubMedCrossRefGoogle Scholar
  62. 62.
    Pragasam V, Kalaiselvi P, Subashini B, Sumitra K, Varalakshmi P. Structural and functional modification of THP on nitration: comparison with stone formers THP. Nephron Physiol. 2005;99:28–34.CrossRefGoogle Scholar
  63. 63.
    Lien YH, Lai LW. Liposome-mediated gene transfer into the tubules [Review] [22 refs]. Exp Nephrol. 1997;5:132–6.PubMedGoogle Scholar
  64. 64.
    Worcester EM, Sebastian JL, Hiatt JG, Beshensky AM, Sadowski JA. The effect of warfarin on urine calcium oxalate crystal growth inhibition and urinary excretion of calcium and nephrocalcin. Calcif Tissue Int. 1993;53:242–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Atmani F, Lacour P, Jungers P, Drueke T, Daudon M. Reduced inhibitory activity of uronic-acid-rich protein in urine of stone formers. Urol Res. 1994;22:257–60.PubMedCrossRefGoogle Scholar
  66. 66.
    Tang Y, Grover PK, Moritz RL, Simpson RJ, Ryall RL. Is nephrocalcin related to the urinary derivative (bikunin) of inter-alpha-trypsin inhibitor? Br J Urol. 1995;76:425–30.PubMedCrossRefGoogle Scholar
  67. 67.
    Borghi L, Meschi T, Amato F, Briganti A, Novarini A, Giannini A. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: a 5-year randomized prospective study. J Urol. 1996;155:839–43.PubMedCrossRefGoogle Scholar
  68. 68.
    Harvey JA, Hill KD, Pak CY. Similarity of urinary risk factors among stone-forming patients in five regions of the United States. J Lithotr Stone Dis. 1990;2:124–32.PubMedGoogle Scholar
  69. 69.
    Worcester EM. Stones from bowel disease. Endocrinol Metab Clin North Am. 2002;31:979–99.PubMedCrossRefGoogle Scholar
  70. 70.
    Worcester EM, Coe FL. New insights into the pathogenesis of idiopathic hypercalciuria. Semin Nephrol. 2008;28:120–32.PubMedCrossRefGoogle Scholar
  71. 71.
    Li X-Q, Tembe V, Horwitz GM, Bushinsky DA, Favus MJ. Increased intestinal vitamin D receptor in genetic hypercalciuric rats. A cause of intestinal calcium hyperabsorption. J Clin Invest. 1993;91:661–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Zerwekh JE, Hughes MR, Reed BY, Breslau NA, Heller HJ, Lemke M, Nasonkin I, Pak CYC. Evidence for normal vitamin D receptor messenger ribonucleic acid and genotype in adsorptive hypercalciuria. J Clin Endocrinol Metab. 1995;80:2960–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Reed BY, Gitomer WL, Heller HJ, Hsu MC, Lemke M, Padalino P, Pak CY. Identification and characterization of a gene with base substitutions associated with the absorptive hypercalciuria phenotype and low spinal bone density. J Clin Endocrinol Metab. 2002;87:1476–85.PubMedCrossRefGoogle Scholar
  74. 74.
    Borghi L, Schianchi T, Meschi T, Guerra A, Allegri F, Maggiore U, Novarini A. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N Engl J Med. 2002;346:77–84.PubMedCrossRefGoogle Scholar
  75. 75.
    Robertson WG, Hughes H. Importance of mild hyperoxaluria in the pathogenesis of urolithiasis–new evidence from studies in the Arabian peninsula. Scanning Microsc. 1993;7:391–401.PubMedGoogle Scholar
  76. 76.
    Huang HS, Ma MC, Chen CF, Chen J. Lipid peroxidation and its correlations with urinary levels of oxalate, citric acid, and osteopontin in patients with renal calcium oxalate stones. Urology. 2003;62:1123–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Sumitra K, Pragasam V, Sakthivel R, Kalaiselvi P, Varalakshmi P. Beneficial effect of vitamin E supplementation on the biochemical and kinetic properties of Tamm-Horsfall glycoprotein in hypertensive and hyperoxaluric patients. Nephrol Dial Transplant. 2005;20:1407–15.PubMedCrossRefGoogle Scholar
  78. 78.
    Tungsanga K, Sriboonlue P, Futrakul P, Yachantha C, Tosukhowong P. Renal tubular cell damage and oxidative stress in renal stone patients and the effect of potassium citrate treatment. Urol Res. 2005;33:65–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Voss S, Hesse A, Zimmermann DJ, Sauerbruch T, von Unruh GE. Intestinal oxalate absorption is higher in idiopathic calcium oxalate stone formers than in healthy controls: measurements with the [(13)C2]oxalate absorption test. J Urol. 2006;175:1711–5.PubMedCrossRefGoogle Scholar
  80. 80.
    Nguyen QV, Kalin A, Drouve U, Casez JP, Jaeger P. Sensitivity to meat protein intake and hyperoxaluria in idiopathic calcium stone formers. Kidney Int. 2001;59:2273–81.PubMedGoogle Scholar
  81. 81.
    Holmes RP, Assimos DG. The impact of dietary oxalate on kidney stone formation. Urol Res. 2004;32:311–6.PubMedCrossRefGoogle Scholar
  82. 82.
    McDonald GB, Earnest DL, Admirand WH. Hyperoxaluria correlates with fat malabsorption in patients with sprue. Gut. 1977;18:561–6.PubMedCrossRefGoogle Scholar
  83. 83.
    Sinha MK, Collazo-Clavell ML, Rule A, Milliner DS, Nelson W, Sarr MJ, Kuman R, Lieske JC. Hyperoxaluria and nephrolithiasis after Roux-en-Y gastric bypass for obesity. Kidney Int 2007.Google Scholar
  84. 84.
    Taylor EN, Curhan GC. Determinants of 24-hour urinary oxalate excretion. Clin J Am Soc Nephrol. 2008;3:1453–60.PubMedCrossRefGoogle Scholar
  85. 85.
    Jiang Z, Asplin JR, Evan AP, Rajendran VM, Velazquez H, Nottoli TP, Binder HJ, Aronson PS. Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat Genet. 2006;38:474–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Levi M, Breusegem S. Renal phosphate-transporter regulatory proteins and nephrolithiasis. N Engl J Med. 2008;359:1171–3.PubMedCrossRefGoogle Scholar
  87. 87.
    Ha YS, Tchey DU, Kang HW, Kim YJ, Yun SJ, Lee SC, Kim WJ. Phosphaturia as a promising predictor of recurrent stone formation in patients with urolithiasis. Korean J Urol. 2010;51:54–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Karim Z, Gerard B, Bakouh N, Alili R, Leroy C, Beck L, Silve C, Planelles G, Urena-Torres P, Grandchamp B, Friedlander G, Prie D. NHERF1 mutations and responsiveness of renal parathyroid hormone. N Engl J Med. 2008;359:1128–35.PubMedCrossRefGoogle Scholar
  89. 89.
    Coe FL. Treated and untreated recurrent calcium nephrolithiasis in patients with idiopathic hypercalciuria, hyperuricosuria, or no metabolic disorder. Ann Intern Med. 1977;87:404–10.PubMedGoogle Scholar
  90. 90.
    Coe FL, Parks JH, Moore ES. Familial idiopathic hypercalciuria. N Engl J Med. 1979;300:337–40.PubMedCrossRefGoogle Scholar
  91. 91.
    Sakhaee K, Nigam S, Snell P, Hsu MC, Pak CY. Assessment of the pathogenetic role of physical exercise in renal stone formation. J Clin Endocrinol Metab. 1987;65:974–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Borghi L, Meschi T, Amato F, Novarini A, Romanelli A, Cigala F. Hot occupation and nephrolithiasis. J Urol. 1993;150:1757–60.PubMedGoogle Scholar
  93. 93.
    Pak CY, Poindexter JR, Peterson RD, Heller HJ. Biochemical and physicochemical presentations of patients with brushite stones. J Urol. 2004;171:1046–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Hildebrandt F, Jungers P, Grunfeld J. Nephronophthisis, Medullary Cystic and Medullary Sponge Kidney Disease. In Schrier RW (ed) 2001.Google Scholar
  95. 95.
    Sayer JA, Pearce SH. Diagnosis and clinical biochemistry of inherited tubulopathies. Ann Clin Biochem. 2001;38:459–70.PubMedCrossRefGoogle Scholar
  96. 96.
    Ismail EA, Abul SS, Sabry MA. Nephrocalcinosis and urolithiasis in carbonic anhydrase II deficiency syndrome. Eur J Pediatr. 1997;156:957–62.PubMedCrossRefGoogle Scholar
  97. 97.
    Griffith DP, Musher DM, Itin C. Urease. The primary cause of infection-induced urinary stones. Invest Urol. 1976;13:346–50.PubMedGoogle Scholar
  98. 98.
    Usui Y, Matsuzaki S, Matsushita K, Shima M. Urinary citrate in kidney stone disease. Tokai J Exp Clin Med. 2003;28:65–70.PubMedGoogle Scholar
  99. 99.
    Domrongkitchaiporn S, Stitchantrakul W, Kochakarn W. Causes of hypocitraturia in recurrent calcium stone formers: focusing on urinary potassium excretion. Am J Kidney Dis. 2006;48:546–54.PubMedCrossRefGoogle Scholar
  100. 100.
    Levy FL, Adams-Huet B, Pak CY. Ambulatory evaluation of nephrolithiasis: an update of a 1980 protocol. Am J Med. 1995;98:50–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Amanzadeh J, Gitomer WL, Zerwekh JE, Preisig PA, Moe OW, Pak CY, Levi M. Effect of high protein diet on stone-forming propensity and bone loss in rats. Kidney Int. 2003;64:2142–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Aruga S, Wehrli S, Kaissling B, Moe OW, Preisig PA, Pajor AM, Alpern RJ. Chronic metabolic acidosis increases NaDC-1 mRNA and protein abundance in rat kidney. Kidney Int. 2000;58:206–15.PubMedCrossRefGoogle Scholar

Additional Reading

  1. 103.
    Kok DJ. Clinical implications of physicochemistry of stone formation. Endocrinol Metab Clin North Am. 2002;31:855–67.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Division of NephrologyMedical College of WisconsinMilwaukeeUSA
  2. 2.The Department of Veterans AffairsMedical CenterMilwaukeeUSA
  3. 3.Department of MedicineMedical College of WisconsinMilwaukeeUSA

Personalised recommendations