Advertisement

NeuroMolecular Medicine

, Volume 21, Issue 4, pp 369–390 | Cite as

Cerebral Amyloid Angiopathy, Alzheimer’s Disease and MicroRNA: miRNA as Diagnostic Biomarkers and Potential Therapeutic Targets

  • J. Weldon Furr
  • Diego Morales-Scheihing
  • Bharti Manwani
  • Juneyoung Lee
  • Louise D. McCulloughEmail author
Review Paper

Abstract

The protein molecules must fold into unique conformations to acquire functional activity. Misfolding, aggregation, and deposition of proteins in diverse organs, the so-called “protein misfolding disorders (PMDs)”, represent the conformational diseases with highly ordered assemblies, including oligomers and fibrils that are linked to neurodegeneration in brain illnesses such as cerebral amyloid angiopathy (CAA) and Alzheimer’s disease (AD). Recent studies have revealed several aspects of brain pathology in CAA and AD, but both the classification and underlying mechanisms need to be further refined. MicroRNAs (miRNAs) are critical regulators of gene expression at the post-transcriptional level. Increasing evidence with the advent of RNA sequencing technology suggests possible links between miRNAs and these neurodegenerative disorders. To provide insights on the small RNA-mediated regulatory circuitry and the translational significance of miRNAs in PMDs, this review will discuss the characteristics and mechanisms of the diseases and summarize circulating or tissue-resident miRNAs associated with AD and CAA.

Keywords

Alzheimer’s disease Cerebral amyloid angiopathy Intracerebral hemorrhage MicroRNA Protein misfolding 

Notes

Acknowledgements

This work was supported by NIH/NINDS NS094543 and NS096493 (to LDM).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Absalon, S., Kochanek, D. M., Raghavan, V., & Krichevsky, A. M. (2013). MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. Journal of Neuroscience,33(37), 14645–14659.  https://doi.org/10.1523/JNEUROSCI.1327-13.2013.CrossRefPubMedGoogle Scholar
  2. Adams, S. J., Crook, R. J., Deture, M., Randle, S. J., Innes, A. E., Yu, X. Z., et al. (2009). Overexpression of wild-type murine tau results in progressive tauopathy and neurodegeneration. American Journal of Pathology,175(4), 1598–1609.  https://doi.org/10.2353/ajpath.2009.090462.CrossRefPubMedGoogle Scholar
  3. Akter, R., Cao, P., Noor, H., Ridgway, Z., Tu, L. H., Wang, H., et al. (2016). Islet amyloid polypeptide: Structure, function, and pathophysiology. Journal of Diabetes Research,2016, 2798269.  https://doi.org/10.1155/2016/2798269.CrossRefPubMedGoogle Scholar
  4. Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement,7(3), 270–279.  https://doi.org/10.1016/j.jalz.2011.03.008.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Alexandrov, P. N., Dua, P., Hill, J. M., Bhattacharjee, S., Zhao, Y., & Lukiw, W. J. (2012). microRNA (miRNA) speciation in Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). International Journal of Biochemistry and Molecular Biology,3(4), 365–373.PubMedPubMedCentralGoogle Scholar
  6. Ameres, S. L., & Zamore, P. D. (2013). Diversifying microRNA sequence and function. Nature Reviews Molecular Cell Biology,14(8), 475–488.  https://doi.org/10.1038/nrm3611.CrossRefPubMedGoogle Scholar
  7. Andersen, P. M., & Al-Chalabi, A. (2011). Clinical genetics of amyotrophic lateral sclerosis: What do we really know? Nature Reviews Neurology,7(11), 603–615.  https://doi.org/10.1038/nrneurol.2011.150.CrossRefPubMedGoogle Scholar
  8. Association, A. s. (2019). Alzheimer’s disease facts and figures. Alzheimers Dement 15(3):321-387.Google Scholar
  9. Auriel, E., & Greenberg, S. M. (2012). The pathophysiology and clinical presentation of cerebral amyloid angiopathy. Current Atherosclerosis Reports,14(4), 343–350.  https://doi.org/10.1007/s11883-012-0254-z.CrossRefPubMedGoogle Scholar
  10. Backman, L., Jones, S., Berger, A. K., Laukka, E. J., & Small, B. J. (2004). Multiple cognitive deficits during the transition to Alzheimer’s disease. Journal of Internal Medicine,256(3), 195–204.  https://doi.org/10.1111/j.1365-2796.2004.01386.x.CrossRefPubMedGoogle Scholar
  11. Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., & Jones, E. (2011). Alzheimer’s disease. Lancet,377(9770), 1019–1031.  https://doi.org/10.1016/S0140-6736(10)61349-9.CrossRefPubMedGoogle Scholar
  12. Ballatore, C., Lee, V. M., & Trojanowski, J. Q. (2007). Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nature Reviews Neuroscience,8(9), 663–672.  https://doi.org/10.1038/nrn2194.CrossRefPubMedGoogle Scholar
  13. Banzhaf-Strathmann, J., Benito, E., May, S., Arzberger, T., Tahirovic, S., Kretzschmar, H., et al. (2014). MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer’s disease. EMBO Journal,33(15), 1667–1680.  https://doi.org/10.15252/embj.201387576.CrossRefPubMedGoogle Scholar
  14. Banzhaf-Strathmann, J., & Edbauer, D. (2014). Good guy or bad guy: The opposing roles of microRNA 125b in cancer. Cell Communication and Signaling,12, 30.  https://doi.org/10.1186/1478-811X-12-30.CrossRefPubMedGoogle Scholar
  15. Barry, G. (2014). Integrating the roles of long and small non-coding RNA in brain function and disease. Molecular Psychiatry,19(4), 410–416.  https://doi.org/10.1038/mp.2013.196.CrossRefPubMedGoogle Scholar
  16. Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell,136(2), 215–233.  https://doi.org/10.1016/j.cell.2009.01.002.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bateman, R. J., Aisen, P. S., De Strooper, B., Fox, N. C., Lemere, C. A., Ringman, J. M., et al. (2011). Autosomal-dominant Alzheimer’s disease: A review and proposal for the prevention of Alzheimer’s disease. Alzheimers Research & Therapy,3(1), 1.  https://doi.org/10.1186/alzrt59.CrossRefGoogle Scholar
  18. Bateman, R. J., Xiong, C., Benzinger, T. L., Fagan, A. M., Goate, A., Fox, N. C., et al. (2012). Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. New England Journal of Medicine,367(9), 795–804.  https://doi.org/10.1056/NEJMoa1202753.CrossRefPubMedGoogle Scholar
  19. Bekris, L. M., Lutz, F., Montine, T. J., Yu, C. E., Tsuang, D., Peskind, E. R., et al. (2013). MicroRNA in Alzheimer’s disease: An exploratory study in brain, cerebrospinal fluid and plasma. Biomarkers,18(5), 455–466.  https://doi.org/10.3109/1354750X.2013.814073.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bennett, D. A., Schneider, J. A., Arvanitakis, Z., Kelly, J. F., Aggarwal, N. T., Shah, R. C., et al. (2006). Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology,66(12), 1837–1844.  https://doi.org/10.1212/01.wnl.0000219668.47116.e6.CrossRefGoogle Scholar
  21. Bhatnagar, S., Chertkow, H., Schipper, H. M., Yuan, Z., Shetty, V., Jenkins, S., et al. (2014). Increased microRNA-34c abundance in Alzheimer’s disease circulating blood plasma. Frontiers in Molecular Neuroscience,7, 2.  https://doi.org/10.3389/fnmol.2014.00002.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Biffi, A., & Greenberg, S. M. (2011). Cerebral amyloid angiopathy: A systematic review. Journal of Clinical Neurology,7(1), 1–9.  https://doi.org/10.3988/jcn.2011.7.1.1.CrossRefPubMedGoogle Scholar
  23. Blennow, K., Mattsson, N., Scholl, M., Hansson, O., & Zetterberg, H. (2015). Amyloid biomarkers in Alzheimer’s disease. Trends in Pharmacological Sciences,36(5), 297–309.  https://doi.org/10.1016/j.tips.2015.03.002.CrossRefPubMedGoogle Scholar
  24. Bohm, C., Chen, F., Sevalle, J., Qamar, S., Dodd, R., Li, Y., et al. (2015). Current and future implications of basic and translational research on amyloid-beta peptide production and removal pathways. Molecular and Cellular Neuroscience,66(Pt A), 3–11.  https://doi.org/10.1016/j.mcn.2015.02.016.CrossRefPubMedGoogle Scholar
  25. Borroni, B., Di Luca, M., & Padovani, A. (2006). Predicting Alzheimer dementia in mild cognitive impairment patients. Are biomarkers useful? European Journal of Pharmacology,545(1), 73–80.  https://doi.org/10.1016/j.ejphar.2006.06.023.CrossRefPubMedGoogle Scholar
  26. Brier, M. R., Gordon, B., Friedrichsen, K., McCarthy, J., Stern, A., Christensen, J., et al. (2016). Tau and Abeta imaging, CSF measures, and cognition in Alzheimer’s disease. Science Translational Medicine,8(338), 338ra366.  https://doi.org/10.1126/scitranslmed.aaf2362.CrossRefGoogle Scholar
  27. Buerger, K., Ewers, M., Pirttila, T., Zinkowski, R., Alafuzoff, I., Teipel, S. J., et al. (2006). CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain,129(Pt 11), 3035–3041.  https://doi.org/10.1093/brain/awl269.CrossRefPubMedGoogle Scholar
  28. Burgos, K., Malenica, I., Metpally, R., Courtright, A., Rakela, B., Beach, T., et al. (2014). Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PLoS ONE,9(5), e94839.  https://doi.org/10.1371/journal.pone.0094839.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Caughey, B., & Lansbury, P. T. (2003). Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders. Annual Review of Neuroscience,26, 267–298.  https://doi.org/10.1146/annurev.neuro.26.010302.081142.CrossRefPubMedGoogle Scholar
  30. Chabrier, M. A., Blurton-Jones, M., Agazaryan, A. A., Nerhus, J. L., Martinez-Coria, H., & LaFerla, F. M. (2012). Soluble Abeta promotes wild-type tau pathology in vivo. Journal of Neuroscience,32(48), 17345–17350.  https://doi.org/10.1523/JNEUROSCI.0172-12.2012.CrossRefPubMedGoogle Scholar
  31. Charidimou, A., Boulouis, G., Gurol, M. E., Ayata, C., Bacskai, B. J., Frosch, M. P., et al. (2017). Emerging concepts in sporadic cerebral amyloid angiopathy. Brain,140(7), 1829–1850.  https://doi.org/10.1093/brain/awx047.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Chase, W. R. (1992). You gave me back my life. Journal of the Michigan Dental Association,74(7), 28–30.PubMedGoogle Scholar
  33. Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., et al. (2008). Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research,18(10), 997–1006.  https://doi.org/10.1038/cr.2008.282.CrossRefPubMedGoogle Scholar
  34. Cheng, L., Doecke, J. D., Sharples, R. A., Villemagne, V. L., Fowler, C. J., Rembach, A., et al. (2015). Prognostic serum miRNA biomarkers associated with Alzheimer’s disease shows concordance with neuropsychological and neuroimaging assessment. Molecular Psychiatry,20(10), 1188–1196.  https://doi.org/10.1038/mp.2014.127.CrossRefPubMedGoogle Scholar
  35. Chien, D. T., Bahri, S., Szardenings, A. K., Walsh, J. C., Mu, F., Su, M. Y., et al. (2013). Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. Journal of Alzheimers Disease,34(2), 457–468.  https://doi.org/10.3233/JAD-122059.CrossRefGoogle Scholar
  36. Chiti, F., & Dobson, C. M. (2017). Protein misfolding, amyloid formation, and human disease: A summary of progress over the last decade. Annual Review of Biochemistry,86, 27–68.  https://doi.org/10.1146/annurev-biochem-061516-045115.CrossRefPubMedGoogle Scholar
  37. Cogswell, J. P., Ward, J., Taylor, I. A., Waters, M., Shi, Y., Cannon, B., et al. (2008). Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. Journal of Alzheimers Disease,14(1), 27–41.CrossRefGoogle Scholar
  38. Cosin-Tomas, M., Antonell, A., Llado, A., Alcolea, D., Fortea, J., Ezquerra, M., et al. (2017). Plasma miR-34a-5p and miR-545-3p as early biomarkers of alzheimer’s disease: Potential and limitations. Molecular Neurobiology,54(7), 5550–5562.  https://doi.org/10.1007/s12035-016-0088-8.CrossRefPubMedGoogle Scholar
  39. Davidson, Y. S., Robinson, A., Prasher, V. P., & Mann, D. M. A. (2018). The age of onset and evolution of Braak tangle stage and Thal amyloid pathology of Alzheimer’s disease in individuals with Down syndrome. Acta Neuropathologica Communications,6(1), 56.  https://doi.org/10.1186/s40478-018-0559-4.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Davis, J., Xu, F., Hatfield, J., Lee, H., Hoos, M. D., Popescu, D., et al. (2018). A novel transgenic rat model of robust cerebral microvascular amyloid with prominent vasculopathy. American Journal of Pathology,188(12), 2877–2889.  https://doi.org/10.1016/j.ajpath.2018.07.030.CrossRefPubMedGoogle Scholar
  41. Denk, J., Boelmans, K., Siegismund, C., Lassner, D., Arlt, S., & Jahn, H. (2015). MicroRNA profiling of CSF reveals potential biomarkers to detect Alzheimer`s disease. PLoS ONE,10(5), e0126423.  https://doi.org/10.1371/journal.pone.0126423.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Dobson, C. M. (1999). Protein misfolding, evolution and disease. Trends in Biochemical Sciences,24(9), 329–332.CrossRefGoogle Scholar
  43. Dong, H., Li, J., Huang, L., Chen, X., Li, D., Wang, T., et al. (2015). Serum MicroRNA profiles serve as novel biomarkers for the diagnosis of alzheimer’s disease. Disease Markers,2015, 625659.  https://doi.org/10.1155/2015/625659.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Donohue, M. C., Jacqmin-Gadda, H., Le Goff, M., Thomas, R. G., Raman, R., Gamst, A. C., et al. (2014). Estimating long-term multivariate progression from short-term data. Alzheimers Dement,10(5 Suppl), S400–S410.  https://doi.org/10.1016/j.jalz.2013.10.003.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Du, X., Huo, X., Yang, Y., Hu, Z., Botchway, B. O. A., Jiang, Y., et al. (2017). miR-124 downregulates BACE 1 and alters autophagy in APP/PS1 transgenic mice. Toxicology Letters,280, 195–205.  https://doi.org/10.1016/j.toxlet.2017.08.082.CrossRefPubMedGoogle Scholar
  46. Elder, G. A., Gama Sosa, M. A., & De Gasperi, R. (2010). Transgenic mouse models of Alzheimer’s disease. Mount Sinai Journal of Medicine,77(1), 69–81.  https://doi.org/10.1002/msj.20159.CrossRefPubMedGoogle Scholar
  47. Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nature Reviews Genetics,9(2), 102–114.  https://doi.org/10.1038/nrg2290.CrossRefPubMedGoogle Scholar
  48. Fink, A. L. (1998). Protein aggregation: Folding aggregates, inclusion bodies and amyloid. Folding and Design,3(1), R9–R23.  https://doi.org/10.1016/S1359-0278(98)00002-9.CrossRefPubMedGoogle Scholar
  49. Fleisher, A. S., Chen, K., Liu, X., Roontiva, A., Thiyyagura, P., Ayutyanont, N., et al. (2011). Using positron emission tomography and florbetapir F18 to image cortical amyloid in patients with mild cognitive impairment or dementia due to Alzheimer disease. Archives of Neurology,68(11), 1404–1411.  https://doi.org/10.1001/archneurol.2011.150.CrossRefPubMedGoogle Scholar
  50. Fleisher, A. S., Chen, K., Quiroz, Y. T., Jakimovich, L. J., Gutierrez Gomez, M., Langois, C. M., et al. (2015). Associations between biomarkers and age in the presenilin 1 E280A autosomal dominant Alzheimer disease kindred: a cross-sectional study. JAMA Neurology,72(3), 316–324.  https://doi.org/10.1001/jamaneurol.2014.3314.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Forstl, H., & Kurz, A. (1999). Clinical features of Alzheimer’s disease. European Archives of Psychiatry and Clinical Neuroscience,249(6), 288–290.CrossRefGoogle Scholar
  52. Galimberti, D., Villa, C., Fenoglio, C., Serpente, M., Ghezzi, L., Cioffi, S. M., et al. (2014). Circulating miRNAs as potential biomarkers in Alzheimer’s disease. Journal of Alzheimers Disease,42(4), 1261–1267.  https://doi.org/10.3233/JAD-140756.CrossRefGoogle Scholar
  53. Gantier, M. P., McCoy, C. E., Rusinova, I., Saulep, D., Wang, D., Xu, D., et al. (2011). Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Research,39(13), 5692–5703.  https://doi.org/10.1093/nar/gkr148.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Geekiyanage, H., Jicha, G. A., Nelson, P. T., & Chan, C. (2012). Blood serum miRNA: Non-invasive biomarkers for Alzheimer’s disease. Experimental Neurology,235(2), 491–496.  https://doi.org/10.1016/j.expneurol.2011.11.026.CrossRefPubMedGoogle Scholar
  55. Giraldez, A. J., Cinalli, R. M., Glasner, M. E., Enright, A. J., Thomson, J. M., Baskerville, S., et al. (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science,308(5723), 833–838.  https://doi.org/10.1126/science.1109020.CrossRefPubMedGoogle Scholar
  56. Glabe, C. G. (2006). Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiology of Aging,27(4), 570–575.  https://doi.org/10.1016/j.neurobiolaging.2005.04.017.CrossRefPubMedGoogle Scholar
  57. Goodall, E. F., Heath, P. R., Bandmann, O., Kirby, J., & Shaw, P. J. (2013). Neuronal dark matter: the emerging role of microRNAs in neurodegeneration. Frontiers in Cellular Neuroscience,7, 178.  https://doi.org/10.3389/fncel.2013.00178.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Grasso, M., Piscopo, P., Confaloni, A., & Denti, M. A. (2014). Circulating miRNAs as biomarkers for neurodegenerative disorders. Molecules,19(5), 6891–6910.  https://doi.org/10.3390/molecules19056891.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Greenberg, S. M., & Charidimou, A. (2018). Diagnosis of cerebral amyloid angiopathy: Evolution of the Boston criteria. Stroke,49(2), 491–497.  https://doi.org/10.1161/STROKEAHA.117.016990.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Gui, Y., Liu, H., Zhang, L., Lv, W., & Hu, X. (2015). Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget,6(35), 37043–37053.  https://doi.org/10.18632/oncotarget.6158.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Hammond, S. M. (2015). An overview of microRNAs. Advanced Drug Delivery Reviews,87, 3–14.  https://doi.org/10.1016/j.addr.2015.05.001.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Hardy, J. (2006). Has the amyloid cascade hypothesis for Alzheimer’s disease been proved? Current Alzheimer Research,3(1), 71–73.CrossRefGoogle Scholar
  63. Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science,297(5580), 353–356.  https://doi.org/10.1126/science.1072994.CrossRefGoogle Scholar
  64. He, D., Tan, J., & Zhang, J. (2017). miR-137 attenuates Abeta-induced neurotoxicity through inactivation of NF-kappaB pathway by targeting TNFAIP1 in Neuro2a cells. Biochemical and Biophysical Research Communications,490(3), 941–947.  https://doi.org/10.1016/j.bbrc.2017.06.144.CrossRefPubMedGoogle Scholar
  65. Hebert, S. S., Horre, K., Nicolai, L., Bergmans, B., Papadopoulou, A. S., Delacourte, A., et al. (2009). MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiology of Diseases,33(3), 422–428.  https://doi.org/10.1016/j.nbd.2008.11.009.CrossRefGoogle Scholar
  66. Hebert, S. S., Horre, K., Nicolai, L., Papadopoulou, A. S., Mandemakers, W., Silahtaroglu, A. N., et al. (2008). Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proceedings of the National Academy of Sciences,105(17), 6415–6420.  https://doi.org/10.1073/pnas.0710263105.CrossRefGoogle Scholar
  67. Hebert, S. S., Papadopoulou, A. S., Smith, P., Galas, M. C., Planel, E., Silahtaroglu, A. N., et al. (2010). Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Human Molecular Genetics,19(20), 3959–3969.  https://doi.org/10.1093/hmg/ddq311.CrossRefPubMedGoogle Scholar
  68. Helwak, A., Kudla, G., Dudnakova, T., & Tollervey, D. (2013). Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell,153(3), 654–665.  https://doi.org/10.1016/j.cell.2013.03.043.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Hernandez-Rapp, J., Rainone, S., Goupil, C., Dorval, V., Smith, P. Y., Saint-Pierre, M., et al. (2016). microRNA-132/212 deficiency enhances Abeta production and senile plaque deposition in Alzheimer’s disease triple transgenic mice. Scientific Reports,6, 30953.  https://doi.org/10.1038/srep30953.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Herzig, M. C., Winkler, D. T., Burgermeister, P., Pfeifer, M., Kohler, E., Schmidt, S. D., et al. (2004). Abeta is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis. Nature Neuroscience,7(9), 954–960.  https://doi.org/10.1038/nn1302.CrossRefPubMedGoogle Scholar
  71. Higaki, S., Muramatsu, M., Matsuda, A., Matsumoto, K., Satoh, J. I., Michikawa, M., et al. (2018). Defensive effect of microRNA-200b/c against amyloid-beta peptide-induced toxicity in Alzheimer’s disease models. PLoS ONE,13(5), e0196929.  https://doi.org/10.1371/journal.pone.0196929.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Hong, H., Li, Y., & Su, B. (2017). Identification of circulating miR-125b as a potential biomarker of Alzheimer’s disease in APP/PS1 transgenic mouse. Journal of Alzheimer’s Disease,59(4), 1449–1458.  https://doi.org/10.3233/JAD-170156.CrossRefPubMedGoogle Scholar
  73. Howe, M. D., Atadja, L. A., Furr, J. W., Maniskas, M. E., Zhu, L., McCullough, L. D., et al. (2018a). Fibronectin induces the perivascular deposition of cerebrospinal fluid-derived amyloid-beta in aging and after stroke. Neurobiology of Aging,72, 1–13.  https://doi.org/10.1016/j.neurobiolaging.2018.07.019.CrossRefPubMedGoogle Scholar
  74. Howe, M. D., Zhu, L., Sansing, L. H., Gonzales, N. R., McCullough, L. D., & Edwards, N. J. (2018b). Serum markers of blood-brain barrier remodeling and fibrosis as predictors of etiology and clinicoradiologic outcome in intracerebral hemorrhage. Frontiers in Neurology,9, 746.  https://doi.org/10.3389/fneur.2018.00746.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., et al. (1996). Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science,274(5284), 99–102.CrossRefGoogle Scholar
  76. Hsu, P. W., Huang, H. D., Hsu, S. D., Lin, L. Z., Tsou, A. P., Tseng, C. P., et al. (2006). miRNA Map: Genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Research 34(Database issue), D135-139,  https://doi.org/10.1093/nar/gkj135.CrossRefGoogle Scholar
  77. Hu, S., Wang, H., Chen, K., Cheng, P., Gao, S., Liu, J., et al. (2015). MicroRNA-34c downregulation ameliorates amyloid-beta-induced synaptic failure and memory deficits by targeting VAMP2. Journal of Alzheimers Disease,48(3), 673–686.  https://doi.org/10.3233/JAD-150432.CrossRefGoogle Scholar
  78. Huang, Y., Shen, X. J., Zou, Q., Wang, S. P., Tang, S. M., & Zhang, G. Z. (2011). Biological functions of microRNAs: A review. Journal of Physiology and Biochemistry,67(1), 129–139.  https://doi.org/10.1007/s13105-010-0050-6.CrossRefPubMedGoogle Scholar
  79. Ikonomovic, M. D., Klunk, W. E., Abrahamson, E. E., Mathis, C. A., Price, J. C., Tsopelas, N. D., et al. (2008). Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain,131(Pt 6), 1630–1645.  https://doi.org/10.1093/brain/awn016.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Iqbal, K., & Grundke-Iqbal, I. (2010). Alzheimer’s disease, a multifactorial disorder seeking multitherapies. Alzheimers Dement,6(5), 420–424.  https://doi.org/10.1016/j.jalz.2010.04.006.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Jack, C. R., Jr., Albert, M. S., Knopman, D. S., McKhann, G. M., Sperling, R. A., Carrillo, M. C., et al. (2011). Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement,7(3), 257–262.  https://doi.org/10.1016/j.jalz.2011.03.004.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Jack, C. R., Jr., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., et al. (2018). NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement,14(4), 535–562.  https://doi.org/10.1016/j.jalz.2018.02.018.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Jack, C. R., Jr., Lowe, V. J., Senjem, M. L., Weigand, S. D., Kemp, B. J., Shiung, M. M., et al. (2008). 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain,131(Pt 3), 665–680.  https://doi.org/10.1093/brain/awm336.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Jankowsky, J. L., Fadale, D. J., Anderson, J., Xu, G. M., Gonzales, V., Jenkins, N. A., et al. (2004). Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: Evidence for augmentation of a 42-specific gamma secretase. Human Molecular Genetics,13(2), 159–170.  https://doi.org/10.1093/hmg/ddh019.CrossRefPubMedGoogle Scholar
  85. Jankowsky, J. L., Slunt, H. H., Ratovitski, T., Jenkins, N. A., Copeland, N. G., & Borchelt, D. R. (2001). Co-expression of multiple transgenes in mouse CNS: A comparison of strategies. Biomolecular Engineering,17(6), 157–165.CrossRefGoogle Scholar
  86. Jawhar, S., Trawicka, A., Jenneckens, C., Bayer, T. A., & Wirths, O. (2012). Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Aβ aggregation in the 5XFAD mouse model of Alzheimer’s disease. Neurobiology of Aging,33(1), 196.e29–196.e140.  https://doi.org/10.1016/j.neurobiolaging.2010.05.027.CrossRefGoogle Scholar
  87. Jiang, Y., Xu, B., Chen, J., Sui, Y., Ren, L., Li, J., et al. (2018). Micro-RNA-137 inhibits Tau hyperphosphorylation in Alzheimer’s disease and targets the CACNA1C gene in transgenic mice and human neuroblastoma SH-SY5Y cells. Medical Science Monitor,24, 5635–5644.  https://doi.org/10.12659/MSM.908765.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Johnson, K. A., Sperling, R. A., Gidicsin, C. M., Carmasin, J. S., Maye, J. E., Coleman, R. E., et al. (2013). Florbetapir (F18-AV-45) PET to assess amyloid burden in Alzheimer’s disease dementia, mild cognitive impairment, and normal aging. Alzheimers Dement,9(5 Suppl), S72–S83.  https://doi.org/10.1016/j.jalz.2012.10.007.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Kayano, M., Higaki, S., Satoh, J. I., Matsumoto, K., Matsubara, E., Takikawa, O., et al. (2016). Plasma microRNA biomarker detection for mild cognitive impairment using differential correlation analysis. Biomarker Research,4, 22.  https://doi.org/10.1186/s40364-016-0076-1.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Kiko, T., Nakagawa, K., Tsuduki, T., Furukawa, K., Arai, H., & Miyazawa, T. (2014). MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer’s disease. Journal of Alzheimers Disease,39(2), 253–259.  https://doi.org/10.3233/JAD-130932.CrossRefGoogle Scholar
  91. Knopman, D. S., Haeberlein, S. B., Carrillo, M. C., Hendrix, J. A., Kerchner, G., Margolin, R., et al. (2018). The National Institute on Aging and the Alzheimer’s Association Research framework for Alzheimer’s disease: Perspectives from the research roundtable. Alzheimers Dement,14(4), 563–575.  https://doi.org/10.1016/j.jalz.2018.03.002.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Knopman, D. S., Jack, C. R., Jr., Wiste, H. J., Weigand, S. D., Vemuri, P., Lowe, V. J., et al. (2013). Brain injury biomarkers are not dependent on β-amyloid in normal elderly. Annals of Neurology,73(4), 472–480.  https://doi.org/10.1002/ana.23816.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Knudsen, K. A., Rosand, J., Karluk, D., & Greenberg, S. M. (2001). Clinical diagnosis of cerebral amyloid angiopathy: Validation of the Boston criteria. Neurology,56(4), 537–539.CrossRefGoogle Scholar
  94. Kosik, K. S., & Krichevsky, A. M. (2005). The elegance of the MicroRNAs: A neuronal perspective. Neuron,47(6), 779–782.  https://doi.org/10.1016/j.neuron.2005.08.019.CrossRefPubMedGoogle Scholar
  95. Kumar, S., Reddy, A. P., Yin, X., & Reddy, P. H. (2019). Novel MicroRNA-455-3p and its protective effects against abnormal APP processing and amyloid beta toxicity in Alzheimer’s disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease,1865(9), 2428–2440.  https://doi.org/10.1016/j.bbadis.2019.06.006.CrossRefGoogle Scholar
  96. Kumar, S., Vijayan, M., & Reddy, P. H. (2017). MicroRNA-455-3p as a potential peripheral biomarker for Alzheimer’s disease. Human Molecular Genetics,26(19), 3808–3822.  https://doi.org/10.1093/hmg/ddx267.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Lee, K., Kim, H., An, K., Kwon, O. B., Park, S., Cha, J. H., et al. (2016). Replenishment of microRNA-188-5p restores the synaptic and cognitive deficits in 5XFAD mouse model of Alzheimer’s disease. Scientific Reports,6, 34433.  https://doi.org/10.1038/srep34433.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Lei, X., Lei, L., Zhang, Z., Zhang, Z., & Cheng, Y. (2015). Downregulated miR-29c correlates with increased BACE1 expression in sporadic Alzheimer’s disease. International Journal of Clinical and Experimental Pathology,8(2), 1565–1574.PubMedPubMedCentralGoogle Scholar
  99. Leidinger, P., Backes, C., Deutscher, S., Schmitt, K., Mueller, S. C., Frese, K., et al. (2013). A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biology,14(7), R78.  https://doi.org/10.1186/gb-2013-14-7-r78.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Lemere, C. A., Blusztajn, J. K., Yamaguchi, H., Wisniewski, T., Saido, T. C., & Selkoe, D. J. (1996). Sequence of deposition of heterogeneous amyloid beta-peptides and APO E in Down syndrome: Implications for initial events in amyloid plaque formation. Neurobiology of Diseases,3(1), 16–32.  https://doi.org/10.1006/nbdi.1996.0003.CrossRefGoogle Scholar
  101. Lennox, K. A., & Behlke, M. A. (2010). A direct comparison of anti-microRNA oligonucleotide potency. Pharmaceutical Research,27(9), 1788–1799.  https://doi.org/10.1007/s11095-010-0156-0.CrossRefPubMedGoogle Scholar
  102. Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell,120(1), 15–20.  https://doi.org/10.1016/j.cell.2004.12.035.CrossRefGoogle Scholar
  103. Li, H. H., Lin, S. L., Huang, C. N., Lu, F. J., Chiu, P. Y., Huang, W. N., et al. (2016). miR-302 Attenuates Amyloid-beta-Induced Neurotoxicity through Activation of Akt Signaling. Journal of Alzheimers Disease,50(4), 1083–1098.  https://doi.org/10.3233/JAD-150741.CrossRefGoogle Scholar
  104. Li, J., & Wang, H. (2018). miR-15b reduces amyloid-beta accumulation in SH-SY5Y cell line through targeting NF-kappaB signaling and BACE1. Bioscience Reports.  https://doi.org/10.1042/BSR20180051.CrossRefPubMedPubMedCentralGoogle Scholar
  105. Liang, C., Zhu, H., Xu, Y., Huang, L., Ma, C., Deng, W., et al. (2012). MicroRNA-153 negatively regulates the expression of amyloid precursor protein and amyloid precursor-like protein 2. Brain Research,1455, 103–113.  https://doi.org/10.1016/j.brainres.2011.10.051.CrossRefPubMedGoogle Scholar
  106. Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., et al. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature,433(7027), 769–773.  https://doi.org/10.1038/nature03315.CrossRefPubMedGoogle Scholar
  107. Liu, W., Liu, C., Zhu, J., Shu, P., Yin, B., Gong, Y., et al. (2012). MicroRNA-16 targets amyloid precursor protein to potentially modulate Alzheimer’s-associated pathogenesis in SAMP8 mice. Neurobiology of Aging,33(3), 522–534.  https://doi.org/10.1016/j.neurobiolaging.2010.04.034.CrossRefPubMedGoogle Scholar
  108. Liu, C. G., Wang, J. L., Li, L., & Wang, P. C. (2014a). MicroRNA-384 regulates both amyloid precursor protein and beta-secretase expression and is a potential biomarker for Alzheimer’s disease. International Journal of Molecular Medicine,34(1), 160–166.  https://doi.org/10.3892/ijmm.2014.1780.CrossRefPubMedGoogle Scholar
  109. Liu, C. G., Wang, J. L., Li, L., Xue, L. X., Zhang, Y. Q., & Wang, P. C. (2014b). MicroRNA-135a and -200b, potential biomarkers for Alzheimers disease, regulate beta secretase and amyloid precursor protein. Brain Research,1583, 55–64.  https://doi.org/10.1016/j.brainres.2014.04.026.CrossRefPubMedGoogle Scholar
  110. Liu, C. D., Wang, Q., Zong, D. K., Pei, S. C., Yan, Y., Yan, M. L., et al. (2016a). Knockdown of microRNA-195 contributes to protein phosphatase-2A inactivation in rats with chronic brain hypoperfusion. Neurobiology of Aging,45, 76–87.  https://doi.org/10.1016/j.neurobiolaging.2016.05.010.CrossRefPubMedGoogle Scholar
  111. Liu, W., Zhao, J., & Lu, G. (2016b). miR-106b inhibits tau phosphorylation at Tyr18 by targeting Fyn in a model of Alzheimer’s disease. Biochemical and Biophysical Research Communications,478(2), 852–857.  https://doi.org/10.1016/j.bbrc.2016.08.037.CrossRefPubMedGoogle Scholar
  112. Londin, E., Loher, P., Telonis, A. G., Quann, K., Clark, P., Jing, Y., et al. (2015). Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proceedings of the National Academy of Sciences USA,112(10), E1106–E1115.  https://doi.org/10.1073/pnas.1420955112.CrossRefGoogle Scholar
  113. Long, J. M., Ray, B., & Lahiri, D. K. (2012). MicroRNA-153 physiologically inhibits expression of amyloid-beta precursor protein in cultured human fetal brain cells and is dysregulated in a subset of Alzheimer disease patients. Journal of Biological Chemistry,287(37), 31298–31310.  https://doi.org/10.1074/jbc.M112.366336.CrossRefPubMedGoogle Scholar
  114. Lukiw, W. J. (2007). Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. NeuroReport,18(3), 297–300.  https://doi.org/10.1097/WNR.0b013e3280148e8b.CrossRefPubMedGoogle Scholar
  115. Lukiw, W. J., Zhao, Y., & Cui, J. G. (2008). An NF-kappaB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells. Journal of Biological Chemistry,283(46), 31315–31322.  https://doi.org/10.1074/jbc.M805371200.CrossRefPubMedGoogle Scholar
  116. Marras, C., Beck, J. C., Bower, J. H., Roberts, E., Ritz, B., Ross, G. W., et al. (2018). Prevalence of Parkinson’s disease across North America. NPJ Parkinsons Diseases,4, 21.  https://doi.org/10.1038/s41531-018-0058-0.CrossRefGoogle Scholar
  117. Martin, I., Dawson, V. L., & Dawson, T. M. (2011). Recent advances in the genetics of Parkinson’s disease. Annual Review of Genomics and Human Genetics,12, 301–325.  https://doi.org/10.1146/annurev-genom-082410-101440.CrossRefPubMedPubMedCentralGoogle Scholar
  118. Martinez, B., & Peplow, P. V. (2019). MicroRNAs as diagnostic and therapeutic tools for Alzheimer’s disease: Advances and limitations. Neural Regeneration Research,14(2), 242–255.  https://doi.org/10.4103/1673-5374.244784.CrossRefPubMedPubMedCentralGoogle Scholar
  119. McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Jr., Kawas, C. H., et al. (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement,7(3), 263–269.  https://doi.org/10.1016/j.jalz.2011.03.005.CrossRefPubMedPubMedCentralGoogle Scholar
  120. Mead, S., & Reilly, M. M. (2015). A new prion disease: Relationship with central and peripheral amyloidoses. Nature Reviews Neurology,11(2), 90–97.  https://doi.org/10.1038/nrneurol.2014.263.CrossRefPubMedGoogle Scholar
  121. Millan, M. J. (2017). Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer’s disease: An integrative review. Progress in Neurobiology,156, 1–68.  https://doi.org/10.1016/j.pneurobio.2017.03.004.CrossRefPubMedGoogle Scholar
  122. Mintun, M. A., Larossa, G. N., Sheline, Y. I., Dence, C. S., Lee, S. Y., Mach, R. H., et al. (2006). [11C]PIB in a nondemented population: Potential antecedent marker of Alzheimer disease. Neurology,67(3), 446–452.  https://doi.org/10.1212/01.wnl.0000228230.26044.a4.CrossRefPubMedGoogle Scholar
  123. Miya Shaik, M., Tamargo, I. A., Abubakar, M. B., Kamal, M. A., Greig, N. H., & Gan, S. H. (2018). The role of microRNAs in Alzheimer’s disease and their therapeutic potentials. Genes (Basel).  https://doi.org/10.3390/genes9040174.CrossRefGoogle Scholar
  124. Mohr, A. M., & Mott, J. L. (2015). Overview of microRNA biology. Seminars in Liver Disease,35(1), 3–11.  https://doi.org/10.1055/s-0034-1397344.CrossRefPubMedPubMedCentralGoogle Scholar
  125. Moreno-Gonzalez, I., & Soto, C. (2011). Misfolded protein aggregates: mechanisms, structures and potential for disease transmission. Seminars in Cell & Developmental Biology,22(5), 482–487.  https://doi.org/10.1016/j.semcdb.2011.04.002.CrossRefGoogle Scholar
  126. Mormino, E. C., Betensky, R. A., Hedden, T., Schultz, A. P., Amariglio, R. E., Rentz, D. M., et al. (2014). Synergistic effect of beta-amyloid and neurodegeneration on cognitive decline in clinically normal individuals. JAMA Neurology,71(11), 1379–1385.  https://doi.org/10.1001/jamaneurol.2014.2031.CrossRefPubMedPubMedCentralGoogle Scholar
  127. Morris, J. C., & Cummings, J. (2005). Mild cognitive impairment (MCI) represents early-stage Alzheimer’s disease. Journal of Alzheimers Disease,7(3), 235–239. discussion 255-262.CrossRefGoogle Scholar
  128. Morris, J. C., Storandt, M., Miller, J. P., McKeel, D. W., Price, J. L., Rubin, E. H., et al. (2001). Mild cognitive impairment represents early-stage Alzheimer disease. Archives of Neurology,58(3), 397–405.CrossRefGoogle Scholar
  129. Mukherjee, A., Morales-Scheihing, D., Butler, P. C., & Soto, C. (2015). Type 2 diabetes as a protein misfolding disease. Trends in Molecular Medicine,21(7), 439–449.  https://doi.org/10.1016/j.molmed.2015.04.005.CrossRefPubMedPubMedCentralGoogle Scholar
  130. Mukherjee, A., Morales-Scheihing, D., Salvadores, N., Moreno-Gonzalez, I., Gonzalez, C., Taylor-Presse, K., et al. (2017). Induction of IAPP amyloid deposition and associated diabetic abnormalities by a prion-like mechanism. Journal of Experimental Medicine,214(9), 2591–2610.  https://doi.org/10.1084/jem.20161134.CrossRefPubMedGoogle Scholar
  131. Mullard, A. (2019). Pioneering antisense drug heads into pivotal trials for Huntington disease. Nature Reviews Drug Discovery,18(3), 161–163.  https://doi.org/10.1038/d41573-019-00018-7.CrossRefPubMedGoogle Scholar
  132. Muller, M., Jakel, L., Bruinsma, I. B., Claassen, J. A., Kuiperij, H. B., & Verbeek, M. M. (2016a). MicroRNA-29a is a candidate biomarker for Alzheimer’s disease in cell-free cerebrospinal fluid. Molecular Neurobiology,53(5), 2894–2899.  https://doi.org/10.1007/s12035-015-9156-8.CrossRefPubMedGoogle Scholar
  133. Muller, M., Kuiperij, H. B., Claassen, J. A., Kusters, B., & Verbeek, M. M. (2014). MicroRNAs in Alzheimer’s disease: Differential expression in hippocampus and cell-free cerebrospinal fluid. Neurobiology of Aging,35(1), 152–158.  https://doi.org/10.1016/j.neurobiolaging.2013.07.005.CrossRefPubMedGoogle Scholar
  134. Muller, M., Kuiperij, H. B., Versleijen, A. A., Chiasserini, D., Farotti, L., Baschieri, F., et al. (2016b). Validation of microRNAs in cerebrospinal fluid as biomarkers for different forms of dementia in a multicenter study. Journal of Alzheimers Disease,52(4), 1321–1333.  https://doi.org/10.3233/JAD-160038.CrossRefGoogle Scholar
  135. Nelson, P. T., Head, E., Schmitt, F. A., Davis, P. R., Neltner, J. H., Jicha, G. A., et al. (2011). Alzheimer’s disease is not “brain aging”: Neuropathological, genetic, and epidemiological human studies. Acta Neuropathologica,121(5), 571–587.  https://doi.org/10.1007/s00401-011-0826-y.CrossRefPubMedPubMedCentralGoogle Scholar
  136. Nelson, P. T., & Keller, J. N. (2007). RNA in brain disease: No longer just “the messenger in the middle”. Journal of Neuropathology and Experimental Neurology,66(6), 461–468.  https://doi.org/10.1097/01.jnen.0000240474.27791.f3.CrossRefPubMedGoogle Scholar
  137. Nelson, P., Kiriakidou, M., Sharma, A., Maniataki, E., & Mourelatos, Z. (2003). The microRNA world: Small is mighty. Trends in Biochemical Sciences,28(10), 534–540.  https://doi.org/10.1016/j.tibs.2003.08.005.CrossRefPubMedGoogle Scholar
  138. Nicolas, G., Wallon, D., Goupil, C., Richard, A. C., Pottier, C., Dorval, V., et al. (2016). Mutation in the 3′untranslated region of APP as a genetic determinant of cerebral amyloid angiopathy. European Journal of Human Genetics,24(1), 92–98.  https://doi.org/10.1038/ejhg.2015.61.CrossRefPubMedGoogle Scholar
  139. Nixon, R. A. (2013). The role of autophagy in neurodegenerative disease. Nature Medicine,19(8), 983–997.  https://doi.org/10.1038/nm.3232.CrossRefPubMedGoogle Scholar
  140. Nunez-Iglesias, J., Liu, C. C., Morgan, T. E., Finch, C. E., & Zhou, X. J. (2010). Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. PLoS ONE,5(2), e8898.  https://doi.org/10.1371/journal.pone.0008898.CrossRefPubMedPubMedCentralGoogle Scholar
  141. Patel, N., Hoang, D., Miller, N., Ansaloni, S., Huang, Q., Rogers, J. T., et al. (2008). MicroRNAs can regulate human APP levels. Molecular Neurodegeneration,3, 10.  https://doi.org/10.1186/1750-1326-3-10.CrossRefPubMedPubMedCentralGoogle Scholar
  142. Petrov, D., Mansfield, C., Moussy, A., & Hermine, O. (2017). ALS clinical trials review: 20 years of failure. Are we any closer to registering a new treatment? Frontiers in Aging Neuroscience,9, 68.  https://doi.org/10.3389/fnagi.2017.00068.CrossRefPubMedPubMedCentralGoogle Scholar
  143. Prestia, A., Caroli, A., van der Flier, W. M., Ossenkoppele, R., Van Berckel, B., Barkhof, F., et al. (2013). Prediction of dementia in MCI patients based on core diagnostic markers for Alzheimer disease. Neurology,80(11), 1048–1056.  https://doi.org/10.1212/WNL.0b013e3182872830.CrossRefPubMedGoogle Scholar
  144. Price, J. L., Davis, P. B., Morris, J. C., & White, D. L. (1991). The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiology of Aging,12(4), 295–312.CrossRefGoogle Scholar
  145. Prusiner, S. B. (1982). Novel proteinaceous infectious particles cause scrapie. Science,216(4542), 136–144.CrossRefGoogle Scholar
  146. Prusiner, S. B. (1998). Prions. Proceedings of the National Academy of Sciences,95(23), 13363–13383.CrossRefGoogle Scholar
  147. Rabinovici, G. D., Jagust, W. J., Furst, A. J., Ogar, J. M., Racine, C. A., Mormino, E. C., et al. (2008). Abeta amyloid and glucose metabolism in three variants of primary progressive aphasia. Annals of Neurology,64(4), 388–401.  https://doi.org/10.1002/ana.21451.CrossRefPubMedPubMedCentralGoogle Scholar
  148. Reddy, P. H., Tripathi, R., Troung, Q., Tirumala, K., Reddy, T. P., Anekonda, V., et al. (2012). Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer’s disease: Implications to mitochondria-targeted antioxidant therapeutics. Biochimica et Biophysica Acta,1822(5), 639–649.  https://doi.org/10.1016/j.bbadis.2011.10.011.CrossRefPubMedGoogle Scholar
  149. Revesz, T., Holton, J. L., Lashley, T., Plant, G., Rostagno, A., Ghiso, J., et al. (2002). Sporadic and familial cerebral amyloid angiopathies. Brain Pathology,12(3), 343–357.CrossRefGoogle Scholar
  150. Riancho, J., Vazquez-Higuera, J. L., Pozueta, A., Lage, C., Kazimierczak, M., Bravo, M., et al. (2017). MicroRNA profile in patients with Alzheimer’s disease: Analysis of miR-9-5p and miR-598 in raw and exosome enriched cerebrospinal fluid samples. Journal of Alzheimers Disease,57(2), 483–491.  https://doi.org/10.3233/JAD-161179.CrossRefGoogle Scholar
  151. Richard, B. C., Kurdakova, A., Baches, S., Bayer, T. A., Weggen, S., & Wirths, O. (2015). Gene dosage dependent aggravation of the neurological phenotype in the 5XFAD mouse model of alzheimer’s disease. Journal of Alzheimers Disease,45(4), 1223–1236.  https://doi.org/10.3233/JAD-143120.CrossRefGoogle Scholar
  152. Richards, J. G., Higgins, G. A., Ouagazzal, A. M., Ozmen, L., Kew, J. N., Bohrmann, B., et al. (2003). PS2APP transgenic mice, coexpressing hPS2mut and hAPPswe, show age-related cognitive deficits associated with discrete brain amyloid deposition and inflammation. Journal of Neuroscience,23(26), 8989–9003.CrossRefGoogle Scholar
  153. Rodrigue, K. M., Kennedy, K. M., Devous, M. D., Sr., Rieck, J. R., Hebrank, A. C., Diaz-Arrastia, R., et al. (2012). β-Amyloid burden in healthy aging: Regional distribution and cognitive consequences. Neurology,78(6), 387–395.  https://doi.org/10.1212/WNL.0b013e318245d295.CrossRefPubMedPubMedCentralGoogle Scholar
  154. Rowe, C. C., Bourgeat, P., Ellis, K. A., Brown, B., Lim, Y. Y., Mulligan, R., et al. (2013). Predicting Alzheimer disease with beta-amyloid imaging: Results from the Australian imaging, biomarkers, and lifestyle study of ageing. Annals of Neurology,74(6), 905–913.  https://doi.org/10.1002/ana.24040.CrossRefPubMedGoogle Scholar
  155. Rowe, C. C., Ellis, K. A., Rimajova, M., Bourgeat, P., Pike, K. E., Jones, G., et al. (2010). Amyloid imaging results from the Australian imaging, biomarkers and lifestyle (AIBL) study of aging. Neurobiology of Aging,31(8), 1275–1283.  https://doi.org/10.1016/j.neurobiolaging.2010.04.007.CrossRefPubMedGoogle Scholar
  156. Rowe, C. C., Ng, S., Ackermann, U., Gong, S. J., Pike, K., Savage, G., et al. (2007). Imaging β-amyloid burden in aging and dementia. Neurology,68(20), 1718–1725.  https://doi.org/10.1212/01.wnl.0000261919.22630.ea.CrossRefPubMedGoogle Scholar
  157. Rubinsztein, D. C., Codogno, P., & Levine, B. (2012). Autophagy modulation as a potential therapeutic target for diverse diseases. Nature Reviews Drug Discovery,11(9), 709–730.  https://doi.org/10.1038/nrd3802.CrossRefPubMedPubMedCentralGoogle Scholar
  158. Salta, E., Sierksma, A., Vanden Eynden, E., & De Strooper, B. (2016). miR-132 loss de-represses ITPKB and aggravates amyloid and TAU pathology in Alzheimer’s brain. EMBO Molecular Medicine,8(9), 1005–1018.  https://doi.org/10.15252/emmm.201606520.CrossRefPubMedPubMedCentralGoogle Scholar
  159. Sarazin, M., de Souza, L. C., Lehericy, S., & Dubois, B. (2012). Clinical and research diagnostic criteria for Alzheimer’s disease. Neuroimaging Clinics N Am.  https://doi.org/10.1016/j.nic.2011.11.004.CrossRefGoogle Scholar
  160. Satoh, J., Kino, Y., & Niida, S. (2015). MicroRNA-Seq data analysis pipeline to identify blood biomarkers for alzheimer’s disease from public data. Biomarker Insights,10, 21–31.  https://doi.org/10.4137/BMI.S25132.CrossRefPubMedPubMedCentralGoogle Scholar
  161. Schipper, H. M., Maes, O. C., Chertkow, H. M., & Wang, E. (2007). MicroRNA expression in Alzheimer blood mononuclear cells. Gene Regulation and Systems Biology,1, 263–274.CrossRefGoogle Scholar
  162. Schonrock, N., & Gotz, J. (2012). Decoding the non-coding RNAs in Alzheimer’s disease. Cellular and Molecular Life Sciences,69(21), 3543–3559.  https://doi.org/10.1007/s00018-012-1125-z.CrossRefPubMedGoogle Scholar
  163. Schonrock, N., Ke, Y. D., Humphreys, D., Staufenbiel, M., Ittner, L. M., Preiss, T., et al. (2010). Neuronal microRNA deregulation in response to Alzheimer’s disease amyloid-beta. PLoS ONE,5(6), e11070.  https://doi.org/10.1371/journal.pone.0011070.CrossRefPubMedPubMedCentralGoogle Scholar
  164. Schratt, G. (2009). microRNAs at the synapse. Nature Reviews Neuroscience,10(12), 842–849.  https://doi.org/10.1038/nrn2763.CrossRefPubMedGoogle Scholar
  165. Serrano-Pozo, A., Frosch, M. P., Masliah, E., & Hyman, B. T. (2011). Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine,1(1), a006189.  https://doi.org/10.1101/cshperspect.a006189.CrossRefPubMedPubMedCentralGoogle Scholar
  166. Shan, G., Li, Y., Zhang, J., Li, W., Szulwach, K. E., Duan, R., et al. (2008). A small molecule enhances RNA interference and promotes microRNA processing. Nature Biotechnology,26(8), 933–940.  https://doi.org/10.1038/nbt.1481.CrossRefPubMedPubMedCentralGoogle Scholar
  167. Shioya, M., Obayashi, S., Tabunoki, H., Arima, K., Saito, Y., Ishida, T., et al. (2010). Aberrant microRNA expression in the brains of neurodegenerative diseases: miR-29a decreased in Alzheimer disease brains targets neurone navigator 3. Neuropathology and Applied Neurobiology,36(4), 320–330.  https://doi.org/10.1111/j.1365-2990.2010.01076.x.CrossRefPubMedGoogle Scholar
  168. Siegel, G., Obernosterer, G., Fiore, R., Oehmen, M., Bicker, S., Christensen, M., et al. (2009). A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nature Cell Biology,11(6), 705–716.  https://doi.org/10.1038/ncb1876.CrossRefPubMedPubMedCentralGoogle Scholar
  169. Sierksma, A., Lu, A., Salta, E., Vanden Eynden, E., Callaerts-Vegh, Z., D’Hooge, R., et al. (2018). Deregulation of neuronal miRNAs induced by amyloid-beta or TAU pathology. Molecular Neurodegeneration,13(1), 54.  https://doi.org/10.1186/s13024-018-0285-1.CrossRefPubMedPubMedCentralGoogle Scholar
  170. Simonson, B., & Das, S. (2015). MicroRNA therapeutics: The next magic bullet? Mini Reviews in Medicinal Chemistry.,15(6), 467–474.CrossRefGoogle Scholar
  171. Simpson, R. J., Lim, J. W., Moritz, R. L., & Mathivanan, S. (2009). Exosomes: Proteomic insights and diagnostic potential. Expert Review of Proteomics,6(3), 267–283.  https://doi.org/10.1586/epr.09.17.CrossRefPubMedGoogle Scholar
  172. Singer, O., Marr, R. A., Rockenstein, E., Crews, L., Coufal, N. G., Gage, F. H., et al. (2005). Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nature Neuroscience,8(10), 1343–1349.  https://doi.org/10.1038/nn1531.CrossRefPubMedGoogle Scholar
  173. Smith, P. Y., Delay, C., Girard, J., Papon, M. A., Planel, E., Sergeant, N., et al. (2011). MicroRNA-132 loss is associated with tau exon 10 inclusion in progressive supranuclear palsy. Human Molecular Genetics,20(20), 4016–4024.  https://doi.org/10.1093/hmg/ddr330.CrossRefPubMedGoogle Scholar
  174. Smith, P. Y., Hernandez-Rapp, J., Jolivette, F., Lecours, C., Bisht, K., Goupil, C., et al. (2015). miR-132/212 deficiency impairs tau metabolism and promotes pathological aggregation in vivo. Human Molecular Genetics,24(23), 6721–6735.  https://doi.org/10.1093/hmg/ddv377.CrossRefPubMedPubMedCentralGoogle Scholar
  175. Soto, C. (2003). Unfolding the role of protein misfolding in neurodegenerative diseases. Nature Reviews Neuroscience,4(1), 49–60.  https://doi.org/10.1038/nrn1007.CrossRefPubMedGoogle Scholar
  176. Soto, C., Estrada, L., & Castilla, J. (2006). Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Trends in Biochemical Sciences,31(3), 150–155.  https://doi.org/10.1016/j.tibs.2006.01.002.CrossRefPubMedGoogle Scholar
  177. Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., et al. (2011). Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement,7(3), 280–292.  https://doi.org/10.1016/j.jalz.2011.03.003.CrossRefPubMedPubMedCentralGoogle Scholar
  178. Sturchler-Pierrat, C., Abramowski, D., Duke, M., Wiederhold, K. H., Mistl, C., Rothacher, S., et al. (1997). Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proceedings of the National Academy of Sciences USA,94(24), 13287–13292.CrossRefGoogle Scholar
  179. Sweeney, M. D., Montagne, A., Sagare, A. P., Nation, D. A., Schneider, L. S., Chui, H. C., et al. (2019). Vascular dysfunction-the disregarded partner of Alzheimer’s disease. Alzheimers Dement,15(1), 158–167.  https://doi.org/10.1016/j.jalz.2018.07.222.CrossRefPubMedGoogle Scholar
  180. Tan, L., Yu, J. T., Liu, Q. Y., Tan, M. S., Zhang, W., Hu, N., et al. (2014). Circulating miR-125b as a biomarker of Alzheimer’s disease. Journal of the Neurological Sciences,336(1–2), 52–56.  https://doi.org/10.1016/j.jns.2013.10.002.CrossRefPubMedGoogle Scholar
  181. Terrinoni, A., Calabrese, C., Basso, D., Aita, A., Caporali, S., Plebani, M., et al. (2018). The circulating miRNAs as diagnostic and prognostic markers. Clinical Chemistry and Laboratory Medicine.  https://doi.org/10.1515/cclm-2018-0838.CrossRefGoogle Scholar
  182. Tiribuzi, R., Crispoltoni, L., Porcellati, S., Di Lullo, M., Florenzano, F., Pirro, M., et al. (2014). miR128 up-regulation correlates with impaired amyloid beta(1-42) degradation in monocytes from patients with sporadic Alzheimer’s disease. Neurobiology of Aging,35(2), 345–356.  https://doi.org/10.1016/j.neurobiolaging.2013.08.003.CrossRefPubMedGoogle Scholar
  183. Toledo, J. B., Weiner, M. W., Wolk, D. A., Da, X., Chen, K., Arnold, S. E., et al. (2014). Neuronal injury biomarkers and prognosis in ADNI subjects with normal cognition. Acta Neuropathologica Communications,2, 26.  https://doi.org/10.1186/2051-5960-2-26.CrossRefPubMedPubMedCentralGoogle Scholar
  184. Tomiyama, T., Matsuyama, S., Iso, H., Umeda, T., Takuma, H., Ohnishi, K., et al. (2010). A mouse model of amyloid beta oligomers: Their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. Journal of Neuroscience,30(14), 4845–4856.  https://doi.org/10.1523/JNEUROSCI.5825-09.2010.CrossRefPubMedGoogle Scholar
  185. Toyama, K., Spin, J. M., & Tsao, P. S. (2017). Role of microRNAs on blood brain barrier dysfunction in vascular cognitive impairment. Current Drug Delivery,14(6), 744–757.  https://doi.org/10.2174/1567201813666160830124627.CrossRefPubMedGoogle Scholar
  186. Tsoi, H., Lau, T. C., Tsang, S. Y., Lau, K. F., & Chan, H. Y. (2012). CAG expansion induces nucleolar stress in polyglutamine diseases. Proceedings of the National Academy of Sciences USA,109(33), 13428–13433.  https://doi.org/10.1073/pnas.1204089109.CrossRefGoogle Scholar
  187. Uversky, V. N. (2007). Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. Journal of Neurochemistry,103(1), 17–37.  https://doi.org/10.1111/j.1471-4159.2007.04764.x.CrossRefPubMedGoogle Scholar
  188. van Harten, A. C., Smits, L. L., Teunissen, C. E., Visser, P. J., Koene, T., Blankenstein, M. A., et al. (2013a). Preclinical AD predicts decline in memory and executive functions in subjective complaints. Neurology,81(16), 1409–1416.  https://doi.org/10.1212/WNL.0b013e3182a8418b.CrossRefPubMedGoogle Scholar
  189. van Harten, A. C., Visser, P. J., Pijnenburg, Y. A., Teunissen, C. E., Blankenstein, M. A., Scheltens, P., et al. (2013b). Cerebrospinal fluid Abeta42 is the best predictor of clinical progression in patients with subjective complaints. Alzheimers Dement,9(5), 481–487.  https://doi.org/10.1016/j.jalz.2012.08.004.CrossRefPubMedGoogle Scholar
  190. Vilardo, E., Barbato, C., Ciotti, M., Cogoni, C., & Ruberti, F. (2010). MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. Journal of Biological Chemistry,285(24), 18344–18351.  https://doi.org/10.1074/jbc.M110.112664.CrossRefPubMedGoogle Scholar
  191. Villemagne, V. L., Burnham, S., Bourgeat, P., Brown, B., Ellis, K. A., Salvado, O., et al. (2013). Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol,12(4), 357–367.  https://doi.org/10.1016/S1474-4422(13)70044-9.CrossRefPubMedGoogle Scholar
  192. Villemagne, V. L., Fodero-Tavoletti, M. T., Masters, C. L., & Rowe, C. C. (2015). Tau imaging: Early progress and future directions. Lancet Neurology,14(1), 114–124.  https://doi.org/10.1016/S1474-4422(14)70252-2.CrossRefPubMedGoogle Scholar
  193. Visser, P. J., Verhey, F., Knol, D. L., Scheltens, P., Wahlund, L. O., Freund-Levi, Y., et al. (2009). Prevalence and prognostic value of CSF markers of Alzheimer’s disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: A prospective cohort study. Lancet Neurology,8(7), 619–627.  https://doi.org/10.1016/S1474-4422(09)70139-5.CrossRefPubMedGoogle Scholar
  194. Walsh, D. M., & Selkoe, D. J. (2007). A beta oligomers - a decade of discovery. Journal of Neurochemistry,101(5), 1172–1184.  https://doi.org/10.1111/j.1471-4159.2006.04426.x.CrossRefPubMedGoogle Scholar
  195. Wang, T., Chen, K., Li, H., Dong, S., Su, N., Liu, Y., et al. (2015). The feasibility of utilizing plasma MiRNA107 and BACE1 messenger RNA gene expression for clinical diagnosis of amnestic mild cognitive impairment. Journal of Clinical Psychiatry,76(2), 135–141.  https://doi.org/10.4088/JCP.13m08812.CrossRefPubMedGoogle Scholar
  196. Wang, W. X., Huang, Q., Hu, Y., Stromberg, A. J., & Nelson, P. T. (2011). Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: White matter versus gray matter. Acta Neuropathologica,121(2), 193–205.  https://doi.org/10.1007/s00401-010-0756-0.CrossRefPubMedGoogle Scholar
  197. Wang, G., Huang, Y., Wang, L. L., Zhang, Y. F., Xu, J., Zhou, Y., et al. (2016). MicroRNA-146a suppresses ROCK1 allowing hyperphosphorylation of tau in Alzheimer’s disease. Scientific Reports,6, 26697.  https://doi.org/10.1038/srep26697.CrossRefPubMedPubMedCentralGoogle Scholar
  198. Wang, X., Liu, D., Huang, H. Z., Wang, Z. H., Hou, T. Y., Yang, X., et al. (2018). A novel MicroRNA-124/PTPN1 signal pathway mediates synaptic and memory deficits in Alzheimer’s disease. Biological Psychiatry,83(5), 395–405.  https://doi.org/10.1016/j.biopsych.2017.07.023.CrossRefPubMedGoogle Scholar
  199. Wang, W. X., Rajeev, B. W., Stromberg, A. J., Ren, N., Tang, G., Huang, Q., et al. (2008). The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. Journal of Neuroscience,28(5), 1213–1223.  https://doi.org/10.1523/JNEUROSCI.5065-07.2008.CrossRefPubMedGoogle Scholar
  200. Westermark, P., Andersson, A., & Westermark, G. T. (2011). Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiological Reviews,91(3), 795–826.  https://doi.org/10.1152/physrev.00042.2009.CrossRefPubMedGoogle Scholar
  201. Williams, A., Sarkar, S., Cuddon, P., Ttofi, E. K., Saiki, S., Siddiqi, F. H., et al. (2008). Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nature Chemical Biology,4(5), 295–305.  https://doi.org/10.1038/nchembio.79.CrossRefPubMedPubMedCentralGoogle Scholar
  202. Wirth, M., Madison, C. M., Rabinovici, G. D., Oh, H., Landau, S. M., & Jagust, W. J. (2013). Alzheimer’s disease neurodegenerative biomarkers are associated with decreased cognitive function but not beta-amyloid in cognitively normal older individuals. Journal of Neuroscience,33(13), 5553–5563.  https://doi.org/10.1523/JNEUROSCI.4409-12.2013.CrossRefPubMedGoogle Scholar
  203. Wiseman, F. K., Al-Janabi, T., Hardy, J., Karmiloff-Smith, A., Nizetic, D., Tybulewicz, V. L., et al. (2015). A genetic cause of Alzheimer disease: Mechanistic insights from Down syndrome. Nature Reviews Neuroscience,16(9), 564–574.  https://doi.org/10.1038/nrn3983.CrossRefPubMedPubMedCentralGoogle Scholar
  204. Wolfe, M. S. (2014). Targeting mRNA for Alzheimer’s and related dementias. Scientifica (Cairo),2014, 757549.  https://doi.org/10.1155/2014/757549.CrossRefGoogle Scholar
  205. Wu, B. W., Wu, M. S., & Guo, J. D. (2018). Effects of microRNA-10a on synapse remodeling in hippocampal neurons and neuronal cell proliferation and apoptosis through the BDNF-TrkB signaling pathway in a rat model of Alzheimer’s disease. Journal of Cellular Physiology,233(7), 5281–5292.  https://doi.org/10.1002/jcp.26328.CrossRefPubMedGoogle Scholar
  206. Wu, Y., Xu, J., Xu, J., Cheng, J., Jiao, D., Zhou, C., et al. (2017). Lower serum levels of miR-29c-3p and miR-19b-3p as biomarkers for Alzheimer’s disease. Tohoku Journal of Experimental Medicine,242(2), 129–136.  https://doi.org/10.1620/tjem.242.129.CrossRefPubMedGoogle Scholar
  207. Xu, Y., Chen, P., Wang, X., Yao, J., & Zhuang, S. (2018). miR-34a deficiency in APP/PS1 mice promotes cognitive function by increasing synaptic plasticity via AMPA and NMDA receptors. Neuroscience Letters,670, 94–104.  https://doi.org/10.1016/j.neulet.2018.01.045.CrossRefPubMedGoogle Scholar
  208. Xu, N., Li, A. D., Ji, L. L., Ye, Y., Wang, Z. Y., & Tong, L. (2019). miR-132 regulates the expression of synaptic proteins in APP/PS1 transgenic mice through C1q. European Journal of Histochemistry,63(2), 458.  https://doi.org/10.4081/ejh.2019.3008.CrossRefGoogle Scholar
  209. Yang, L. B., Lindholm, K., Yan, R., Citron, M., Xia, W., Yang, X. L., et al. (2003). Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nature Medicine,9(1), 3–4.  https://doi.org/10.1038/nm0103-3.CrossRefPubMedGoogle Scholar
  210. Yang, G., Song, Y., Zhou, X., Deng, Y., Liu, T., Weng, G., et al. (2015). MicroRNA-29c targets beta-site amyloid precursor protein-cleaving enzyme 1 and has a neuroprotective role in vitro and in vivo. Molecular Medicine Reports,12(2), 3081–3088.  https://doi.org/10.3892/mmr.2015.3728.CrossRefPubMedGoogle Scholar
  211. Yao, J., Hennessey, T., Flynt, A., Lai, E., Beal, M. F., & Lin, M. T. (2010). MicroRNA-related cofilin abnormality in Alzheimer’s disease. PLoS ONE,5(12), e15546.  https://doi.org/10.1371/journal.pone.0015546.CrossRefPubMedPubMedCentralGoogle Scholar
  212. Yilmaz, S. G., Erdal, M. E., Ozge, A. A., & Sungur, M. A. (2016). Can peripheral MicroRNA expression data serve as epigenomic (upstream) biomarkers of Alzheimer’s disease? OMICS: A Journal of Integrative Biology,20(8), 456–461.  https://doi.org/10.1089/omi.2016.0099.CrossRefPubMedGoogle Scholar
  213. Young, A. L., Oxtoby, N. P., Daga, P., Cash, D. M., Fox, N. C., Ourselin, S., et al. (2014). A data-driven model of biomarker changes in sporadic Alzheimer’s disease. Brain,137(Pt 9), 2564–2577.  https://doi.org/10.1093/brain/awu176.CrossRefPubMedPubMedCentralGoogle Scholar
  214. Zhang, B., Chen, C. F., Wang, A. H., & Lin, Q. F. (2015). MiR-16 regulates cell death in Alzheimer’s disease by targeting amyloid precursor protein. Eur Rev Med Pharmacol Sci,19(21), 4020–4027.PubMedGoogle Scholar
  215. Zhang, Y., Li, Q., Liu, C., Gao, S., Ping, H., Wang, J., et al. (2016a). MiR-214-3p attenuates cognition defects via the inhibition of autophagy in SAMP8 mouse model of sporadic Alzheimer’s disease. Neurotoxicology,56, 139–149.  https://doi.org/10.1016/j.neuro.2016.07.004.CrossRefPubMedGoogle Scholar
  216. Zhang, Y., Xing, H., Guo, S., Zheng, Z., Wang, H., & Xu, D. (2016b). MicroRNA-135b has a neuroprotective role via targeting of beta-site APP-cleaving enzyme 1. Experimental and Therapeutic Medicine,12(2), 809–814.  https://doi.org/10.3892/etm.2016.3366.CrossRefPubMedPubMedCentralGoogle Scholar
  217. Zhang, J. A., Zhou, B. R., Xu, Y., Chen, X., Liu, J., Gozali, M., et al. (2016c). MiR-23a-depressed autophagy is a participant in PUVA- and UVB-induced premature senescence. Oncotarget,7(25), 37420–37435.  https://doi.org/10.18632/oncotarget.9357.CrossRefPubMedPubMedCentralGoogle Scholar
  218. Zhao, Y., Zhao, R., Wu, J., Wang, Q., Pang, K., Shi, Q., et al. (2018). Melatonin protects against Abeta-induced neurotoxicity in primary neurons via miR-132/PTEN/AKT/FOXO3a pathway. BioFactors,44(6), 609–618.  https://doi.org/10.1002/biof.1411.CrossRefPubMedGoogle Scholar
  219. Zheng, H., Jiang, M., Trumbauer, M. E., Sirinathsinghji, D. J., Hopkins, R., Smith, D. W., et al. (1995). beta-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell,81(4), 525–531.CrossRefGoogle Scholar
  220. Zhou, Y., Wang, Z. F., Li, W., Hong, H., Chen, J., Tian, Y., et al. (2018). Protective effects of microRNA-330 on amyloid beta-protein production, oxidative stress, and mitochondrial dysfunction in Alzheimer’s disease by targeting VAV1 via the MAPK signaling pathway. Journal of Cellular Biochemistry,119(7), 5437–5448.  https://doi.org/10.1002/jcb.26700.CrossRefPubMedGoogle Scholar
  221. Zhu, H. C., Wang, L. M., Wang, M., Song, B., Tan, S., Teng, J. F., et al. (2012). MicroRNA-195 downregulates Alzheimer’s disease amyloid-beta production by targeting BACE1. Brain Research Bulletin,88(6), 596–601.  https://doi.org/10.1016/j.brainresbull.2012.05.018.CrossRefPubMedGoogle Scholar
  222. Zipfel, G. J., Han, H., Ford, A. L., & Lee, J. M. (2009). Cerebral amyloid angiopathy: Progressive disruption of the neurovascular unit. Stroke,40(3 Suppl), S16–S19.  https://doi.org/10.1161/STROKEAHA.108.533174.CrossRefPubMedGoogle Scholar
  223. Zwan, M. D., Bouwman, F. H., Konijnenberg, E., van der Flier, W. M., Lammertsma, A. A., Verhey, F. R., et al. (2017). Diagnostic impact of [(18)F]flutemetamol PET in early-onset dementia. Alzheimers Research Therapy,9(1), 2.  https://doi.org/10.1186/s13195-016-0228-4.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.BRAINS Research LaboratoryUniversity of Texas McGovern Medical SchoolHoustonUSA

Personalised recommendations