Clinical Reviews in Bone and Mineral Metabolism

, Volume 7, Issue 4, pp 293–300 | Cite as

Immunomodulation of Multiple Myeloma Bone Disease

Original Paper

Abstract

Multiple myeloma (MM) is a clonal malignancy of terminally differentiated plasma cells. Myeloma patients often have extensive skeletal complications, including bone pain, osteolytic lesions and pathological fractures, which represent the major cause of morbidity and possible mortality. Osteolysis is due to the uncoupling of bone cell activity, caused by osteoclast activation and osteoblast inhibition. Osteoclast biology is dominantly regulated by the RANK/RANKL/OPG axis. A disruption of RANKL/OPG ratio, due to the prevalence of RANKL and/or inactivation of OPG, has been reported in MM bone disease by different mechanisms involving either malignant plasma cells and/or other cells of immune system. Despite the major involvement of RANKL in MM is well documented, a dysregulated production of other cytokines either with pro- or anti-osteoclastogenic activity can also contribute to the development of osteolytic lesions by acting directly on bone cells or altering RANKL/OPG axis. This review focuses on molecules produced by cells of immune system able to induce bone destruction in MM bone disease.

Keywords

Multiple myeloma Osteoclast T cells Myeloma cells Osteolysis 

References

  1. 1.
    Coleman RE. Skeletal complications of malignancy. Cancer. 1997;80:1588–94.PubMedCrossRefGoogle Scholar
  2. 2.
    Billadeau D, Ahmann G, Greipp P, Van Ness B. The bone marrow of multiple myeloma patients contains B cell populations at different stages of differentiation that are clonally related to the malignant plasma cell. J Exp Med. 1993;178:1023–31.PubMedCrossRefGoogle Scholar
  3. 3.
    Matsui W, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y, et al. Characterization of clonogenic multiple myeloma cells. Blood. 2004;103:2332–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Anderson KC, Shaughnessy JD Jr, Barlogie B, Harousseau JL, Roodman GD. Multiple myeloma. Hematology Am Soc Hematol Educ Program. 2002;214–40.Google Scholar
  5. 5.
    Lacey DL, Tan HL, Lu J, Kaufman S, Van G, Qiu W, et al. Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am J Pathol. 2000;157:435–48.PubMedGoogle Scholar
  6. 6.
    Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89:309–19.PubMedCrossRefGoogle Scholar
  7. 7.
    Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology. 1998;139:1329–37.PubMedCrossRefGoogle Scholar
  8. 8.
    Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165–76.PubMedCrossRefGoogle Scholar
  9. 9.
    Choi Y, Woo KM, Ko SH, Lee YJ, Park SJ, Kim HM, et al. Osteoclastogenesis is enhanced by activated B cells but suppressed by activated CD8(+) T cells. Eur J Immunol. 2001;31:2179–88.PubMedCrossRefGoogle Scholar
  10. 10.
    Colucci S, Brunetti G, Rizzi R, Zonno A, Mori G, Colaianni G, et al. T cells support osteoclastogenesis in an in vitro model derived from human multiple myeloma bone disease: the role of the OPG/TRAIL interaction. Blood. 2004;104:3722–30.PubMedCrossRefGoogle Scholar
  11. 11.
    Weitzmann MN, Cenci S, Rifas L, Haug J, Dipersio J, Pacifici R. T cell activation induces human osteoclast formation via receptor activator of nuclear factor kappaB ligand-dependent and -independent mechanisms. J Bone Miner Res. 2001;16:328–37.PubMedCrossRefGoogle Scholar
  12. 12.
    Giuliani N, Colla S, Sala R, Moroni M, Lazzaretti M, La Monica S, et al. Human myeloma cells stimulate the receptor activator of nuclear factor-kappa B ligand (RANKL) in T lymphocytes: a potential role in multiple myeloma bone disease. Blood. 2002;100:4615–21.PubMedCrossRefGoogle Scholar
  13. 13.
    Teitelbaum SL. Postmenopausal osteoporosis, T cells, and immune dysfunction. Proc Natl Acad Sci USA. 2004;101:16711–2.PubMedCrossRefGoogle Scholar
  14. 14.
    Rifas L, Arackal S. T cells regulate the expression of matrix metalloproteinase in human osteoblasts via a dual mitogen-activated protein kinase mechanism. Arthritis Rheum. 2003;48:993–1001.PubMedCrossRefGoogle Scholar
  15. 15.
    Mills KHG, Cawley JC. Abnormal monoclonal antibody-defined helper/suppressor T-cell subpopulations in multiple myeloma: relationship to treatment and clinical stage. Br J Haematol. 1983;53:271–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Kay N, Leong T, Kyle RA, et al. Altered T cell repertoire usage in CD4 and CD8 subsets of multiple myeloma patients, a study of the eastern cooperative oncology group (E9487). Leuk Lymph. 1999;33:127–33.Google Scholar
  17. 17.
    Pilarski LM, Andrews EJ, Serra HM, Ruether BA, Mant MJ. Comparative analysis of immunodeficiency in patients with monoclonal gammopathy of undetermined significance and patients with untreated multiple myeloma. Scand J Immunol. 1989;29:217–28.PubMedCrossRefGoogle Scholar
  18. 18.
    Carter A, Silvian I, Tatarsky I, Spira G. Impaired immunoglobulin synthesis in multiple myeloma: a B-cell dysfunction. Am J Hematol. 1986;22:143–54.PubMedCrossRefGoogle Scholar
  19. 19.
    Mellstedt H, Holm G, Pettersson D, Björkholm M, Johansson B, Lindemalm C, et al. T cells in monoclonal gammopathies. Scand J Haematol. 1982;29:57–64.PubMedGoogle Scholar
  20. 20.
    Tienhaara A, Pelliniemi TT. Peripheral blood lymphocyte subsets in multiple myeloma and monoclonal gammopathy of undetermined significance. Clin Lab Haematol. 1994;16:213–23.PubMedGoogle Scholar
  21. 21.
    Joshua DE, Brown RD, Ho PJ, Gibson J. Regulatory T cells and multiple myeloma. Clin Lymphoma Myeloma. 2008;8:283–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Prabhala RH, Neri P, Bae JE, Tassone P, Shammas MA, Allam CK, et al. Dysfunctional T regulatory cells in multiple myeloma. Blood. 2006;107:301–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Beyer M, Kochanek M, Giese T, Endl E, Weihrauch MR, Knolle PA, et al. In vivo peripheral expansion of naive CD4+CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood. 2006;107:3940–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Feyler S, von Lilienfeld-Toal M, Jarmin S, Marles L, Rawstron A, Ashcroft AJ, et al. CD4(+)CD25(+)FoxP3(+) regulatory T cells are increased whilst CD3(+)CD4(−)CD8(−) alphabetaTCR(+) Double Negative T cells are decreased in the peripheral blood of patients with multiple myeloma which correlates with disease burden. Br J Haematol. 2009;144:686–95.PubMedCrossRefGoogle Scholar
  25. 25.
    Garcia-Sanz R, Gonzalez M, Orfao A, et al. Analysis of natural killer-associated antigens in peripheral blood and bone marrow of multiple myeloma patients and prognostic implications. Br J Haematol. 1996;93:81–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Osterborg A, Nilsson B, Bjorkholm M, Holm G, Mellstedt H. Natural killer cell activity in monoclonal gammopathies: relation to disease activity. Eur J Haematol. 1990;45:153–7.PubMedGoogle Scholar
  27. 27.
    King MA, Radicchi-Mastrioanni MA. Natural killer cells and CD56+ T cells in the blood of multiple myeloma patients: analysis by 4-colour flow cytometry. Cytometry. 1996;26:121–4.PubMedCrossRefGoogle Scholar
  28. 28.
    Perez-Andres M, Almeida J, Martin-Ayuso M, Moro MJ, Garcia-Marcos MA, Moreno I, et al. Red Espanola de Mieloma Multiple. interaction between clonal plasma cells and the immune system in plasma cell dyscrasias. J Biol Regul Homeost Agents. 2004;18:161–5.PubMedGoogle Scholar
  29. 29.
    Dhodapkar KM, Barbuto S, Matthews P, Kukreja A, Mazumder A, Vesole D, et al. Dendritic cells mediate the induction of polyfunctional human IL17-producing cells (Th17–1 cells) enriched in the bone marrow of patients with myeloma. Blood. 2008;112:2878–85.PubMedCrossRefGoogle Scholar
  30. 30.
    Pérez-Andres M, Almeida J, Martin-Ayuso M, Moro MJ, Martin-Nuñez G, Galende J, et al. Characterization of bone marrow T cells in monoclonal gammopathy of undetermined significance, multiple myeloma, and plasma cell leukemia demonstrates increased infiltration by cytotoxic/Th1 T cells demonstrating a squed TCR-Vbeta repertoire. Cancer. 2006;106:1296–305.PubMedCrossRefGoogle Scholar
  31. 31.
    Grcevic D, Lee SK, Marusic A, Lorenzo JA. Depletion of CD4 and CD8 T lymphocytes in mice in vivo enhances 1, 25-dihydroxyvitamin D3-stimulated osteoclast-like cell formation in vitro by a mechanism that is dependent on prostaglandin synthesis. J Immunol. 2000;165:4231–8.PubMedGoogle Scholar
  32. 32.
    Horwood NJ, Kartsogiannis V, Quinn JM, Romas E, Martin TJ, Gillespie MT. Activated T lymphocytes support osteoclast formation in vitro. Biochem Biophys Res Commun. 1999;265:144–50.PubMedCrossRefGoogle Scholar
  33. 33.
    Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature. 1999;402:304–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Teng YT, Nguyen H, Gao X, Kong YY, Gorczynski RM, Singh B, Ellen RP, Penninger JM. Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection. J Clin Invest. 2000;106:R59-7.Google Scholar
  35. 35.
    Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature. 2000;408:600–5.PubMedCrossRefGoogle Scholar
  36. 36.
    D’Amelio P, Grimaldi A, Pescarmona GP, Tamone C, Roato I, Isaia G. Spontaneous osteoclast formation from peripheral blood mononuclear cells in postmenopausal osteoporosis. FASEB J. 2005;19:410–2.PubMedGoogle Scholar
  37. 37.
    Roato I, Grano M, Brunetti G, Colucci S, Mussa A, Bertetto O, et al. Mechanisms of spontaneous osteoclastogenesis in cancer with bone involvement. FASEB J. 2005;19:228–30.PubMedGoogle Scholar
  38. 38.
    Wong BR, Rho J, Arron J, Robinson E, Orlinick J, Chao M, et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem. 1997;272:25190–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Kim N, Takami M, Rho J, Josien R, Choi Y. A novel member of the leukocyte receptor complex regulates osteoclast differentiation. J Exp Med. 2002;195:201–9.PubMedGoogle Scholar
  40. 40.
    Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397:315–23.PubMedCrossRefGoogle Scholar
  41. 41.
    Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 1999;13:1015–24.PubMedCrossRefGoogle Scholar
  42. 42.
    Takayanagi H, Kim S, Taniguchi T. Signaling crosstalk between RANKL and interferons in osteoclast differentiation. Arthritis Res. 2002;4:S227–32.PubMedCrossRefGoogle Scholar
  43. 43.
    Nosaka K, Miyamoto T, Sakai T, Mitsuya H, Suda T, Matsuoka M. Mechanism of hypercalcemia in adult T-cell leukemia: overexpression of receptor activator of nuclear factor kappaB ligand on adult T-cell leukemia cells. Blood. 2002;99:634–40.PubMedCrossRefGoogle Scholar
  44. 44.
    Giuliani N, Bataille R, Mancini C, Lazzaretti M, Barille S. Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood. 2001;98:3527–33.PubMedCrossRefGoogle Scholar
  45. 45.
    Pearse RN, Sordillo EM, Yaccoby S, Wong BR, Liau DF, Colman N, et al. Multiple myeloma disrupts the TRANCE/osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci USA. 2001;98:11581–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Qiang YW, Chen Y, Stephens O, Brown N, Chen B, Epstein J, et al. Myeloma-derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma. Blood. 2008;112:196–207.PubMedCrossRefGoogle Scholar
  47. 47.
    Standal T, Seidel C, Hjertner O, Plesner T, Sanderson RD, Waage A, et al. Osteoprotegerin is bound, internalized, and degraded by multiple myeloma cells. Blood. 2002;100:3002–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Heider U, Langelotz C, Jakob C, Zavrski I, Fleissner C, Eucker J, et al. Expression of receptor activator of nuclear factor kappaB ligand on bone marrow plasma cells correlates with osteolytic bone disease in patients with multiple myeloma. Clin Cancer Res. 2003;9:1436–40.PubMedGoogle Scholar
  49. 49.
    Sezer O, Heider U, Jakob C, Eucker J, Possinger K. Human bone marrow myeloma cells express RANKL. J Clin Oncol. 2002;20:353–4.PubMedGoogle Scholar
  50. 50.
    Sezer O, Heider U, Jakob C, Zavrski I, Eucker J, Possinger K, et al. Immunocytochemistry reveals RANKL expression of myeloma cells. Blood. 2002;99:4646–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Croucher PI, Shipman CM, Lippitt J, Perry M, Asosingh K, Hijzen A, et al. Osteoprotegerin inhibits the development of osteolytic bone disease in multiple myeloma. Blood. 2001;98:3534–40.PubMedCrossRefGoogle Scholar
  52. 52.
    Roux S, Meignin V, Quillard J, Roux S, Meignin V, Quillard J, et al. RANK (receptor activator of nuclear factor-kappaB) and RANKL expression in multiple myeloma. Br J Haematol. 2002;117:86–92.PubMedCrossRefGoogle Scholar
  53. 53.
    Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest. 2006;116:1202–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, et al. The role of the wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med. 2003;349:2483–94.PubMedCrossRefGoogle Scholar
  55. 55.
    Politou MC, Heath DJ, Rahemtulla A, Szydlo R, Anagnostopoulos A, Dimopoulos MA, et al. Serum concentrations of Dickkopf-1 protein are increased in patients with multiple myeloma and reduced after autologous stem cell transplantation. Int J Cancer. 2006;119:1728–31.PubMedCrossRefGoogle Scholar
  56. 56.
    Kaiser M, Mieth M, Liebisch P, Oberlander R, Rademacher J, Jakob C, et al. Serum concentrations of DKK-1 correlate with the extent of bone disease in patients with multiple myeloma. Eur J Haematol. 2008;80:490–4.PubMedCrossRefGoogle Scholar
  57. 57.
    Yaccoby S, Ling W, Zhan F, Walker R, Barlogie B, Shaughnessy JD Jr. Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood. 2007;109:2106–11.PubMedCrossRefGoogle Scholar
  58. 58.
    Heath DJ, Chantry AD, Buckle CH, Coulton L, Shaughnessy JD Jr, Evans HR, et al. Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma. J Bone Miner Res. 2009;24:425–36.PubMedCrossRefGoogle Scholar
  59. 59.
    Marsters SA, Pitti RA, Sheridan JP, Ashkenazi A. Control of apoptosis signaling by Apo2 ligand. Recent Progr Horm Res. 1999;54:225–34.PubMedGoogle Scholar
  60. 60.
    Zauli G, Secchiero P. The role of the TRAIL/TRAIL receptors system in hematopoiesis and endothelial cell biology. Cytokine Growth Factor Rev. 2006;17:245–57.PubMedCrossRefGoogle Scholar
  61. 61.
    Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C, et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem. 1998;273:14363–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Holen I, Croucher PI, Hamdy FC, Eaton CL. Osteoprotegerin is a survival factor for human prostate cancer cell. Cancer Res. 2002;62:1619–23.PubMedGoogle Scholar
  63. 63.
    Shipman CM, Croucher PI. Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a paracrine survival factor for human myeloma cells. Cancer Res. 2003;63:912–6.PubMedGoogle Scholar
  64. 64.
    Pitti RM, Marsters SA, Lawrence DA, Roy M, Kischkel FC, Dowd P, et al. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature. 1998;396:699–703.PubMedCrossRefGoogle Scholar
  65. 65.
    Roth W, Isenmann S, Nakamura M, Platten M, Wick W, Kleihues P, et al. Soluble decoy receptor 3 is expressed by malignant gliomas and suppresses CD95 ligand-induced apoptosis and chemotaxis. Cancer Res. 2001;61:2759–65.PubMedGoogle Scholar
  66. 66.
    Bai C, Connolly B, Metzker ML, Hilliard CA, Liu X, Sandig V, et al. Overexpression of M68/DcR3 in human gastrointestinal tract tumors independent of gene amplification and its location in a four-gene cluster. Proc Natl Acad Sci USA. 2000;97:1230–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Yang CR, Wang JH, Hsieh SL, Wang SM, Hsu TL, Lin WW. Decoy receptor 3 (DcR3) induces osteoclast formation from monocyte/macrophage lineage precursor cells. Cell Death Differ. 2004;11(Suppl 1):S97–107.PubMedCrossRefGoogle Scholar
  68. 68.
    Tang CH, Hsu TL, Lin WW, Lai MZ, Yang RS, Hsieh SL, et al. Attenuation of bone mass and increase of osteoclast formation in decoy receptor 3 transgenic mice. J Biol Chem. 2007;282:2346–54.PubMedCrossRefGoogle Scholar
  69. 69.
    Colucci S, Brunetti G, Mori G, Oranger A, Centonze M, Mori C, Cantatore FP, Tamma R, R Rizzi, Liso V, Zallone A, Grano M. Soluble decoy receptor 3 modulates the survival and formation of osteoclasts from multiple myeloma bone disease patients. Leukemia. 2009 [Epub ahead of print].Google Scholar
  70. 70.
    Sati HI, Greaves M, Apperley JF, Russell RG, Croucher PI. Expression of interleukin-1beta and tumour necrosis factor-alpha in plasma cells from patients with multiple myeloma. Br J Haematol. 1999;104:350–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Silvestris F, Cafforio P, Calvani N, Dammacco F. Impaired osteoblastogenesis in myeloma bone disease: role of upregulated apoptosis by cytokines and malignant plasma cells. Br J Haematol. 2004;126:475–86.PubMedCrossRefGoogle Scholar
  72. 72.
    Abildgaard N, Glerup H, Rungby J, Bendix-Hansen K, Kassem M, et al. Biochemical markers of bone metabolism reflect osteoclastic and osteoblastic activity in multiple myeloma. Eur J Haematol. 2000;64:121–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Nanes MS. Tumor necrosis factor-alpha: molecular and cellular mechanisms in skeletal pathology. Gene. 2003;321:1–15.PubMedCrossRefGoogle Scholar
  74. 74.
    Kitaura H, Sands MS, Aya K, Zhou P, Hirayama T, Uthgenannt B, et al. Marrow stromal cells and osteoclast precursors differentially contribute to TNF-alpha-induced osteoclastogenesis in vivo. J Immunol. 2004;173:4838–46.PubMedGoogle Scholar
  75. 75.
    Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature. 2000;408:600–5.PubMedCrossRefGoogle Scholar
  76. 76.
    Firestein GS, Zvaifler NJ. How important are T cells in chronic rheumatoid synovitis? Arthritis Rheum. 1990;33:768–73.PubMedCrossRefGoogle Scholar
  77. 77.
    Kinne RW, Palombo-Kinne E, Emmrich F. T-cells in the pathogenesis of rheumatoid arthritis villains or accomplices? Biochim Biophys Acta. 1997;1360:109–41.PubMedGoogle Scholar
  78. 78.
    Weitzmann MN, Cenci S, Rifas L, Brown C, Pacifici R. Interleukin-7 stimulates osteoclast formation by up-regulating the T-cell production of soluble osteoclastogenic cytokines. Blood. 2000;96:1873–8.PubMedGoogle Scholar
  79. 79.
    Toraldo G, Roggia C, Qian WP, Pacifici R, Weitzmann MN. IL-7 induces bone loss in vivo by induction of receptor activator of nuclear factor kappa B ligand and tumor necrosis factor alpha from T cells. Proc Natl Acad Sci USA. 2003;100:125–30.PubMedCrossRefGoogle Scholar
  80. 80.
    Iwata M, Graf L, Awaya N, Torok-Storb B. Functional interleukin-7 receptors (IL-7Rs) are expressed by marrow stromal cells: binding of IL-7 increases levels of IL-6 mRNA and secreted protein. Blood. 2002;100:1318–25.PubMedCrossRefGoogle Scholar
  81. 81.
    Giuliani N, Colla S, Morandi F, Lazzaretti M, Sala R, Bonomini S, et al. Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation. Blood. 2005;106:2472–83.PubMedCrossRefGoogle Scholar
  82. 82.
    Merico F, Bergui L, Gregoretti MG, Ghia P, Aimo G, Lindley IJ, et al. Cytokines involved in the progression of multiple myeloma. Clin Exp Immunol. 1993;92:27–31.PubMedCrossRefGoogle Scholar
  83. 83.
    Giuliani N, Morandi F, Tagliaferri S, Colla S, Bonomini S, Sammarelli G, et al. Interleukin-3 (IL-3) is overexpressed by T lymphocytes in multiple myeloma patients. Blood. 2006;107:841–2.PubMedCrossRefGoogle Scholar
  84. 84.
    Lee JW, Chung HY, Ehrlich LA, Jelinek DF, Callander NS, Roodman GD, et al. IL-3 expression by myeloma cells increases both osteoclast formation and growth of myeloma cells. Blood. 2004;103:2308–15.PubMedCrossRefGoogle Scholar
  85. 85.
    Barton BE, Mayer R. IL-3 induces differentiation of bone marrow precursor cells to osteoclast-like cells. J Immunol. 1989;143:3211–6.PubMedGoogle Scholar
  86. 86.
    Ehrlich LA, Chung HY, Ghobrial I, Choi SJ, Morandi F, Colla S, et al. IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma. Blood. 2005;106:1407–14.PubMedCrossRefGoogle Scholar
  87. 87.
    Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.PubMedCrossRefGoogle Scholar
  88. 88.
    Randolph GJ, Inaba K, Robbiani DF, Steinman RM, Muller WA. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity. 1999;11:753–61.PubMedCrossRefGoogle Scholar
  89. 89.
    Randolph GJ, Sanchez-Schmitz G, Liebman RM, Schakel K. The CD16(+) (FcgammaRIII(+)) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting. J Exp Med. 2002;196:517–27.PubMedCrossRefGoogle Scholar
  90. 90.
    Miyamoto T, Ohneda O, Arai F, Iwamoto K, Okada S, Takagi K, et al. Bifurcation of osteoclasts and dendritic cells from common progenitors. Blood. 2001;98:2544–54.PubMedCrossRefGoogle Scholar
  91. 91.
    Rivollier A, Mazzorana M, Tebib J, Piperno M, Aitsiselmi T, Rabourdin-Combe C, et al. Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment. Blood. 2004;104:4029–37.PubMedCrossRefGoogle Scholar
  92. 92.
    Hashimoto T, Abe M, Tanaka Y, Sekimoto E, Oshima T. Macrophage inflammatory protein-1 may cause reciprocal regulation of osteoclast and dendritic cell differentiation from monocytes in myeloma (abstract). Haematologica J. 2005;90:46.Google Scholar
  93. 93.
    Wolpe SD, Davatelis G, Sherry B, Beutler B, Hesse DG, Nguyen HT, et al. Macrophages secrete a novel heparin-binding protein with inflammatory and neutrophil chemokinetic properties. J Exp Med. 1988;167:570–81.PubMedCrossRefGoogle Scholar
  94. 94.
    Kukita T, Nomiyama H, Ohmoto Y, Kukita A, Shuto T, Hotokebuchi T, et al. Macrophage inflammatory protein-1 alpha (LD78) expressed in human bone marrow: its role in regulation of hematopoiesis and osteoclast recruitment. Lab Invest. 1997;76:399–406.PubMedGoogle Scholar
  95. 95.
    Scheven BA, Milne JS, Hunter I, Robins SP. Macrophage-inflammatory protein-1alpha regulates preosteoclast differentiation in vitro. Biochem Biophys Res Commun. 1999;254:773–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Han JH, Choi SJ, Kurihara N, Koide M, Oba Y, Roodman GD. Macrophage inflammatory protein-1alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. Blood. 2001;97:3349–53.PubMedCrossRefGoogle Scholar
  97. 97.
    Abe M, Hiura K, Wilde J, Moriyama K, Hashimoto T, Ozaki S, et al. Role for macrophage inflammatory protein (MIP)-1alpha and MIP-1beta in the development of osteolytic lesions in multiple myeloma. Blood. 2002;100:2195–202.PubMedGoogle Scholar
  98. 98.
    Choi SJ, Cruz JC, Craig F, Chung H, Devlin RD, Roodman GD, et al. Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factor in multiple myeloma. Blood. 2000;96:671–5.PubMedGoogle Scholar
  99. 99.
    Roodman GD. Mechanisms of bone lesions in multiple myeloma and lymphoma. Cancer. 1997;80:1557–63.PubMedCrossRefGoogle Scholar
  100. 100.
    Uneda S, Hata H, Matsuno F, Harada N, Mitsuya Y, Kawano F, et al. Macrophage inflammatory protein-1 alpha is produced by human multiple myeloma (MM) cells and its expression correlates with bone lesions in patients with MM. Br J Haematol. 2003;120:53–5.PubMedCrossRefGoogle Scholar
  101. 101.
    Terpos E, Politou M, Szydlo R, Goldman JM, Apperley JF, Rahemtulla A. Serum levels of macrophage inflammatory protein-1 alpha (MIP-1alpha) correlate with the extent of bone disease and survival in patients with multiple myeloma. Br J Haematol. 2003;123:106–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Magrangeas F, Nasser V, Avet-Loiseau H, Loriod B, Decaux O, Granjeaud S, et al. Gene expression profiling of multiple myeloma reveals molecular portraits in relation to the pathogenesis of the disease. Blood. 2003;101:4998–5006.PubMedCrossRefGoogle Scholar
  103. 103.
    Hashimoto T, Abe M, Oshima T, Shibata H, Ozaki S, Inoue D, et al. Ability of myeloma cells to secrete macrophage inflammatory protein (MIP)-1alpha and MIP-1beta correlates with lytic bone lesions in patients with multiple myeloma. Br J Haematol. 2004;125:38–41.PubMedCrossRefGoogle Scholar
  104. 104.
    Choi SJ, Oba Y, Gazitt Y, Alsina M, Cruz J, Anderson J, et al. Antisense inhibition of macrophage inflammatory protein 1-alpha blocks bone destruction in a model of myeloma bone disease. J Clin Invest. 2001;108:1833–41.PubMedGoogle Scholar
  105. 105.
    Oyajobi BO, Franchin G, Williams PJ, Pulkrabek D, Gupta A, Munoz S, et al. Dual effects of macrophage inflammatory protein-1alpha on osteolysis and tumor burden in the murine 5TGM1 model of myeloma bone disease. Blood. 2003;102:311–9.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • Maria Grano
    • 1
  • Giacomina Brunetti
    • 1
  • Silvia Colucci
    • 1
  1. 1.Department of Human Anatomy and HistologyUniversity of Bari Medical SchoolBariItaly

Personalised recommendations