Vitamin D and Type 2 Diabetes

  • Myrto Eliades
  • Anastassios G. Pittas
Original Paper


Vitamin D has been reported to have a variety of non-skeletal actions, including on glucose metabolism. There has been increasing evidence from animal and human studies, to suggest that vitamin D may be important in modifying risk of type 2 diabetes. Vitamin D is thought to have both direct (through activation of the vitamin D receptor) and indirect (via regulation of calcium homeostasis) effects on various mechanisms related to the pathophysiology of type 2 diabetes, including pancreatic beta-cell dysfunction, impaired insulin action, and systemic inflammation. The evidence from human studies comes primarily from cross-sectional and a few prospective observational studies showing an inverse association between vitamin D status and prevalence or incidence of type 2 diabetes. While there is paucity of trials that have specifically examined the role of vitamin D in prevention or treatment of type 2 diabetes, vitamin D therapy is emerging as a feasible and cost-effective potential intervention for type 2 diabetes.


Vitamin D Type 2 diabetes Calcium 


  1. 1.
    Narayan KM, et al. Impact of recent increase in incidence on future diabetes burden: U.S., 2005–2050. Diabetes Care. 2006;29(9):2114–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Wild S, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.PubMedCrossRefGoogle Scholar
  3. 3.
    Dabelea D, et al. Incidence of diabetes in youth in the United States. Jama. 2007;297(24):2716–24.PubMedCrossRefGoogle Scholar
  4. 4.
    Booth GL, et al. Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet. 2006;368(9529):29–36.PubMedCrossRefGoogle Scholar
  5. 5.
    Hogan P, Dall T, Nikolov P. Economic costs of diabetes in the US in 2002. Diabetes Care. 2003;26(3):917–32.PubMedCrossRefGoogle Scholar
  6. 6.
    Hu FB, et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med. 2001;345(11):790–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Knowler WC, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.PubMedCrossRefGoogle Scholar
  8. 8.
    Pittas AG, et al. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab. 2007;92(6):2017–29.PubMedCrossRefGoogle Scholar
  9. 9.
    Holick MF. Resurrection of vitamin D deficiency and rickets. J Clin Invest. 2006;116(8):2062–72.PubMedCrossRefGoogle Scholar
  10. 10.
    Fleet JC. Rapid, membrane-initiated actions of 1,25-dihydroxyvitamin D: what are they and what do they mean? J Nutr. 2004;134(12):3215–8.PubMedGoogle Scholar
  11. 11.
    Norman AW, et al. Vitamin D deficiency inhibits pancreatic secretion of insulin. Science. 1980;209(4458):823–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Kadowaki S, Norman AW. Dietary vitamin D is essential for normal insulin secretion from the perfused rat pancreas. J Clin Invest. 1984;73(3):759–66.PubMedCrossRefGoogle Scholar
  13. 13.
    Tanaka Y, et al. Effect of vitamin D3 on the pancreatic secretion of insulin and somatostatin. Acta Endocrinol (Copenh). 1984;105(4):528–33.Google Scholar
  14. 14.
    Cade C, Norman AW. Vitamin D3 improves impaired glucose tolerance and insulin secretion in the vitamin D-deficient rat in vivo. Endocrinology. 1986;119(1):84–90.PubMedGoogle Scholar
  15. 15.
    Bourlon PM, Faure-Dussert A, Billaudel B. The de novo synthesis of numerous proteins is decreased during vitamin D3 deficiency and is gradually restored by 1,25-dihydroxyvitamin D3 repletion in the islets of langerhans of rats. J Endocrinol. 1999;162(1):101–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Clark SA, Stumpf WE, Sar M. Effect of 1,25-dihydroxyvitamin D3 on insulin secretion. Diabetes. 1981;30(5):382–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Johnson JA, et al. Immunohistochemical localization of the 1, 25(OH)2D3 receptor and calbindin D28 k in human and rat pancreas. Am J Physiol. 1994;267(3 pt 1):E356–60.PubMedGoogle Scholar
  18. 18.
    Zeitz U, et al. Impaired insulin secretory capacity in mice lacking a functional vitamin D receptor. Faseb J. 2003;17(3):509–11.PubMedGoogle Scholar
  19. 19.
    Maestro B, et al. Identification of a Vitamin D response element in the human insulin receptor gene promoter. J Steroid Biochem Mol Biol. 2003;84(2–3):223–30.PubMedCrossRefGoogle Scholar
  20. 20.
    Maestro B, et al. Transcriptional activation of the human insulin receptor gene by 1,25-dihydroxyvitamin D(3). Cell Biochem Funct. 2002;20(3):227–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Bland R, et al. Expression of 25-hydroxyvitamin D3-1alpha-hydroxylase in pancreatic islets. J Steroid Biochem Mol Biol. 2004;89–90(1–5):121–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Sergeev IN, Rhoten WB. 1,25-Dihydroxyvitamin D3 evokes oscillations of intracellular calcium in a pancreatic beta-cell line. Endocrinology. 1995;136(7):2852–61.PubMedCrossRefGoogle Scholar
  23. 23.
    Milner RD, Hales CN. The role of calcium and magnesium in insulin secretion from rabbit pancreas studied in vitro. Diabetologia. 1967;3(1):47–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Kadowaki S, Norman AW. Pancreatic vitamin D-dependent calcium binding protein: biochemical properties and response to vitamin D. Arch Biochem Biophys. 1984;233(1):228–36.PubMedCrossRefGoogle Scholar
  25. 25.
    Sooy K, et al. Calbindin-D (28 k) controls [Ca(2+)](i) and insulin release. Evidence obtained from calbindin-D (28 k) knockout mice and beta cell lines. J Biol Chem. 1999;274(48):34343–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Maestro B, et al. Stimulation by 1,25-dihydroxyvitamin D3 of insulin receptor expression and insulin responsiveness for glucose transport in U-937 human promonocytic cells. Endocr J. 2000;47(4):383–91.PubMedCrossRefGoogle Scholar
  27. 27.
    Dunlop TW, et al. The human peroxisome proliferator-activated receptor delta gene is a primary target of 1alpha, 25-dihydroxyvitamin D3 and its nuclear receptor. J Mol Biol. 2005;349(2):248–60.PubMedCrossRefGoogle Scholar
  28. 28.
    Ojuka EO. Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle. Proc Nutr Soc. 2004;63(2):275–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Wright DC, et al. Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes. 2004;53(2):330–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Draznin B, et al. The existence of an optimal range of cytosolic free calcium for insulin-stimulated glucose transport in rat adipocytes. J Biol Chem. 1987;262(30):14385–8.PubMedGoogle Scholar
  31. 31.
    Byyny RL, et al. Cytosolic calcium and insulin resistance in elderly patients with essential hypertension. Am J Hypertens. 1992;5(7):459–64.PubMedGoogle Scholar
  32. 32.
    Draznin B, et al. Mechanism of insulin resistance induced by sustained levels of cytosolic free calcium in rat adipocytes. Endocrinology. 1989;125(5):2341–9.PubMedGoogle Scholar
  33. 33.
    Draznin B, et al. Possible role of cytosolic free calcium concentrations in mediating insulin resistance of obesity and hyperinsulinemia. J Clin Invest. 1988;82(6):1848–52.PubMedCrossRefGoogle Scholar
  34. 34.
    Draznin B, et al. Relationship between cytosolic free calcium concentration and 2-deoxyglucose uptake in adipocytes isolated from 2- and 12-month-old rats. Endocrinology. 1988;122(6):2578–83.PubMedGoogle Scholar
  35. 35.
    Ohno Y, et al. Impaired insulin sensitivity in young, lean normotensive offspring of essential hypertensives: possible role of disturbed calcium metabolism. J Hypertens. 1993;11(4):421–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Segal S, et al. Postprandial changes in cytosolic free calcium and glucose uptake in adipocytes in obesity and non-insulin-dependent diabetes mellitus. Horm Res. 1990;34(1):39–44.PubMedCrossRefGoogle Scholar
  37. 37.
    Zemel MB. Nutritional and endocrine modulation of intracellular calcium: implications in obesity, insulin resistance and hypertension. Mol Cell Biochem. 1998;188(1–2):129–36.PubMedCrossRefGoogle Scholar
  38. 38.
    Williams PF, et al. High affinity insulin binding and insulin receptor-effector coupling: modulation by Ca2+. Cell Calcium. 1990;11(8):547–56.PubMedCrossRefGoogle Scholar
  39. 39.
    Reusch JE, et al. Regulation of GLUT-4 phosphorylation by intracellular calcium in adipocytes. Endocrinology. 1991;129(6):3269–73.PubMedGoogle Scholar
  40. 40.
    Sowers JR. Insulin resistance and hypertension. Am J Physiol Heart Circ Physiol. 2004;286(5):H1597–602.PubMedCrossRefGoogle Scholar
  41. 41.
    Wei Y, et al. Angiotensin II-induced skeletal muscle insulin resistance mediated by NF-kappaB activation via NADPH oxidase. Am J Physiol Endocrinol Metab. 2008;294(2):E345–51.PubMedCrossRefGoogle Scholar
  42. 42.
    Li YC, et al. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest. 2002;110(2):229–38.PubMedGoogle Scholar
  43. 43.
    Yuan W, et al. 1,25-dihydroxyvitamin D3 suppresses renin gene transcription by blocking the activity of the cyclic AMP response element in the renin gene promoter. J Biol Chem. 2007;282(41):29821–30.PubMedCrossRefGoogle Scholar
  44. 44.
    Duncan BB, et al. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes. 2003;52(7):1799–805.PubMedCrossRefGoogle Scholar
  45. 45.
    Hu FB, et al. Inflammatory markers and risk of developing type 2 diabetes in women. Diabetes. 2004;53(3):693–700.PubMedCrossRefGoogle Scholar
  46. 46.
    Pittas AG, Joseph NA, Greenberg AS. Adipocytokines and insulin resistance. J Clin Endocrinol Metab. 2004;89(2):447–52.PubMedCrossRefGoogle Scholar
  47. 47.
    Pradhan AD, et al. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. Jama. 2001;286(3):327–34.PubMedCrossRefGoogle Scholar
  48. 48.
    Riachy R, et al. 1,25-dihydroxyvitamin D3 protects RINm5F and human islet cells against cytokine-induced apoptosis: implication of the antiapoptotic protein A20. Endocrinology. 2002;143(12):4809–19.PubMedCrossRefGoogle Scholar
  49. 49.
    van Etten E, Mathieu C. Immunoregulation by 1,25-dihydroxyvitamin D3: basic concepts. J Steroid Biochem Mol Biol. 2005;97(1–2):93–101.PubMedCrossRefGoogle Scholar
  50. 50.
    Riachy R, et al. 1,25-Dihydroxyvitamin D3 protects human pancreatic islets against cytokine-induced apoptosis via down-regulation of the Fas receptor. Apoptosis. 2006;11(2):151–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Giulietti A, et al. Monocytes from type 2 diabetic patients have a pro-inflammatory profile. 1,25-Dihydroxyvitamin D(3) works as anti-inflammatory. Diabetes Res Clin Pract. 2007;77(1):47–57.PubMedCrossRefGoogle Scholar
  52. 52.
    Behall KM, et al. Seasonal variation in plasma glucose and hormone levels in adult men and women. Am J Clin Nutr. 1984;40(6 Suppl):1352–6.PubMedGoogle Scholar
  53. 53.
    Campbell IT, Jarrett RJ, Keen H. Diurnal and seasonal variation in oral glucose tolerance: studies in the Antarctic. Diabetologia. 1975;11(2):139–45.PubMedCrossRefGoogle Scholar
  54. 54.
    Aksoy H, et al. Serum 1,25-dihydroxy vitamin D (1,25(OH)2D3), 25-hydroxy vitamin D (25(OH)D) and parathormone levels in diabetic retinopathy. Clin Biochem. 2000;33(1):47–51.PubMedCrossRefGoogle Scholar
  55. 55.
    Boucher BJ, et al. Glucose intolerance and impairment of insulin secretion in relation to vitamin D deficiency in east London Asians. Diabetologia. 1995;38(10):1239–45.PubMedCrossRefGoogle Scholar
  56. 56.
    Christiansen C, et al. Vitamin D metabolites in diabetic patients: decreased serum concentration of 24,25-dihydroxyvitamin D. Scand J Clin Lab Invest. 1982;42(6):487–91.PubMedGoogle Scholar
  57. 57.
    Cigolini M, et al. Serum 25-hydroxyvitamin D3 concentrations and prevalence of cardiovascular disease among type 2 diabetic patients. Diabetes Care. 2006;29(3):722–4.PubMedCrossRefGoogle Scholar
  58. 58.
    Hypponen E, Power C. Vitamin D status and glucose homeostasis in the 1958 British birth cohort: the role of obesity. Diabetes Care. 2006;29(10):2244–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Isaia G, Giorgino R, Adami S. High prevalence of hypovitaminosis D in female type 2 diabetic population. Diabetes Care. 2001;24(8):1496.PubMedCrossRefGoogle Scholar
  60. 60.
    Nyomba BL, et al. Vitamin D metabolites and their binding protein in adult diabetic patients. Diabetes. 1986;35(8):911–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Pietschmann P, Schernthaner G, Woloszczuk W. Serum osteocalcin levels in diabetes mellitus: analysis of the type of diabetes and microvascular complications. Diabetologia. 1988;31(12):892–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Scragg R, et al. Serum 25-hydroxyvitamin D3 levels decreased in impaired glucose tolerance and diabetes mellitus. Diabetes Res Clin Pract. 1995;27(3):181–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Stepan J, et al. Plasma 25-hydroxycholecalciferol in oral sulfonylurea treated diabetes mellitus. Horm Metab Res. 1982;14(2):98–100.PubMedCrossRefGoogle Scholar
  64. 64.
    Heath HIII, et al. Calcium homeostasis in diabetes mellitus. J Clin Endocrinol Metab. 1979;49(3):462–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Ishida H, et al. Diabetic osteopenia and circulating levels of vitamin D metabolites in type 2 (noninsulin-dependent) diabetes. Metabolism. 1985;34(9):797–801.PubMedCrossRefGoogle Scholar
  66. 66.
    Baynes KC, et al. Vitamin D, glucose tolerance and insulinaemia in elderly men. Diabetologia. 1997;40(3):344–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Chiu KC, et al. Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am J Clin Nutr. 2004;79(5):820–5.PubMedGoogle Scholar
  68. 68.
    Ford ES, et al. Concentrations of serum vitamin D and the metabolic syndrome among U. S. adults. Diabetes Care. 2005;28(5):1228–30.PubMedCrossRefGoogle Scholar
  69. 69.
    Martins D, et al. Prevalence of cardiovascular risk factors and the serum levels of 25-hydroxyvitamin D in the United States: data from the Third National Health and Nutrition Examination Survey. Arch Intern Med. 2007;167(11):1159–65.PubMedCrossRefGoogle Scholar
  70. 70.
    Need AG, et al. Relationship between fasting serum glucose, age, body mass index and serum 25-hydroxyvitamin D in postmenopausal women. Clin Endocrinol (Oxf). 2005;62(6):738–41.CrossRefGoogle Scholar
  71. 71.
    Reis JP, et al. Vitamin D, parathyroid hormone levels, and the prevalence of metabolic syndrome in community-dwelling older adults. Diabetes Care. 2007;30(6):1549–55.PubMedCrossRefGoogle Scholar
  72. 72.
    Scragg R, Sowers M, Bell C. Serum 25-hydroxyvitamin D, diabetes, and ethnicity in the Third National Health and Nutrition Examination Survey. Diabetes Care. 2004;27(12):2813–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Botella-Carretero JI, et al. Vitamin D deficiency is associated with the metabolic syndrome in morbid obesity. Clin Nutr. 2007;26(5):573–80.PubMedCrossRefGoogle Scholar
  74. 74.
    Hypponen E, et al. 25-hydroxyvitamin D, IGF-1, and metabolic syndrome at 45 years of age: a cross-sectional study in the 1958 British Birth Cohort. Diabetes. 2008;57(2):298–305.PubMedCrossRefGoogle Scholar
  75. 75.
    Liu S, et al. Dietary calcium, vitamin D, and the prevalence of metabolic syndrome in middle-aged and older U.S. women. Diabetes Care. 2005;28(12):2926–32.PubMedCrossRefGoogle Scholar
  76. 76.
    McGill AT, et al. Relationships of low serum vitamin D3 with anthropometry and markers of the metabolic syndrome and diabetes in overweight and obesity. Nutr J. 2008;7:4.PubMedCrossRefGoogle Scholar
  77. 77.
    Orwoll E, Riddle M, Prince M. Effects of vitamin D on insulin and glucagon secretion in non-insulin-dependent diabetes mellitus. Am J Clin Nutr. 1994;59(5):1083–7.PubMedGoogle Scholar
  78. 78.
    Snijder M, et al. To: Mathieu C, Gysemans C, Giulietti A, Bouillon R (2005) Vitamin D and diabetes, Diabetologia 48:1247–1257. Diabetologia. 2006;49(1):217–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Wareham NJ, et al. Glucose intolerance is associated with altered calcium homeostasis: a possible link between increased serum calcium concentration and cardiovascular disease mortality. Metabolism. 1997;46(10):1171–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Bell NH, et al. Evidence for alteration of the vitamin D-endocrine system in blacks. J Clin Invest. 1985;76(2):470–3.PubMedCrossRefGoogle Scholar
  81. 81.
    Parikh SJ, et al. The relationship between obesity and serum 1,25-dihydroxy vitamin D concentrations in healthy adults. J Clin Endocrinol Metab. 2004;89(3):1196–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Wortsman J, et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72(3):690–3.PubMedGoogle Scholar
  83. 83.
    Pittas AG, et al. Vitamin D and calcium intake in relation to type 2 diabetes in women. Diabetes Care. 2006;29(3):650–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Mattila C, et al. Serum 25-hydroxyvitamin D concentration and subsequent risk of type 2 diabetes. Diabetes Care. 2007;30(10):2569–70.PubMedCrossRefGoogle Scholar
  85. 85.
    Knekt P, et al. Serum vitamin D and subsequent occurrence of type 2 diabetes. Epidemiology. 2008;19:666–71.PubMedCrossRefGoogle Scholar
  86. 86.
    van Dam RM, et al. Dietary calcium and magnesium, major food sources, and risk of type 2 diabetes in U.S. black women. Diabetes Care. 2006;29(10):2238–43.PubMedCrossRefGoogle Scholar
  87. 87.
    Pereira MA, et al. Dairy consumption, obesity, and the insulin resistance syndrome in young adults: the CARDIA Study. Jama. 2002;287(16):2081–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Fliser D, et al. No effect of calcitriol on insulin-mediated glucose uptake in healthy subjects. Eur J Clin Invest. 1997;27(7):629–33.PubMedCrossRefGoogle Scholar
  89. 89.
    Inomata S, et al. Effect of 1 alpha (OH)-vitamin D3 on insulin secretion in diabetes mellitus. Bone Miner. 1986;1(3):187–92.PubMedGoogle Scholar
  90. 90.
    Ljunghall S, et al. Treatment with one-alpha-hydroxycholecalciferol in middle-aged men with impaired glucose tolerance—a prospective randomized double-blind study. Acta Med Scand. 1987;222(4):361–7.PubMedGoogle Scholar
  91. 91.
    Nilas L, Christiansen C. Treatment with vitamin D or its analogues does not change body weight or blood glucose level in postmenopausal women. Int J Obes. 1984;8(5):407–11.PubMedGoogle Scholar
  92. 92.
    de Boer IH, et al. Calcium plus vitamin D supplementation and the risk of incident diabetes in the Women’s Health Initiative. Diabetes Care. 2008;31(4):701–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Jacobs DR Jr, Steffen LM. Nutrients, foods, and dietary patterns as exposures in research: a framework for food synergy. Am J Clin Nutr. 2003;78(3 Suppl):508S–13S.PubMedGoogle Scholar
  94. 94.
    Nutrient Food Board, I.o.M. Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D and fluoride. Washington, DC: National Academy Press; 2003.Google Scholar
  95. 95.
    Bischoff-Ferrari HA, et al. Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr. 2006;84(1):18–28.PubMedGoogle Scholar
  96. 96.
    Hollis BW. Circulating 25-hydroxyvitamin D levels indicative of vitamin D sufficiency: implications for establishing a new effective dietary intake recommendation for vitamin D. J Nutr. 2005;135(2):317–22.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  1. 1.Division of Endocrinology, Diabetes and MetabolismTufts Medical CenterBostonUSA

Personalised recommendations