C1 Esterase Inhibitor Reduces BBB Leakage and Apoptosis in the Hypoxic Developing Mouse Brain

  • Susan Jung
  • Hans-Georg Topf
  • Gudrun Boie
  • Regina TrollmannEmail author
Original Paper


Inflammatory pathways involved in blood–brain barrier (BBB) vulnerability and hypoxic brain oedema in models of perinatal brain injury seem to provide putative therapeutic targets. To investigate impacts of C1-esterase inhibitor (C1-INH; 7.5–30 IU/kg, i.p.) on functional BBB properties in the hypoxic developing mouse brain (P7; 8% O2 for 6 h), expression of pro-apoptotic genes (BNIP3, DUSP1), inflammatory markers (IL-1ß, TNF-alpha, IL-6, MMP), and tight junction proteins (ZO-1, occludin, claudin-1, -5), and S100b protein concentrations were analysed after a regeneration period of 24 h. Apoptotic cell death was quantified by CC3 immunohistochemistry and TUNEL staining. In addition to increased apoptosis in the parietal cortex, hippocampus, and subventricular zone, hypoxia significantly enhanced the brain-to-plasma albumin ratio, the cerebral S100b protein levels, BNIP3 and DUSP1 mRNA concentrations as well as mRNA expression of pro-inflammatory cytokines (IL-1ß, TNF-alpha). In response to C1-INH, albumin ratio and S100b concentrations were similar to those of controls. However, the mRNA expression of BNIP3 and DUSP1 and pro-inflammatory cytokines as well as the degree of apoptosis were significantly decreased compared to non-treated controls. In addition, occludin mRNA levels were elevated in response to C1-INH (p < 0.01). Here, we demonstrate for the first time that C1-INH significantly decreased hypoxia-induced BBB leakage and apoptosis in the developing mouse brain, indicating its significance as a promising target for neuroprotective therapy.


Neonatal brain injury S100b protein Hypoxia Neuroprotection Tight junctions Occludin Matrix metalloproteinases BNIP3 DUSP1 



Blood–brain barrier


BCL2 Interacting Protein 3


C1 esterase inhibitor


Cleaved caspase 3


Dual specificity phosphatase 1


Field of view


Hypoxia and ischemia


Hypoxia-inducible transcription factors


Matrix metalloproteinase


Tissue inhibitor of metalloproteinases


Zona occludens protein 1




Tumour necrosis factor-alpha



This work was supported by an unrestricted research grant from CSL Behring (RT, HGT)

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12017_2019_8560_MOESM1_ESM.pdf (318 kb)
Electronic supplementary material 1 (PDF 318 kb)


  1. Ahearne, C. E., Boylan, G. B., & Murray, D. M. (2016). Short and long term prognosis in perinatal asphyxia: An update. World Journal of Clinical Pediatrics, 5, 67–74.CrossRefGoogle Scholar
  2. Albert-Weissenberger, C., Mencl, S., Schuhmann, M. K., Salur, I., Göb, E., Langhauser, F., et al. (2014). C1-Inhibitor protects from focal brain trauma in a cortical cryolesion mice model by reducing thrombo-inflammation. Frontiers in Cellular Neuroscience, 8, 269.Google Scholar
  3. Alluri, H., Wilson, R. L., Anasooya Shaji, C., Wiggins-Dohlvik, K., Patel, S., Liu, Y., et al. (2016). Melatonin preserves blood-brain barrier integrity and permeability via matrix metalloproteinase-9 inhibition. PLoS ONE, 2016(11), e0154427.CrossRefGoogle Scholar
  4. Althaus, J., Bernaudin, M., Petit, E., Toutain, J., Touzani, O., & Rami, A. (2006). Expression of the gene encoding the pro-apoptotic BNIP3 protein and stimulation of hypoxia-inducible factor-1alpha (HIF-1alpha) protein following focal cerebral ischemia in rats. Neurochemistry International, 48, 687–695.CrossRefGoogle Scholar
  5. Andersen, C. L., Jensen, J. L., & Orntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64, 5245–5250.CrossRefGoogle Scholar
  6. Azzopardi, D., Strohm, B., Marlow, N., Brocklehurst, P., Deierl, A., Eddama, O., et al. (2014). Effects of hypothermia for perinatal asphyxia on childhood outcomes. New England Journal of Medicine, 371, 140–149.CrossRefGoogle Scholar
  7. Baghirova, S., Hughes, B. G., Hendzel, M. J., & Schulz, R. (2015). Sequential fractionation and isolation of subcellular proteins from tissue or cultured cells. MethodsX., 2015(2), 440–445.CrossRefGoogle Scholar
  8. Bernaudin, M., Tang, Y., Reilly, M., Petit, E., & Sharp, F. R. (2002). Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. Journal of Biological Chemistry, 277, 39728–39738.CrossRefGoogle Scholar
  9. Bonestroo, H. J., Heijnen, C. J., Groenendaal, F., van Bel, F., & Nijboer, C. H. (2015). Development of cerebral gray and white matter injury and cerebral inflammation over time after inflammatory perinatal asphyxia. Developmental Neuroscience, 37, 78–94.CrossRefGoogle Scholar
  10. Burek, M., König, A., Lang, M., Fiedler, J., Oerter, S., Roewer, N., et al. (2019). Hypoxia-induced microRNA-212/132 alter blood-brain barrier integrity through inhibition of tight junction-associated proteins in human and mouse brain microvascular endothelial cells. Translational Stroke Research. Scholar
  11. Chen, X., Arumugam, T. V., Cheng, Y. L., Lee, J. H., Chigurupati, S., Mattson, M. P., et al. (2018). Combination therapy with low-dose IVIG and a C1-esterase inhibitor ameliorates brain damage and functional deficits in experimental ischemic stroke. Neuromolecular Medicine, 20, 63–72.CrossRefGoogle Scholar
  12. Chen, X., Threlkeld, S. W., Cummings, E. E., Juan, I., Makeyev, O., Besio, W. G., et al. (2012). Ischemia-reperfusion impairs blood-brain barrier function and alters tight junction protein expression in the ovine fetus. Neuroscience, 226, 89–100.CrossRefGoogle Scholar
  13. Chevin, M., Guiraut, C., Maurice-Gelinas, C., Deslauriers, J., Grignon, S., & Sébire, G. (2016). Neuroprotective effects of hypothermia in inflammatory-sensitized hypoxic-ischemic encephalopathy. International Journal of Developmental Neuroscience, 55, 1–8.CrossRefGoogle Scholar
  14. Chu, H. X., & Jones, N. M. (2016). Changes in hypoxia-Inducible factor-1 (HIF-1) and regulatory prolyl hydroxylase (PHD) enzymes following hypoxic-ischemic Injury in the neonatal rat. Neurochemical Research, 41, 515–522.CrossRefGoogle Scholar
  15. Davis, A. S., Berger, V. K., & Chock, V. Y. (2016). Perinatal neuroprotection for extremely preterm infants. American Journal of Perinatology, 33, 290–296.CrossRefGoogle Scholar
  16. De Simoni, M. G., Storini, C., Barba, M., Catapano, L., Arabia, A. M., Rossi, E., et al. (2003). Neuroprotection by complement (C1) inhibitor in mouse transient brain ischemia. Journal of Cerebral Blood Flow and Metabolism, 23, 232–239.CrossRefGoogle Scholar
  17. De Simoni, M. G., Rossi, E., Storini, C., Pizzimenti, S., Echart, C., Bergamaschini, L. (2004). The powerful neuroprotective action of C1-inhibitor on brain ischemia-reperfusion injury does not require C1q. Journal of Pathology, 164, 1857–1863Google Scholar
  18. Diaz, R., Miguel, P. M., Deniz, B. F., Confortim, H. D., Barbosa, S., Mendonça, M. C. P., et al. (2016). Environmental enrichment attenuates the blood brain barrier dysfunction induced by the neonatal hypoxia-ischemia. International Journal of Developmental Neuroscience, 53, 35–45.CrossRefGoogle Scholar
  19. Dixon, B. J., Reis, C., Ho, W. M., Tang, J., & Zhang, J. H. (2015). Neuroprotective strategies after neonatal hypoxic ischemic encephalopathy. International Journal of Molecular Sciences, 16, 22368–22401.CrossRefGoogle Scholar
  20. Dobbing, J., & Sands, J. (1979). Comparative aspects of the brain growth spurt. Early Human Development, 3, 79–83.CrossRefGoogle Scholar
  21. Donato, R., Cannon, B. R., Sorci, G., Riuzzi, F., Hsu, K., Weber, D. J., et al. (2013). Functions of S100 proteins. Current Molecular Medicine, 13, 24–57.CrossRefGoogle Scholar
  22. Ek, C. J., D’Angelo, B., Baburamani, A. A., Lehner, C., Leverin, A. L., Smith, P. L., et al. (2015). Brain barrier properties and cerebral blood flow in neonatal mice exposed to cerebral hypoxia-ischemia. Journal of Cerebral Blood Flow and Metabolism, 35, 818–827.CrossRefGoogle Scholar
  23. Engelhardt, S., Al-Ahmad, A. J., Gassmann, M., & Ogunshola, O. O. (2014). Hypoxia selectively disrupts brain microvascular endothelial tight junction complexes through a hypoxia-inducible factor-1 (HIF-1) dependent mechanism. Journal of Cellular Physiology, 229, 1096–1105.CrossRefGoogle Scholar
  24. Engelhardt, S., Huang, S. F., Patkar, S., Gassmann, M., & Ogunshola, O. O. (2015). Differential responses of blood-brain barrier associated cells to hypoxia and ischemia: A comparative study. Fluids Barriers CNS, 12, 4.CrossRefGoogle Scholar
  25. Fitzgerald, M. P., Massey, S. L., Fung, F. W., Kessler, S. K., & Abend, N. S. (2018). High electroencephalographic seizure exposure is associated with unfavorable outcomes in neonates with hypoxic-ischemic encephalopathy. Seizure, 61, 221–226.CrossRefGoogle Scholar
  26. Gesuete, R., Storini, C., Fantin, A., Stravalaci, M., Zanier, E. R., Orsini, F., et al. (2009). Recombinant C1 inhibitor in brain ischemic injury. Annals of Neurology, 66, 332–342.CrossRefGoogle Scholar
  27. Heydenreich, N., Nolte, M. W., Göb, E., Langhauser, F., Hofmeister, M., Kraft, P., et al. (2012). C1-inhibitor protects from brain ischemia-reperfusion injury by combined antiinflammatory and antithrombotic mechanisms. Stroke, 43, 2457–2467.CrossRefGoogle Scholar
  28. Horstick, G., Berg, O., Heimann, A., Götze, O., Loos, M., Hafner, G., et al. (2001). Application of C1-esterase inhibitor during reperfusion of ischemic myocardium: Dose-related beneficial versus detrimental effects. Circulation, 104, 3125–3131.CrossRefGoogle Scholar
  29. Hsu, Y. C., Chang, Y. C., Lin, Y. C., Sze, C. I., Huang, C. C., & Ho, C. J. (2014). Cerebral microvascular damage occurs early after hypoxia-ischemia via nNOS activation in the neonatal brain. Journal of Cerebral Blood Flow and Metabolism, 34, 668–676.CrossRefGoogle Scholar
  30. Hu, Y., Wang, Z., Pan, S., Zhang, H., Fang, M., Jiang, H., et al. (2017). Melatonin protects against blood-brain barrier damage by inhibiting the TLR4/NF-κB signaling pathway after LPS treatment in neonatal rats. Oncotarget, 8, 31638–31654.Google Scholar
  31. Kapural, M., Krizanac-Bengez, L., Barnett, G., Perl, J., Masaryk, T., Apollo, D., et al. (2002). Serum S-100beta as a possible marker of blood-brain barrier disruption. Brain Research, 940, 102–104.CrossRefGoogle Scholar
  32. Kleindienst, A., Meissner, S., Eyupoglu, I. Y., Parsch, H., Schmidt, C., & Buchfelder, M. (2010). Dynamics of S100B release into serum and cerebrospinal fluid following acute brain injury. Acta Neurochirurgica. Supplementum, 106, 247–250.CrossRefGoogle Scholar
  33. Li, Q., Michaud, M., Park, C., Huang, Y., Couture, R., Girodano, F., et al. (2017). The role of endothelial HIF-1α in the response to sublethal hypoxia in C57BL/6 mouse pups. Laboratory Investigation, 97, 356–369.CrossRefGoogle Scholar
  34. Longhi, L., Perego, C., Ortolano, F., Zanier, E. R., Bianchi, P., Stocchetti, N., et al. (2009). C1-inhibitor attenuates neurobehavioral deficits and reduces contusion volume after controlled cortical impact brain injury in mice. Critical Care Medicine, 37, 659–665.CrossRefGoogle Scholar
  35. Marin, N., Zamorano, P., Carrasco, R., Mujica, P., Gonzalez, F. G., Quezada, C., et al. (2012). S-nitrosation of β-catenin and p120 catenin: A novel regulatory mechanism in endothelial hyperpermeability. Circulation Research, 111, 553–563.CrossRefGoogle Scholar
  36. Riedl, M. A., Bygum, A., Lumry, W., Magerl, M., Bernstein, J. A., Busse, P., et al. (2016). Safety and usage of C1-Inhibitor in hereditary angioedema: Berinert Registry Data. The Journal of Allergy and Clinical Immunology: In Practice, 4, 963–971.Google Scholar
  37. Savard, A., Brochu, M. E., Chevin, M., Guiraut, C., Grbic, D., & Sébire, G. (2015). Neuronal self-injury mediated by IL-1β and MMP-9 in a cerebral palsy model of severe neonatal encephalopathy induced by immune activation plus hypoxia-ischemia. Journal of Neuroinflammation, 12, 111.CrossRefGoogle Scholar
  38. Semenza, G. L. (2014). Oxygen sensing, hypoxia-inducible factors., and disease pathophysiology. Annual Review of Pathology: Mechanisms of Disease, 9, 47–71.CrossRefGoogle Scholar
  39. Stark, M. J., Hodyl, N. A., Belegar, V., & Andersen, C. C. (2016). Intrauterine inflammation, cerebral oxygen consumption and susceptibility to early brain injury in very preterm newborns. Archives of Disease in Childhood. Fetal and Neonatal Edition, 101, F137–F142.CrossRefGoogle Scholar
  40. Storini, C., Rossi, E., Marrella, V., Distaso, M., Veerhuis, R., Vergani, C., et al. (2005). C1-inhibitor protects against brain ischemia-reperfusion injury via inhibition of cell recruitment and inflammation. Neurobiology of Diseases, 19, 10–17.CrossRefGoogle Scholar
  41. Tang, Z., Guo, D., Xiong, L., Wu, B., Xu, X., Fu, J., et al. (2018). TLR4/PKCα/occludin signaling pathway may be related to blood-brain barrier damage. Molecular Medicine Reports, 18, 1051–1057.Google Scholar
  42. Thelin, E. P., Nelson, D. W., & Bellander, B. M. (2017). A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochirurgica (Wien), 159, 209–225.CrossRefGoogle Scholar
  43. Tibbling, G., Link, H., & Ohman, S. (1977). Principles of albumin and IgG analyses in neurological disorders. I. Establishment of reference values. Scandinavian Journal of Clinical and Laboratory Investigation, 37, 385–390.CrossRefGoogle Scholar
  44. Tomasi, S., Sarmientos, P., Giorda, G., Gurewich, V., & Vercelli, A. (2011). Mutant pro-urokinase with adjunctive C1-inhibitor is an effective and safer alternative to tPA in rat stroke. PLoS ONE, 2011(6), e21999.CrossRefGoogle Scholar
  45. Trollmann, R., Mühlberger, T., Richter, M., Boie, G., Feigenspan, A., Brackmann, F., et al. (2018). Differential regulation of angiogenesis in the developing mouse brain in response to exogenous activation of the hypoxia-inducible transcription factor system. Brain Research, 1688, 91–102.CrossRefGoogle Scholar
  46. Valerieva, A., Caccia, S., & Cicardi, M. (2018). Recombinant human C1 esterase inhibitor (Conestat alfa) for prophylaxis to prevent attacks in adult and adolescent patients with hereditary angioedema. Expert Review of Clinical Immunology, 14, 707–718.CrossRefGoogle Scholar
  47. Wang, L. W., Chang, Y. C., Chen, S. J., Tseng, C. H., Tu, Y. F., Liao, N. S., et al. (2014). TNFR1-JNK signaling is the shared pathway of neuroinflammation and neurovascular damage after LPS-sensitized hypoxic-ischemic injury in the immature brain. Journal of Neuroinflammation, 11, 215.CrossRefGoogle Scholar
  48. Wang, L. Y., Tu, Y. F., Lin, Y. C., & Huang, C. C. (2016). CXCL5 signalling is a shared pathway of neuroinflammation and blood-brain barrier injury contributing to white matter injury in the immature brain. Journal of Neuroinflammation, 13, 6.CrossRefGoogle Scholar
  49. Yang, Y., & Rosenberg, G. A. (2011). MMP-mediated disruption of claudin-5 in the blood-brain barrier of rat brain after cerebral ischemia. Methods in Molecular Biology, 762, 333–345.CrossRefGoogle Scholar
  50. Zou, R., Xiong, T., Zhang, L., Li, S., Zhao, F., Tong, Y., et al. (2018). Proton magnetic resonance spectroscopy biomarkers in neonates with hypoxic-ischemic encephalopathy: A systematic review and meta-analysis. Frontiers in Neurology, 9, 732.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Susan Jung
    • 1
  • Hans-Georg Topf
    • 2
  • Gudrun Boie
    • 1
  • Regina Trollmann
    • 1
    Email author
  1. 1.Division of Neuropediatrics, Department of PediatricsFriedrich-Alexander University Erlangen-NürnbergErlangenGermany
  2. 2.Division of Neonatology, Department of PediatricsFriedrich-Alexander University Erlangen-NürnbergErlangenGermany

Personalised recommendations