Advertisement

Skeletal Microdamage: Less About Biomechanics and More About Remodeling

  • Matthew R. AllenEmail author
  • David B. Burr
Original Paper

Abstract

The mechanical consequences of skeletal microdamage have been clearly documented using various experimental methods, yet recent experiments suggest that physiological levels of microdamage accumulation are not sufficient to compromise the bones’ biomechanical properties. While great advances have been made in our understanding of the biomechanical implications of microdamage, less is known concerning the physiological role of microdamage in bone remodeling. Microdamage has been shown to act as a signal for bone remodeling, likely through a disruption of the osteocyte-canalicular network. Interestingly, age-related increases in microdamage are not accompanied by increases in bone remodeling suggesting that the physiological mechanisms which link microdamage and remodeling are compromised with aging.

Keywords

Microcracks Toughness Targeted remodeling Aging 

References

  1. 1.
    Burr DB, Stafford T. Validity of the bulk-staining technique to separate artifactual from in vivo bone microdamage. Clin Orthop Relat Res. 1990;260:305–8.Google Scholar
  2. 2.
    Frost HM. Presence of microscopic cracks in vivo in bone. Henry Ford Med Bull. 1960;8:25–35.Google Scholar
  3. 3.
    Courtney AC, Hayes WC, Gibson LJ. Age-related differences in post-yield damage in human cortical bone. Experiment and model. J Biomech. 1996;29(11):1463–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Allen MR, Iwata K, Phipps R, Burr DB. Alterations in canine vertebral bone turnover, microdamage accumulation, and biomechanical properties following 1-year treatment with clinical treatment doses of risedronate or alendronate. Bone. 2006;39(4):872–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Mashiba T, Turner CH, Hirano T, et al. Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biomechanical properties in clinically relevant skeletal sites in beagles. Bone. 2001;28(5):524–31.PubMedCrossRefGoogle Scholar
  6. 6.
    Stepan JJ, Burr DB, Pavo I, et al. Low bone mineral density is associated with bone microdamage accumulation in postmenopausal women with osteoporosis. Bone. 2007;41(3):378–85.PubMedCrossRefGoogle Scholar
  7. 7.
    Burr DB, Turner CH. Biomechanics of bone, in primer on the metabolic bone diseases and disorders of mineral metabolism. In: Favus M, editor. Washington DC: American Society for Bone and Mineral Research; 2003. p. 58–64.Google Scholar
  8. 8.
    Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone. 1993;14(4):595–608.PubMedCrossRefGoogle Scholar
  9. 9.
    Carter DR, Hayes WC. Compact bone fatigue damage-I. Residual strength and stiffness. J Biomech. 1977;10(5–6):325–37.PubMedCrossRefGoogle Scholar
  10. 10.
    Burr DB, Turner CH, Naick P, et al. Does microdamage accumulation affect the mechanical properties of bone? J Biomech. 1998;31(4):337–45.PubMedCrossRefGoogle Scholar
  11. 11.
    Reifsnider KL, Schultz K, Duke JC. Long-term fatigue behavior of composite materials. In: Long-term behavior of composites, ASTM, editor. Philadelphia: ASTM; 1983. p. 136–59.Google Scholar
  12. 12.
    Salkind MJ. Fatigue in composite materials. In: Composite materials testing and design (2nd conf). Philadelphia: ASTM: STP497, 1972. p. 143–169.Google Scholar
  13. 13.
    Carter DR, Caler WE, Spengler DM, Frankel VH. Uniaxial fatigue of human cortical bone. The influence of tissue physical characteristics. J Biomech. 1981;14(7):461–70.PubMedCrossRefGoogle Scholar
  14. 14.
    Vashishth D, Behiri JC, Bonfield W. Crack growth resistance in cortical bone: concept of microcrack toughening. J Biomech. 1997;30(8):763–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Diab T, Condon KW, Burr DB, Vashishth D. Age-related change in the damage morphology of human cortical bone and its role in bone fragility. Bone. 2006;38(3):427–31.PubMedCrossRefGoogle Scholar
  16. 16.
    Komatsubara S, Mori S, Mashiba T, et al. Long-term treatment of incadronate disodium accumulates microdamage but improves the trabecular bone microarchitecture in dog vertebra. J Bone Miner Res. 2003;18(3):512–20.PubMedCrossRefGoogle Scholar
  17. 17.
    Mashiba T, Hirano T, Turner CH, et al. Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res. 2000;15(4):613–20.PubMedCrossRefGoogle Scholar
  18. 18.
    Allen MR, Iwata K, Sato M, Burr DB. Raloxifene enhances vertebral mechanical properties independent of bone density. Bone. 2006;39:1130–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Allen MR, Burr DB. Three years of alendronate treatment results in similar levels of vertebral microdamage as after one year of treatment. J Bone Miner Res. 2007;22(11):1759–65.PubMedCrossRefGoogle Scholar
  20. 20.
    Donahue SW, Galley SA. Microdamage in bone: implications for fracture, repair, remodeling, and adaptation. Crit Rev Biomed Eng. 2006;34(3):215–71.PubMedGoogle Scholar
  21. 21.
    Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng. 2006;8:455–98.PubMedCrossRefGoogle Scholar
  22. 22.
    Seeman E, Delmas PD. Bone quality-the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61.PubMedCrossRefGoogle Scholar
  23. 23.
    Taylor D, Hazenberg JG, Lee TC. Living with cracks: damage and repair in human bone. Nat Mater. 2007;6(4):263–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Parfitt AM. Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone. 2002;30(1):5–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Tschantz P, Rutishauser E. [The mechanical overloading of living bone: initial plastic deformations and adaptation hypertrophy]. Ann Anat Pathol (Paris). 1967;12(3):223–48.Google Scholar
  26. 26.
    Burr DB, Martin RB, Schaffler MB, Radin EL. Bone remodeling in response to in vivo fatigue microdamage. J Biomech. 1985;18(3):189–200.PubMedCrossRefGoogle Scholar
  27. 27.
    Burr DB, Martin RB. Calculating the probability that microcracks initiate resorption spaces. J Biomech. 1993;26(4–5):613–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Schaffler MB, Radin EL, Burr DB. Long-term fatigue behavior of compact bone at low strain magnitude and rate. Bone. 1990;11(5):321–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Mori S, Burr DB. Increased intracortical remodeling following fatigue damage. Bone. 1993;14(2):103–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee TC, Staines A, Taylor D. Bone adaptation to load: microdamage as a stimulus for bone remodeling. J Anat. 2002;201(6):437–46.PubMedCrossRefGoogle Scholar
  31. 31.
    Bentolila V, Boyce TM, Fyhrie DP, et al. Intracortical remodeling in adult rat long bones after fatigue loading. Bone. 1998;23(3):275–81.PubMedCrossRefGoogle Scholar
  32. 32.
    Verborgt O, Gibson GJ, Schaffler MB. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res. 2000;15(1):60–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Noble BS, Peet N, Stevens HY, et al. Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol Cell Physiol. 2003;284(4):C934–43.PubMedGoogle Scholar
  34. 34.
    Hsieh YF, Silva MJ. In vivo fatigue loading of the rat ulna induces both bone formation and resorption and leads to time-related changes in bone mechanical properties and density. J Orthop Res. 2002;20(4):764–71.PubMedCrossRefGoogle Scholar
  35. 35.
    Muir P, Sample SJ, Barrett JG, et al. Effect of fatigue loading and associated matrix microdamage on bone blood flow and interstitial fluid flow. Bone. 2007;40(4):948–56.PubMedCrossRefGoogle Scholar
  36. 36.
    Fritton JC, Schaffler MB. In vivo fatigue loading of mouse bone increases resorption. Trans Orthop Res Soc. 2008;33:0133.Google Scholar
  37. 37.
    Komatsubara S, Mori S, Mashiba T, et al. Suppressed bone turnover by long-term bisphosphonate treatment accumulates microdamage but maintains intrinsic material properties in cortical bone of dog rib. J Bone Miner Res. 2004;19(6):999–1005.PubMedCrossRefGoogle Scholar
  38. 38.
    Li J, Mashiba T, Burr DB. Bisphosphonate treatment suppresses not only stochastic remodeling but also the targeted repair of microdamage. Calcif Tissue Int. 2001;69(5):281–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang X, Hazelwood S, Sisneros A, et al. Theoretical analysis of alendronate effects on canine vertebral remodeling and microdamage. Trans Orthop Res Soc. 2007;32:1402.Google Scholar
  40. 40.
    Martin RB, Burr DB. A hypothetical mechanism for the stimulation of osteonal remodeling by fatigue damage. J Biomech. 1982;15(3):137–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Burr DB. Targeted and nontargeted remodeling. Bone. 2002;30(1):2–4.PubMedCrossRefGoogle Scholar
  42. 42.
    Martin RB. Is all cortical bone remodeling initiated by microdamage? Bone. 2002;30(1):8–13.PubMedCrossRefGoogle Scholar
  43. 43.
    Cooper DM, Turinsky AL, Sensen CW, Hallgrimsson B. Quantitative 3D analysis of the canal network in cortical bone by micro-computed tomography. Anat Rec B New Anat. 2003;274(1):169–79.PubMedCrossRefGoogle Scholar
  44. 44.
    Martin RB. Targeted bone remodeling involves BMU steering as well as activation. Bone. 2007;40(6):1574–80.PubMedCrossRefGoogle Scholar
  45. 45.
    Verborgt O, Tatton NA, Majeska RJ, Schaffler MB. Spatial distribution of Bax and Bcl-2 in osteocytes after bone fatigue: complementary roles in bone remodeling regulation? J Bone Miner Res. 2002;17(5):907–14.PubMedCrossRefGoogle Scholar
  46. 46.
    Noble, B. Bone microdamage and cell apoptosis. Eur Cell Mater. 2003;6:46–55, discussion 55.Google Scholar
  47. 47.
    Tami AE, Nasser P, Verborgt O, Schaffler MB, Knothe Tate ML. The role of interstitial fluid flow in the remodeling response to fatigue loading. J Bone Miner Res. 2002;17(11):2030–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Galley SA, Michalek DJ, Donahue SW. A fatigue microcrack alters fluid velocities in a computational model of interstitial fluid flow in cortical bone. J Biomech. 2006;39(11):2026–33.PubMedCrossRefGoogle Scholar
  49. 49.
    Colopy SA, Benz-Dean J, Barrett JG, et al. Response of the osteocyte syncytium adjacent to and distant from linear microcracks during adaptation to cyclic fatigue loading. Bone. 2004;35(4):881–91.PubMedCrossRefGoogle Scholar
  50. 50.
    Jepsen KJ. The aging cortex: to crack or not to crack. Osteoporos Int. 2003;14 Suppl 5:57–66.Google Scholar
  51. 51.
    Schaffler MB, Choi K, Milgrom C. Aging and matrix microdamage accumulation in human compact bone. Bone. 1995;17(6):521–25.PubMedCrossRefGoogle Scholar
  52. 52.
    Mori S, Harruff R, Ambrosius W, Burr DB. Trabecular bone volume and microdamage accumulation in the femoral heads of women with and without femoral neck fractures. Bone. 1997;21(6):521–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Fazzalari NL, Forwood MR, Smith K, Manthey BA, Herreen P. Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage. Bone. 1998;22(4):381–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Frank JD, Ryan M, Kalscheur VL, et al. Aging and accumulation of microdamage in canine bone. Bone. 2002;30(1):201–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Fazzalari NL, Kuliwaba JS, Forwood MR. Cancellous bone microdamage in the proximal femur: influence of age and osteoarthritis on damage morphology and regional distribution. Bone. 2002;31(6):697–702.PubMedCrossRefGoogle Scholar
  56. 56.
    Recker R, Lappe J, Davies KM, Heaney R. Bone remodeling increases substantially in the years after menopause and remains increased in older osteoporosis patients. J Bone Miner Res. 2004;19(10):1628–33.PubMedCrossRefGoogle Scholar
  57. 57.
    Lindsay R, Zhou H, Cosman F, et al. Effects of a one-month treatment with PTH(1–34) on bone formation on cancellous, endocortical, and periosteal surfaces of the human illium. J Bone Miner Res. 2007;22(4):495–502.PubMedCrossRefGoogle Scholar
  58. 58.
    Vashishth D, Verborgt O, Divine G, Schaffler MB, Fyhrie DP. Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age. Bone. 2000;26(4):375–80.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  1. 1.Department of Anatomy and Cell BiologyIndiana University School of MedicineIndianapolisUSA
  2. 2.Department of Orthopaedic SurgeryIndiana University School of MedicineIndianapolisUSA
  3. 3.Department of Biomedical EngineeringIndiana University-Purdue University IndianapolisIndianapolisUSA

Personalised recommendations