Thyroid Cathepsin K: Roles in Physiology and Thyroid Disease

  • Stephanie Dauth
  • Maria Arampatzidou
  • Maren Rehders
  • Denise Ming Tse Yu
  • Dagmar Führer
  • Klaudia Brix
Original Paper


The human genome encodes 11 cysteine cathepsins belonging to the papain-like family of cysteine peptidases that are known predominantly as endo-lysosomal enzymes. However, it is now understood that the functions and activities of cysteine cathepsins are not limited to endo-lysosomal compartments, as they are also active in the peri- and extracellular space. The thyroid gland is an endocrine organ where such intra- and extracellular proteolytic activities are required to solubilize the prohormone thyroglobulin from its luminal, covalently cross-linked storage forms for subsequent processing into smaller protein fragments and thyroid hormone liberation. Cathepsin K has been identified as one of the cysteine cathepsins with a crucial role in thyroglobulin processing. However, cathepsin K has mainly been a key focus of attention in the last few years because of its high expression in osteoclasts and due to its essential role as collagenase and elastase important for bone remodelling. Besides its remarkable function as an endopeptidase acting on high-molecular mass, covalently cross-linked extracellular substrates such as type I collagen, elastin or thyroglobulin, cathepsin K is also one of the very few proteolytic enzymes that is able to directly liberate thyroxine from thyroglobulin fragments by exopeptidase action. Thus, thyroid cathepsin K is now accepted as a cysteine peptidase with a vital role in liberation of thyroid hormones, which in turn are essential for homoeostasis by triggering a number of important biological processes, ranging from growth and brain development in young vertebrates to tissue remodelling events during morphogenesis or wound healing, as well as control of metabolic pathways and thermoregulation in adults. This review focuses on thyroid cathepsin K and will discuss how localization and trafficking within thyroid epithelial cells explain its thyroid-specific functions. The effects of targeted cathepsin K gene ablation will be summarized from the perspective of the thyroid gland, and we will propose potential consequences of short- and long-term inhibition of thyroid cathepsin K activity for the main thyroid hormone target tissues, namely bone, cardiovascular and immune systems, intestine, and the central nervous system, in addition to the thyroid gland itself.


Cysteine cathepsins Extracellular proteolysis Thyroid hormones Thyroglobulin 


  1. 1.
    Friedrichs B, Tepel C, Reinheckel T, Deussing J, von Figura K, Herzog V, Peters C, Saftig P, Brix K. Thyroid functions of mouse cathepsins B, K, and L. J Clin Invest. 2003;111(11):1733–45.PubMedCrossRefGoogle Scholar
  2. 2.
    Tepel C, Bromme D, Herzog V, Brix K. Cathepsin K in thyroid epithelial cells: sequence, localization and possible function in extracellular proteolysis of thyroglobulin. J Cell Sci. 2000;113(Pt 24):4487–98.PubMedGoogle Scholar
  3. 3.
    Jordans S, Jenko-Kokalj S, Kuhl NM, Tedelind S, Sendt W, Bromme D, Turk D, Brix K. Monitoring compartment-specific substrate cleavage by cathepsins B, K, L, and S at physiological pH and redox conditions. BMC Biochem. 2009;10:23.PubMedCrossRefGoogle Scholar
  4. 4.
    Dunn AD, Crutchfield HE, Dunn JT. Proteolytic processing of thyroglobulin by extracts of thyroid lysosomes. Endocrinology. 1991;128(6):3073–80.PubMedCrossRefGoogle Scholar
  5. 5.
    Dunn JT, Dunn AD. The importance of thyroglobulin structure for thyroid hormone biosynthesis. Biochimie. 1999;81(5):505–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Rousset B, Mornex R. The thyroid hormone secretory pathway-current dogmas and alternative hypotheses. Mol Cell Endocrinol. 1991;78(1–2):C89–93.PubMedCrossRefGoogle Scholar
  7. 7.
    Rousset BA. Intracellular traffic and proteolytic cleavage of thyroglobulin, the thyroid prohormone. Ann Endocrinol (Paris). 1991;52(5):355–60.Google Scholar
  8. 8.
    Lipardi C, Ruggiano G, Perrone L, Paladino S, Monlauzeur L, Nitsch L, Le Bivic A, Zurzolo C. Differential recognition of a tyrosine-dependent signal in the basolateral and endocytic pathways of thyroid epithelial cells. Endocrinology. 2002;143(4):1291–301.PubMedCrossRefGoogle Scholar
  9. 9.
    Lemansky P, Brix K, Herzog V. Iodination of mature cathepsin D in thyrocytes as an indicator for its transport to the cell surface. Eur J Cell Biol. 1998;76(1):53–62.PubMedGoogle Scholar
  10. 10.
    Brix K, Lemansky P, Herzog V. Evidence for extracellularly acting cathepsins mediating thyroid hormone liberation in thyroid epithelial cells. Endocrinology. 1996;137(5):1963–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Brix K, Linke M, Tepel C, Herzog V. Cysteine proteinases mediate extracellular prohormone processing in the thyroid. Biol Chem. 2001;382(5):717–25.PubMedCrossRefGoogle Scholar
  12. 12.
    Linke M, Herzog V, Brix K. Trafficking of lysosomal cathepsin B-green fluorescent protein to the surface of thyroid epithelial cells involves the endosomal/lysosomal compartment. J Cell Sci. 2002;115(Pt 24):4877–89.PubMedCrossRefGoogle Scholar
  13. 13.
    Feracci H, Bernadac A, Hovsepian S, Fayet G, Maroux S. Aminopeptidase N is a marker for the apical pole of porcine thyroid epithelial cells in vivo and in culture. Cell Tissue Res. 1981;221(1):137–46.PubMedCrossRefGoogle Scholar
  14. 14.
    Zurzolo C, Le Bivic A, Quaroni A, Nitsch L, Rodriguez-Boulan E. Modulation of transcytotic and direct targeting pathways in a polarized thyroid cell line. EMBO J. 1992;11(6):2337–44.PubMedGoogle Scholar
  15. 15.
    Dunn AD, Myers HE, Dunn JT. The combined action of two thyroidal proteases releases T4 from the dominant hormone-forming site of thyroglobulin. Endocrinology. 1996;137(8):3279–85.PubMedCrossRefGoogle Scholar
  16. 16.
    Baudry N, Lejeune PJ, Delom F, Vinet L, Carayon P, Mallet B. Role of multimerized porcine thyroglobulin in iodine storage. Biochem Biophys Res Commun. 1998;242(2):292–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Berndorfer U, Wilms H, Herzog V. Multimerization of thyroglobulin (TG) during extracellular storage: isolation of highly cross-linked TG from human thyroids. J Clin Endocrinol Metab. 1996;81(5):1918–26.PubMedCrossRefGoogle Scholar
  18. 18.
    Herzog V, Berndorfer U, Saber Y. Isolation of insoluble secretory product from bovine thyroid: extracellular storage of thyroglobulin in covalently cross-linked form. J Cell Biol. 1992;118(5):1071–83.PubMedCrossRefGoogle Scholar
  19. 19.
    Klein M, Gestmann I, Berndorfer U, Schmitz A, Herzog V. The thioredoxin boxes of thyroglobulin: possible implications for intermolecular disulfide bond formation in the follicle lumen. Biol Chem. 2000;381(7):593–601.PubMedCrossRefGoogle Scholar
  20. 20.
    Saber-Lichtenberg Y, Brix K, Schmitz A, Heuser JE, Wilson JH, Lorand L, Herzog V. Covalent cross-linking of secreted bovine thyroglobulin by transglutaminase. Faseb J. 2000;14(7):1005–14.PubMedGoogle Scholar
  21. 21.
    Bromme D, Okamoto K. Human cathepsin O2, a novel cysteine protease highly expressed in osteoclastomas and ovary molecular cloning, sequencing and tissue distribution. Biol Chem Hoppe Seyler. 1995;376(6):379–84.PubMedCrossRefGoogle Scholar
  22. 22.
    Lecaille F, Bromme D, Lalmanach G. Biochemical properties and regulation of cathepsin K activity. Biochimie. 2008;90(2):208–26.PubMedCrossRefGoogle Scholar
  23. 23.
    Bromme D. Papain-like cysteine proteases. Curr Protoc Protein Sci. 2001; Chapter 21: Unit 21 2.Google Scholar
  24. 24.
    Paris M, Brunet F, Markov GV, Schubert M, Laudet V. The amphioxus genome enlightens the evolution of the thyroid hormone signaling pathway. Dev Genes Evol. 2008;218(11–12):667–80.PubMedCrossRefGoogle Scholar
  25. 25.
    Porazzi P, Calebiro D, Benato F, Tiso N, Persani L. Thyroid gland development and function in the zebrafish model. Mol Cell Endocrinol. 2009;312(1–2):14–23.PubMedCrossRefGoogle Scholar
  26. 26.
    Fujita H. Functional morphology of the thyroid. Int Rev Cytol. 1988;113:145–85.PubMedCrossRefGoogle Scholar
  27. 27.
    Reiser J, Adair B, Reinheckel T. Specialized roles for cysteine cathepsins in health and disease. J Clin Invest. 2010;120(10):3421–31.PubMedCrossRefGoogle Scholar
  28. 28.
    Vasiljeva O, Reinheckel T, Peters C, Turk D, Turk V, Turk B. Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr Pharm Des. 2007;13(4):387–403.PubMedCrossRefGoogle Scholar
  29. 29.
    Mohamed MM, Sloane BF. Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer. 2006;6(10):764–75.PubMedCrossRefGoogle Scholar
  30. 30.
    Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996;273(5279):1236–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, von Figura K. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA. 1998;95(23):13453–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Brix K, Dunkhorst A, Mayer K, Jordans S. Cysteine cathepsins: cellular roadmap to different functions. Biochimie. 2008;90(2):194–207.PubMedCrossRefGoogle Scholar
  33. 33.
    Tedelind S, Poliakova K, Valeta A, Hunegnaw R, Yemanaberhan EL, Heldin NE, Kurebayashi J, Weber E, Kopitar-Jerala N, Turk B, Bogyo M, Brix K. Nuclear cysteine cathepsin variants in thyroid carcinoma cells. Biol Chem. 2010;391(8):923–35.PubMedCrossRefGoogle Scholar
  34. 34.
    Yang M, Sun J, Zhang T, Liu J, Zhang J, Shi MA, Darakhshan F, Guerre-Millo M, Clement K, Gelb BD, Dolgnov G, Shi GP. Deficiency and inhibition of cathepsin K reduce body weight gain and increase glucose metabolism in mice. Arterioscler Thromb Vasc Biol. 2008;28(12):2202–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Bernstein HG, Bukowska A, Dobrowolny H, Bogerts B, Lendeckel U. Cathepsin K and schizophrenia. Synapse. 2007;61(4):252–3.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhao Q, Jia Y, Xiao Y. Cathepsin K: a therapeutic target for bone diseases. Biochem Biophys Res Commun. 2009;380(4):721–3.PubMedCrossRefGoogle Scholar
  37. 37.
    Haeckel C, Krueger S, Buehling F, Broemme D, Franke K, Schuetze A, Roese I, Roessner A. Expression of cathepsin K in the human embryo and fetus. Dev Dyn. 1999;216(2):89–95.PubMedCrossRefGoogle Scholar
  38. 38.
    Dauth S, Sirbulescu RF, Rehders M, Avena L, Lerchl A, Saftig P, Jordans S, Brix K. The importance of mouse cathepsin K for the structural and functional integrity of the central nervous system. Book of abstracts/XIIth symposium on proteases, inhibitors and biological control. Portoroz, Slovenia, September 25–29, 2010. [Dolinar M, Stoka V, Turk B editors](Ljubljana: Jozef Stefan Institute; 2010).Google Scholar
  39. 39.
    Podgorski I, Linebaugh BE, Sloane BF. Cathepsin K in the bone microenvironment: link between obesity and prostate cancer? Biochem Soc Trans. 2007;35(Pt 4):701–3.PubMedGoogle Scholar
  40. 40.
    Brix K, Jordans S. Watching proteases in action. Nat Chem Biol. 2005;1(4):186–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Chapman HA, Riese RJ, Shi GP. Emerging roles for cysteine proteases in human biology. Annu Rev Physiol. 1997;59:63–88.PubMedCrossRefGoogle Scholar
  42. 42.
    Andrews NW. Regulated secretion of conventional lysosomes. Trends Cell Biol. 2000;10(8):316–21.PubMedCrossRefGoogle Scholar
  43. 43.
    Reinheckel T, Deussing J, Roth W, Peters C. Towards specific functions of lysosomal cysteine peptidases: phenotypes of mice deficient for cathepsin B or cathepsin L. Biol Chem. 2001;382(5):735–41.PubMedCrossRefGoogle Scholar
  44. 44.
    Linke M, Jordans S, Mach L, Herzog V, Brix K. Thyroid stimulating hormone upregulates secretion of cathepsin B from thyroid epithelial cells. Biol Chem. 2002;383(5):773–84.PubMedCrossRefGoogle Scholar
  45. 45.
    Arampatzidou M, Rehders M, Dauth S, Yu DMT, Tedelind S, Brix K. Imaging of protease functions—current guide to spotting cysteine cathepsins in classical and novel scenes of action in mammalian epithelial cells and tissues. Ital J Anat Embryol. 2011 (in press).Google Scholar
  46. 46.
    Phillips ID, Black EG, Sheppard MC, Docherty K. Thyrotrophin, forskolin and ionomycin increase cathepsin B mRNA concentrations in rat thyroid cells in culture. J Mol Endocrinol. 1989;2(3):207–12.PubMedCrossRefGoogle Scholar
  47. 47.
    Dunn AD. Stimulation of thyroidal thiol endopeptidases by thyrotropin. Endocrinology. 1984;114(2):375–82.PubMedCrossRefGoogle Scholar
  48. 48.
    Petanceska S, Devi L. Sequence analysis, tissue distribution, and expression of rat cathepsin S. J Biol Chem. 1992;267(36):26038–43.PubMedGoogle Scholar
  49. 49.
    Herzog V. Transcytosis in thyroid follicle cells. J Cell Biol. 1983;97(3):607–17.PubMedCrossRefGoogle Scholar
  50. 50.
    Hagemann S, Gunther T, Dennemarker J, Lohmuller T, Bromme D, Schule R, Peters C, Reinheckel T. The human cysteine protease cathepsin V can compensate for murine cathepsin L in mouse epidermis and hair follicles. Eur J Cell Biol. 2004;83(11–12):775–80.PubMedCrossRefGoogle Scholar
  51. 51.
    Ekholm R. Biosynthesis of thyroid hormones. Int Rev Cytol. 1990;120:243–88.PubMedCrossRefGoogle Scholar
  52. 52.
    Dumont JE, Lamy F, Roger P, Maenhaut C. Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors. Physiol Rev. 1992;72(3):667–97.PubMedGoogle Scholar
  53. 53.
    Braun D, Wirth EK, Schweizer U. Thyroid hormone transporters in the brain. Rev Neurosci. 2010;21(3):173–86.PubMedCrossRefGoogle Scholar
  54. 54.
    Podgorski I. Future of anticathepsin K drugs: dual therapy for skeletal disease and atherosclerosis? Future Med Chem. 2009;1(1):21–34.PubMedCrossRefGoogle Scholar
  55. 55.
    Lewiecki EM. Odanacatib, a cathepsin K inhibitor for the treatment of osteoporosis and other skeletal disorders associated with excessive bone remodeling. IDrugs. 2009;12(12):799–809.PubMedGoogle Scholar
  56. 56.
    Desmarais S, Black WC, Oballa R, Lamontagne S, Riendeau D, Tawa P, Duong le T, Pickarski M, Percival MD. Effect of cathepsin k inhibitor basicity on in vivo off-target activities. Mol Pharmacol. 2008;73(1):147–56.PubMedCrossRefGoogle Scholar
  57. 57.
    Gauthier JY, Chauret N, Cromlish W, Desmarais S, Duong le T, Falgueyret JP, Kimmel DB, Lamontagne S, Leger S, LeRiche T, Li CS, Masse F, McKay DJ, Nicoll-Griffith DA, Oballa RM, Palmer JT, Percival MD, Riendeau D, Robichaud J, Rodan GA, Rodan SB, Seto C, Therien M, Truong VL, Venuti MC, Wesolowski G, Young RN, Zamboni R, Black WC. The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg Med Chem Lett. 2008;18(3):923–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Brown JP, Prince RL, Deal C, Recker RR, Kiel DP, de Gregorio LH, Hadji P, Hofbauer LC, Alvaro-Gracia JM, Wang H, Austin M, Wagman RB, Newmark R, Libanati C, Martin JS, Bone HG. Comparison of the effect of denosumab and alendronate on bone mineral density and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, phase 3 trial. J Bone Miner Res. 2009;24:153–61.PubMedCrossRefGoogle Scholar
  59. 59.
    Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011;377(9773):1276–87.PubMedCrossRefGoogle Scholar
  60. 60.
    Stoch SA, Zajic S, Stone J, Miller DL, Van Dyck K, Gutierrez MJ, De Decker M, Liu L, Liu Q, Scott BB, Panebianco D, Jin B, Duong LT, Gottesdiener K, Wagner JA. Effect of the cathepsin K inhibitor odanacatib on bone resorption biomarkers in healthy postmenopausal women: two double-blind, randomized, placebo-controlled phase I studies. Clin Pharmacol Ther. 2009;86(2):175–82.PubMedCrossRefGoogle Scholar
  61. 61.
    Bone HG, McClung MR, Roux C, Recker RR, Eisman JA, Verbruggen N, Hustad CM, DaSilva C, Santora AC, Ince BA. Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone density. J Bone Miner Res. 2010;25(5):937–47.PubMedGoogle Scholar
  62. 62.
    Weinstein RS, Roberson PK, Manolagas SC. Giant osteoclast formation and long-term oral bisphosphonate therapy. N Engl J Med. 2009;360(1):53–62.PubMedCrossRefGoogle Scholar
  63. 63.
    Canalis E. New treatment modalities in osteoporosis. Endocr Pract. 2010;16(5):855–63.PubMedCrossRefGoogle Scholar
  64. 64.
    Gogakos AI, Bassett JHD, Williams GR. Thyroid and bone. Arch Biochem Biophys. 2010;503(1):129–36.PubMedCrossRefGoogle Scholar
  65. 65.
    Hofbauer LC, Hamann C, Ebeling PR. Approach to the patient with secondary osteoporosis. Eur J Endocrinol. 2010;162(6):1009–20.PubMedCrossRefGoogle Scholar
  66. 66.
    Rivkees SA, Bode HH, Crawford JD. Long-term growth in juvenile acquired hypothyroidism: the failure to achieve normal adult stature. N Engl J Med. 1988;318(10):599–602.PubMedCrossRefGoogle Scholar
  67. 67.
    Eriksen EF, Mosekilde L, Melsen F. Kinetics of trabecular bone resorption and formation in hypothyroidism: evidence for a positive balance per remodeling cycle. Bone. 1986;7(2):101–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Vestergaard P, Weeke J, Hoeck HC, Nielsen HK, Rungby J, Rejnmark L, Laurberg P, Mosekilde L. Fractures in patients with primary idiopathic hypothyroidism. Thyroid. 2000;10(4):335–40.PubMedCrossRefGoogle Scholar
  69. 69.
    Stamato FJ, Amarante EC, Furlanetto RP. Effect of combined treatment with calcitonin on bone densitometry of patients with treated hypothyroidism. Rev Assoc Med Bras. 2000;46(2):177–81.PubMedCrossRefGoogle Scholar
  70. 70.
    Segni M, Leonardi E, Mazzoncini B, Pucarelli I, Pasquino AM. Special features of Graves’ disease in early childhood. Thyroid. 1999;9(9):871–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Vestergaard P, Mosekilde L. Hyperthyroidism, bone mineral, and fracture risk-a meta-analysis. Thyroid. 2003;13(6):585–93.PubMedCrossRefGoogle Scholar
  72. 72.
    Bauer DC, Ettinger B, Nevitt MC, Stone KL. Risk for fracture in women with low serum levels of thyroid-stimulating hormone. Ann Intern Med. 2001;134(7):561–8.PubMedGoogle Scholar
  73. 73.
    Helas S, Goettsch C, Schoppet M, Zeitz U, Hempel U, Morawietz H, Kostenuik PJ, Erben RG, Hofbauer LC. Inhibition of receptor activator of NF-kappaB ligand by denosumab attenuates vascular calcium deposition in mice. Am J Pathol. 2009;175(2):473–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Gocheva V, Joyce JA. Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle. 2007;6(1):60–4.PubMedCrossRefGoogle Scholar
  75. 75.
    Mason SD, Joyce JA. Proteolytic networks in cancer. Trends Cell Biol. 2011 [Epub ahead of print].Google Scholar
  76. 76.
    Le Gall C, Bonnelye E, Clezardin P. Cathepsin K inhibitors as treatment of bone metastasis. Curr Opin Support Palliat Care. 2008;2(3):218–22.PubMedCrossRefGoogle Scholar
  77. 77.
    Xie L, Moroi Y, Hayashida S, Tsuji G, Takeuchi S, Shan B, Nakahara T, Uchi H, Takahara M, Furue M. Cathepsin K-upregulation in fibroblasts promotes matrigel invasive ability of squamous cell carcinoma cells via tumor-derived IL-1alpha. J Dermatol Sci. 2011;61(1):45–50.PubMedCrossRefGoogle Scholar
  78. 78.
    Buth H, Buttigieg PL, Ostafe R, Rehders M, Dannenmann SR, Schaschke N, Stark HJ, Boukamp P, Brix K. Cathepsin B is essential for regeneration of scratch-wounded normal human epidermal keratinocytes. Eur J Cell Biol. 2007;86(11–12):747–61.PubMedCrossRefGoogle Scholar
  79. 79.
    Boelaert K, Franklyn JA. Thyroid hormone in health and disease. J Endocrinol. 2005;187(1):1–15.PubMedCrossRefGoogle Scholar
  80. 80.
    Mikosch P, Kerschan-Schindl K, Woloszczuk W, Stettner H, Kudlacek S, Kresnik E, Gallowitsch HJ, Lind P, Pietschmann P. High cathepsin K levels in men with differentiated thyroid cancer on suppressive L-thyroxine therapy. Thyroid. 2008;18(1):27–33.PubMedCrossRefGoogle Scholar
  81. 81.
    Kung AW, Pun KK. Bone mineral density in premenopausal women receiving long-term physiological doses of levothyroxine. Jama. 1991;265(20):2688–91.PubMedCrossRefGoogle Scholar
  82. 82.
    Bernal J. Thyroid hormones and brain development. Vitam Horm. 2005;71:95–122.PubMedCrossRefGoogle Scholar
  83. 83.
    Heuer H. The importance of thyroid hormone transporters for brain development and function. Best Pract Res Clin Endocrinol Metab. 2007;21(2):265–76.PubMedCrossRefGoogle Scholar
  84. 84.
    DeLong GR, Stanbury JB, Fierro-Benitez R. Neurological signs in congenital iodine-deficiency disorder (endemic cretinism). Dev Med Child Neurol. 1985;27(3):317–24.PubMedCrossRefGoogle Scholar
  85. 85.
    Bauer M, Goetz T, Glenn T, Whybrow PC. The thyroid-brain interaction in thyroid disorders and mood disorders. J Neuroendocrinol. 2008;20(10):1101–14.PubMedCrossRefGoogle Scholar
  86. 86.
    Horn S, Heuer H. Thyroid hormone action during brain development: more questions than answers. Mol Cell Endocrinol. 2010;315(1–2):19–26.PubMedCrossRefGoogle Scholar
  87. 87.
    Messenger AG. Thyroid hormone and hair growth. Br J Dermatol. 2000;142(4):633–4.PubMedCrossRefGoogle Scholar
  88. 88.
    Tiede S, Bohm K, Meier N, Funk W, Paus R. Endocrine controls of primary adult human stem cell biology: thyroid hormones stimulate keratin 15 expression, apoptosis, and differentiation in human hair follicle epithelial stem cells in situ and in vitro. Eur J Cell Biol. 2010;89(10):769–77.PubMedCrossRefGoogle Scholar
  89. 89.
    Billoni N, Buan B, Gautier B, Gaillard O, Mahe YF, Bernard BA. Thyroid hormone receptor beta1 is expressed in the human hair follicle. Br J Dermatol. 2000;142(4):645–52.PubMedCrossRefGoogle Scholar
  90. 90.
    Fisher DA. Physiological variations in thyroid hormones: physiological and pathophysiological considerations. Clin Chem. 1996;42(1):135–9.PubMedGoogle Scholar
  91. 91.
    van Beek N, Bodo E, Kromminga A, Gaspar E, Meyer K, Zmijewski MA, Slominski A, Wenzel BE, Paus R. Thyroid hormones directly alter human hair follicle functions: anagen prolongation and stimulation of both hair matrix keratinocyte proliferation and hair pigmentation. J Clin Endocrinol Metab. 2008;93(11):4381–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Thiboutot DM. Clinical review 74: dermatological manifestations of endocrine disorders. J Clin Endocrinol Metab. 1995;80(10):3082–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Ramot Y, Paus R, Tiede S, Zlotogorski A. Endocrine controls of keratin expression. Bioessays. 2009;31(4):389–99.PubMedCrossRefGoogle Scholar
  94. 94.
    Safer JD, Crawford TM, Holick MF. A role for thyroid hormone in wound healing through keratin gene expression. Endocrinology. 2004;145(5):2357–61.PubMedCrossRefGoogle Scholar
  95. 95.
    Buth H, Wolters B, Hartwig B, Meier-Bornheim R, Veith H, Hansen M, Sommerhoff CP, Schaschke N, Machleidt W, Fusenig NE, Boukamp P, Brix K. HaCaT keratinocytes secrete lysosomal cysteine proteinases during migration. Eur J Cell Biol. 2004;83(11–12):781–95.PubMedCrossRefGoogle Scholar
  96. 96.
    Hodin RA, Meng S, Chamberlain SM. Thyroid hormone responsiveness is developmentally regulated in the rat small intestine: a possible role for the alpha-2 receptor variant. Endocrinology. 1994;135(2):564–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Brent GA. Tissue-specific actions of thyroid hormone: insights from animal models. Rev Endocr Metab Disord. 2000;1(1–2):27–33.PubMedCrossRefGoogle Scholar
  98. 98.
    Plateroti M, Kress E, Mori JI, Samarut J. Thyroid hormone receptor alpha1 directly controls transcription of the beta-catenin gene in intestinal epithelial cells. Mol Cell Biol. 2006;26(8):3204–14.PubMedCrossRefGoogle Scholar
  99. 99.
    Kress E, Samarut J, Plateroti M. Thyroid hormones and the control of cell proliferation or cell differentiation: paradox or duality? Mol Cell Endocrinol. 2009;313(1–2):36–49.PubMedCrossRefGoogle Scholar
  100. 100.
    Kress E, Rezza A, Nadjar J, Samarut J, Plateroti M. The thyroid hormone receptor-alpha (TRalpha) gene encoding TRalpha1 controls deoxyribonucleic acid damage-induced tissue repair. Mol Endocrinol. 2008;22(1):47–55.PubMedCrossRefGoogle Scholar
  101. 101.
    Ishizuya-Oka A, Shi YB. Thyroid hormone regulation of stem cell development during intestinal remodeling. Mol Cell Endocrinol. 2008;288(1–2):71–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Daher R, Yazbeck T, Jaoude JB, Abboud B. Consequences of dysthyroidism on the digestive tract and viscera. World J Gastroenterol. 2009;15(23):2834–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Shafer RB, Prentiss RA, Bond JH. Gastrointestinal transit in thyroid disease. Gastroenterology. 1984;86(5 Pt 1):852–5.PubMedGoogle Scholar
  104. 104.
    Tenore A, Fasano A, Gasparini N, Sandomenico ML, Ferrara A, Di Carlo A, Guandalini S. Thyroxine effect on intestinal Cl-/HCO3- exchange in hypo- and hyperthyroid rats. J Endocrinol. 1996;151(3):431–7.PubMedCrossRefGoogle Scholar
  105. 105.
    Buhling F, Peitz U, Kruger S, Kuster D, Vieth M, Gebert I, Roessner A, Weber E, Malfertheiner P, Wex T. Cathepsins K, L, B, X and W are differentially expressed in normal and chronically inflamed gastric mucosa. Biol Chem. 2004;385(5):439–45.PubMedCrossRefGoogle Scholar
  106. 106.
    Mayer K, Schwartz S, Lentze MJ, Kalff JC, Brix K. Extracellular localization of intestinal cathepsins: implications for their actions during post-operative ileus. In: Vollmar B, editor. XLI congress of the european society for surgical research. Germany: Medimond International Proceedings; 2006. p. 63–6.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Stephanie Dauth
    • 1
  • Maria Arampatzidou
    • 1
  • Maren Rehders
    • 1
  • Denise Ming Tse Yu
    • 1
  • Dagmar Führer
    • 2
    • 3
  • Klaudia Brix
    • 1
  1. 1.School of Engineering and Science, Research Center MOLIFE, Molecular Life ScienceJacobs University BremenBremenGermany
  2. 2.Universitätsklinikum Leipzig Medizinische Klinik IIILeipzigGermany
  3. 3.Klinik fuer Endokrinologie, Zentrum fuer Innere MedizinEssenGermany

Personalised recommendations