Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

RIP at the Synapse and the Role of Intracellular Domains in Neurons

  • 283 Accesses

Abstract

Regulated intramembrane proteolysis (RIP) occurs in a cell when transmembrane proteins are cleaved by intramembrane proteases such as secretases to generate soluble protein fragments in the extracellular environment and the cytosol. In the cytosol, these soluble intracellular domains (ICDs) have local functions near the site of cleavage or in many cases, translocate to the nucleus to modulate gene expression. While the mechanism of RIP is relatively well studied, the fate and function of ICDs for most substrate proteins remain poorly characterized. In neurons, RIP occurs in various subcellular compartments including at the synapse. In this review, we summarize current research on RIP in neurons, focusing specifically on synaptic proteins where the presence and function of the ICDs have been reported. We also briefly discuss activity-driven processing of RIP substrates at the synapse and the cellular machinery that support long-distance transport of ICDs from the synapse to the nucleus. Finally, we describe future challenges in this field of research in the context of understanding the contribution of ICDs in neuronal function.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Abbott, M. A., Wells, D. G., & Fallon, J. R. (1999). The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. Journal of Neuroscience,19(17), 7300–7308.

  2. Ables, J. L., Breunig, J. J., Eisch, A. J., & Rakic, P. (2011). Not(ch) just development: Notch signalling in the adult brain. Nature Reviews Neuroscience,12(5), 269–283. https://doi.org/10.1038/nrn3024.

  3. Acx, H., Serneels, L., Radaelli, E., Muyldermans, S., Vincke, C., Pepermans, E., et al. (2017). Inactivation of gamma-secretases leads to accumulation of substrates and non-Alzheimer neurodegeneration. EMBO Molecular Medicine,9(8), 1088–1099. https://doi.org/10.15252/emmm.201707561.

  4. Akin, O., & Zipursky, S. L. (2016). Frazzled promotes growth cone attachment at the source of a Netrin gradient in the Drosophila visual system. Elife,5, e20762. https://doi.org/10.7554/elife.20762.

  5. Alberi, L., Liu, S., Wang, Y., Badie, R., Smith-Hicks, C., Wu, J., et al. (2011). Activity-induced Notch signaling in neurons requires Arc/Arg3.1 and is essential for synaptic plasticity in hippocampal networks. Neuron,69(3), 437–444. https://doi.org/10.1016/j.neuron.2011.01.004.

  6. Allison, J. G., Das, P. M., Ma, J., Inglis, F. M., & Jones, F. E. (2011). The ERBB4 intracellular domain (4ICD) regulates NRG1-induced gene expression in hippocampal neurons. Neuroscience Research,70(2), 155–163. https://doi.org/10.1016/j.neures.2011.02.009.

  7. Anders, L., Mertins, P., Lammich, S., Murgia, M., Hartmann, D., Saftig, P., et al. (2006). Furin-, ADAM 10-, and gamma-secretase-mediated cleavage of a receptor tyrosine phosphatase and regulation of beta-catenin’s transcriptional activity. Molecular and Cellular Biology,26(10), 3917–3934. https://doi.org/10.1128/mcb.26.10.3917-3934.2006.

  8. Auffret, A., Gautheron, V., Mattson, M. P., Mariani, J., & Rovira, C. (2010). Progressive age-related impairment of the late long-term potentiation in Alzheimer’s disease presenilin-1 mutant knock-in mice. Journal of Alzheimers Disease,19(3), 1021–1033. https://doi.org/10.3233/jad-2010-1302.

  9. Azuara-Medina, P. M., Sandoval-Duarte, A. M., Morales-Lazaro, S. L., Modragon-Gonzalez, R., Velez-Aguilera, G., Gomez-Lopez, J. D., et al. (2019). The intracellular domain of beta-dystroglycan mediates the nucleolar stress response by suppressing UBF transcriptional activity. Cell Death and Disease,10(3), 196. https://doi.org/10.1038/s41419-019-1454-z.

  10. Baleriola, J., Walker, C. A., Jean, Y. Y., Crary, J. F., Troy, C. M., Nagy, P. L., et al. (2014). Axonally synthesized ATF4 transmits a neurodegenerative signal across brain regions. Cell,158(5), 1159–1172. https://doi.org/10.1016/j.cell.2014.07.001.

  11. Balmaceda, V., Cuchillo-Ibanez, I., Pujadas, L., Garcia-Ayllon, M. S., Saura, C. A., Nimpf, J., et al. (2014). ApoER2 processing by presenilin-1 modulates reelin expression. The FASEB Journal,28(4), 1543–1554. https://doi.org/10.1096/fj.13-239350.

  12. Bao, J., Lin, H., Ouyang, Y., Lei, D., Osman, A., Kim, T. W., et al. (2004). Activity-dependent transcription regulation of PSD-95 by neuregulin-1 and Eos. Nature Neuroscience,7(11), 1250–1258. https://doi.org/10.1038/nn1342.

  13. Bao, J., Wolpowitz, D., Role, L. W., & Talmage, D. A. (2003). Back signaling by the Nrg-1 intracellular domain. Journal of Cell Biology,161(6), 1133–1141. https://doi.org/10.1083/jcb.200212085.

  14. Barthet, G., Jorda-Siquier, T., Rumi-Masante, J., Bernadou, F., Muller, U., & Mulle, C. (2018). Presenilin-mediated cleavage of APP regulates synaptotagmin-7 and presynaptic plasticity. Nature Communications,9(1), 4780. https://doi.org/10.1038/s41467-018-06813-x.

  15. Beffert, U., Weeber, E. J., Durudas, A., Qiu, S., Masiulis, I., Sweatt, J. D., et al. (2005). Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron,47(4), 567–579. https://doi.org/10.1016/j.neuron.2005.07.007.

  16. Bhat, P., Chakrabarty, M., Thawani, V., & Saxena, A. (2012). Signalled roads to memory and its degeneration. Annals of Neuroscience,19(2), 84–87. https://doi.org/10.5214/ans.0972.7531.12190209.

  17. Bloch, L., Sineshchekova, O., Reichenbach, D., Reiss, K., Saftig, P., Kuro-o, M., et al. (2009). Klotho is a substrate for alpha-, beta- and gamma-secretase. FEBS Letters,583(19), 3221–3224. https://doi.org/10.1016/j.febslet.2009.09.009.

  18. Bohm, C., Seibel, N. M., Henkel, B., Steiner, H., Haass, C., & Hampe, W. (2006). SorLA signaling by regulated intramembrane proteolysis. Journal of Biological Chemistry,281(21), 14547–14553. https://doi.org/10.1074/jbc.M601660200.

  19. Bonn, S., Seeburg, P. H., & Schwarz, M. K. (2007). Combinatorial expression of alpha- and gamma-protocadherins alters their presenilin-dependent processing. Molecular and Cellular Biology,27(11), 4121–4132. https://doi.org/10.1128/mcb.01708-06.

  20. Borcel, E., Palczynska, M., Krzisch, M., Dimitrov, M., Ulrich, G., Toni, N., et al. (2016). Shedding of neurexin 3beta ectodomain by ADAM10 releases a soluble fragment that affects the development of newborn neurons. Science Reports,6, 39310. https://doi.org/10.1038/srep39310.

  21. Bot, N., Schweizer, C., Ben Halima, S., & Fraering, P. C. (2011). Processing of the synaptic cell adhesion molecule neurexin-3beta by Alzheimer disease alpha- and gamma-secretases. Journal of Biological Chemistry,286(4), 2762–2773. https://doi.org/10.1074/jbc.M110.142521.

  22. Branca, C., Sarnico, I., Ruotolo, R., Lanzillotta, A., Viscomi, A. R., Benarese, M., et al. (2014). Pharmacological targeting of the beta-amyloid precursor protein intracellular domain. Science Reports,4, 4618. https://doi.org/10.1038/srep04618.

  23. Bray, S. J. (2016). Notch signalling in context. Nature Reviews Molecular Cell Biology,17(11), 722–735. https://doi.org/10.1038/nrm.2016.94.

  24. Breiderhoff, T., Christiansen, G. B., Pallesen, L. T., Vaegter, C., Nykjaer, A., Holm, M. M., et al. (2013). Sortilin-related receptor SORCS3 is a postsynaptic modulator of synaptic depression and fear extinction. PLoS ONE,8(9), e75006. https://doi.org/10.1371/journal.pone.0075006.

  25. Brown, M. S., Ye, J., Rawson, R. B., & Goldstein, J. L. (2000). Regulated intramembrane proteolysis: A control mechanism conserved from bacteria to humans. Cell,100(4), 391–398.

  26. Buonanno, A. (2010). The neuregulin signaling pathway and schizophrenia: From genes to synapses and neural circuits. Brain Research Bulletin,83(3–4), 122–131. https://doi.org/10.1016/j.brainresbull.2010.07.012.

  27. Burden-Gulley, S. M., & Brady-Kalnay, S. M. (1999). PTPmu regulates N-cadherin-dependent neurite outgrowth. Journal of Cell Biology,144(6), 1323–1336. https://doi.org/10.1083/jcb.144.6.1323.

  28. Burgoyne, A. M., Phillips-Mason, P. J., Burden-Gulley, S. M., Robinson, S., Sloan, A. E., Miller, R. H., et al. (2009). Proteolytic cleavage of protein tyrosine phosphatase mu regulates glioblastoma cell migration. Cancer Research,69(17), 6960–6968. https://doi.org/10.1158/0008-5472.can-09-0863.

  29. Cai, J., Wu, L., Qi, X., Li Calzi, S., Caballero, S., Shaw, L., et al. (2011). PEDF regulates vascular permeability by a gamma-secretase-mediated pathway. PLoS ONE,6(6), e21164. https://doi.org/10.1371/journal.pone.0021164.

  30. Cao, X., & Sudhof, T. C. (2001). A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science,293(5527), 115–120. https://doi.org/10.1126/science.1058783.

  31. Cao, X., & Sudhof, T. C. (2004). Dissection of amyloid-beta precursor protein-dependent transcriptional transactivation. Journal of Biological Chemistry,279(23), 24601–24611. https://doi.org/10.1074/jbc.M402248200.

  32. Cau, E., & Blader, P. (2009). Notch activity in the nervous system: To switch or not switch? Neural Development,4, 36. https://doi.org/10.1186/1749-8104-4-36.

  33. Ch’ng, T. H., Uzgil, B., Lin, P., Avliyakulov, N. K., O’Dell, T. J., & Martin, K. C. (2012). Activity-dependent transport of the transcriptional coactivator CRTC1 from synapse to nucleus. Cell,150(1), 207–221. https://doi.org/10.1016/j.cell.2012.05.027.

  34. Chang, K. A., & Suh, Y. H. (2010). Possible roles of amyloid intracellular domain of amyloid precursor protein. BMB Reports,43(10), 656–663. https://doi.org/10.5483/BMBRep.2010.43.10.656.

  35. Chao, M. V., & Hempstead, B. L. (1995). p75 and Trk: A two-receptor system. Trends in Neurosciences,18(7), 321–326.

  36. Chen, Y., Hancock, M. L., Role, L. W., & Talmage, D. A. (2010). Intramembranous valine linked to schizophrenia is required for neuregulin 1 regulation of the morphological development of cortical neurons. Journal of Neuroscience,30(27), 9199–9208. https://doi.org/10.1523/jneurosci.0605-10.2010.

  37. Chen, A. C., & Selkoe, D. J. (2007). Presenilin-dependent transcriptional control of the abeta-degrading enzyme neprilysin by intracellular domains of betaAPP and APLP. Neuron,46, 541–554. https://doi.org/10.1016/j.neuron.2007.01.023.

  38. Cheng, P., & Gabrilovich, D. (2008). Notch signaling in differentiation and function of dendritic cells. Immunologic Research,41(1), 1–14. https://doi.org/10.1007/s12026-007-8011-z.

  39. Cheung, K. H., Mei, L., Mak, D. O., Hayashi, I., Iwatsubo, T., Kang, D. E., et al. (2010). Gain-of-function enhancement of IP3 receptor modal gating by familial Alzheimer’s disease-linked presenilin mutants in human cells and mouse neurons. Science Signal,3(114), ra22. https://doi.org/10.1126/scisignal.2000818.

  40. Chook, Y. M., & Suel, K. E. (2011). Nuclear import by karyopherin-betas: Recognition and inhibition. Biochimica et Biophysica Acta,1813(9), 1593–1606. https://doi.org/10.1016/j.bbamcr.2010.10.014.

  41. Chow, J. P., Fujikawa, A., Shimizu, H., & Noda, M. (2008a). Plasmin-mediated processing of protein tyrosine phosphatase receptor type Z in the mouse brain. Neuroscience Letters,442(3), 208–212. https://doi.org/10.1016/j.neulet.2008.07.028.

  42. Chow, J. P., Fujikawa, A., Shimizu, H., Suzuki, R., & Noda, M. (2008b). Metalloproteinase- and gamma-secretase-mediated cleavage of protein-tyrosine phosphatase receptor type Z. Journal of Biological Chemistry,283(45), 30879–30889. https://doi.org/10.1074/jbc.M802976200.

  43. Christiansen, G. B., Andersen, K. H., Riis, S., Nykjaer, A., Bolcho, U., Jensen, M. S., et al. (2017). The sorting receptor SorCS3 is a stronger regulator of glutamate receptor functions compared to GABAergic mechanisms in the hippocampus. Hippocampus,27(3), 235–248. https://doi.org/10.1002/hipo.22689.

  44. Conrad, S., Genth, H., Hofmann, F., Just, I., & Skutella, T. (2007). Neogenin-RGMa signaling at the growth cone is bone morphogenetic protein-independent and involves RhoA, ROCK, and PKC. Journal of Biological Chemistry,282(22), 16423–16433. https://doi.org/10.1074/jbc.M610901200.

  45. Cox, L. J., Hengst, U., Gurskaya, N. G., Lukyanov, K. A., & Jaffrey, S. R. (2008). Intra-axonal translation and retrograde trafficking of CREB promotes neuronal survival. Nature Cell Biology,10(2), 149–159. https://doi.org/10.1038/ncb1677.

  46. Cupers, P., Orlans, I., Craessaerts, K., Annaert, W., & De Strooper, B. (2001). The amyloid precursor protein (APP)-cytoplasmic fragment generated by gamma-secretase is rapidly degraded but distributes partially in a nuclear fraction of neurones in culture. Journal of Neurochemistry,78(5), 1168–1178.

  47. De Falco, V., Tamburrino, A., Ventre, S., Castellone, M. D., Malek, M., Manie, S. N., et al. (2012). CD44 proteolysis increases CREB phosphorylation and sustains proliferation of thyroid cancer cells. Cancer Research,72(6), 1449–1458. https://doi.org/10.1158/0008-5472.can-11-3320.

  48. De Felice, F. G., Vieira, M. N., Bomfim, T. R., Decker, H., Velasco, P. T., Lambert, M. P., et al. (2009). Protection of synapses against Alzheimer’s-linked toxins: Insulin signaling prevents the pathogenic binding of Abeta oligomers. Proceedings of National Academy of Science USA,106(6), 1971–1976. https://doi.org/10.1073/pnas.0809158106.

  49. De Rossi, P., Harde, E., Dupuis, J. P., Martin, L., Chounlamountri, N., Bardin, M., et al. (2016). A critical role for VEGF and VEGFR2 in NMDA receptor synaptic function and fear-related behavior. Molecular Psychiatry,21(12), 1768–1780. https://doi.org/10.1038/mp.2015.195.

  50. Deregowski, V., Gazzerro, E., Priest, L., Rydziel, S., & Canalis, E. (2006). Role of the RAM domain and ankyrin repeats on notch signaling and activity in cells of osteoblastic lineage. Journal of Bone and Mineral Research,21(8), 1317–1326. https://doi.org/10.1359/jbmr.060505.

  51. Dias, B. G., Goodman, J. V., Ahluwalia, R., Easton, A. E., Andero, R., & Ressler, K. J. (2014). Amygdala-dependent fear memory consolidation via miR-34a and Notch signaling. Neuron,83(4), 906–918. https://doi.org/10.1016/j.neuron.2014.07.019.

  52. DiBattista, A. M., Dumanis, S. B., Song, J. M., Bu, G., Weeber, E., Rebeck, G. W., et al. (2015). Very low density lipoprotein receptor regulates dendritic spine formation in a RasGRF1/CaMKII dependent manner. Biochimica et Biophysica Acta,1853(5), 904–917. https://doi.org/10.1016/j.bbamcr.2015.01.015.

  53. Dieterich, D. C., Karpova, A., Mikhaylova, M., Zdobnova, I., Konig, I., Landwehr, M., et al. (2008). Caldendrin-Jacob: A protein liaison that couples NMDA receptor signalling to the nucleus. PLoS Biology,6(2), e34. https://doi.org/10.1371/journal.pbio.0060034.

  54. Ding, X. F., Gao, X., Ding, X. C., Fan, M., & Chen, J. (2016). Postnatal dysregulation of Notch signal disrupts dendrite development of adult-born neurons in the hippocampus and contributes to memory impairment. Science Reports,6, 25780. https://doi.org/10.1038/srep25780.

  55. Dlugosz, P., & Nimpf, J. (2018). The reelin receptors apolipoprotein E receptor 2 (ApoER2) and VLDL receptor. International Journal of Molecular Sciences,19(10), 3090. https://doi.org/10.3390/ijms19103090.

  56. Dobrowsky, R. T., Werner, M. H., Castellino, A. M., Chao, M. V., & Hannun, Y. A. (1994). Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science,265(5178), 1596–1599.

  57. Drosopoulos, N. E., Walsh, F. S., & Doherty, P. (1999). A soluble version of the receptor-like protein tyrosine phosphatase kappa stimulates neurite outgrowth via a Grb2/MEK1-dependent signaling cascade. Molecular and Cellular Neuroscience,13(6), 441–449. https://doi.org/10.1006/mcne.1999.0758.

  58. Dumanis, S. B., Chamberlain, K. A., Jin Sohn, Y., Jin Lee, Y., Guenette, S. Y., Suzuki, T., et al. (2012). FE65 as a link between VLDLR and APP to regulate their trafficking and processing. Molecular Neurodegener,7, 9. https://doi.org/10.1186/1750-1326-7-9.

  59. Eggert, S., Paliga, K., Soba, P., Evin, G., Masters, C. L., Weidemann, A., et al. (2004). The proteolytic processing of the amyloid precursor protein gene family members APLP-1 and APLP-2 involves alpha-, beta-, gamma-, and epsilon-like cleavages: Modulation of APLP-1 processing by n-glycosylation. Journal of Biological Chemistry,279(18), 18146–18156. https://doi.org/10.1074/jbc.M311601200.

  60. Fazzari, P., Snellinx, A., Sabanov, V., Ahmed, T., Serneels, L., Gartner, A., et al. (2014). Cell autonomous regulation of hippocampal circuitry via Aph1b-gamma-secretase/neuregulin 1 signalling. Elife,3, 02196. https://doi.org/10.7554/elife.02196.

  61. Fleck, D., Voss, M., Brankatschk, B., Giudici, C., Hampel, H., Schwenk, B., et al. (2016). Proteolytic processing of neuregulin 1 type III by three intramembrane-cleaving proteases. Journal of Biological Chemistry,291(1), 318–333. https://doi.org/10.1074/jbc.M115.697995.

  62. Fogel, A. I., Akins, M. R., Krupp, A. J., Stagi, M., Stein, V., & Biederer, T. (2007). SynCAMs organize synapses through heterophilic adhesion. Journal of Neuroscience,27(46), 12516–12530. https://doi.org/10.1523/jneurosci.2739-07.2007.

  63. Forwood, J. K., Harley, V., & Jans, D. A. (2001). The C-terminal nuclear localization signal of the sex-determining region Y (SRY) high mobility group domain mediates nuclear import through importin beta 1. Journal of Biological Chemistry,276(49), 46575–46582. https://doi.org/10.1074/jbc.M101668200.

  64. Frykman, S., Hur, J. Y., Franberg, J., Aoki, M., Winblad, B., Nahalkova, J., et al. (2010). Synaptic and endosomal localization of active gamma-secretase in rat brain. PLoS ONE,5(1), e8948. https://doi.org/10.1371/journal.pone.0008948.

  65. Galeano, P., Leal, M. C., Ferrari, C. C., Dalmasso, M. C., Martino Adami, P. V., Farias, M. I., et al. (2018). Chronic hippocampal expression of notch intracellular domain induces vascular thickening, reduces glucose availability, and exacerbates spatial memory deficits in a rat model of early alzheimer. Molecular Neurobiology,55(11), 8637–8650. https://doi.org/10.1007/s12035-018-1002-3.

  66. Gan, M., Jiang, P., McLean, P., Kanekiyo, T., & Bu, G. (2014). Low-density lipoprotein receptor-related protein 1 (LRP1) regulates the stability and function of GluA1 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor in neurons. PLoS ONE,9(12), e113237. https://doi.org/10.1371/journal.pone.0113237.

  67. Ganguly, A., DeMott, L., Zhu, C., McClosky, D. D., Anderson, C. T., & Dixit, R. (2018). Importin-beta directly regulates the motor activity and turnover of a kinesin-4. Developmental Cell,44(5), 642–651.e645. https://doi.org/10.1016/j.devcel.2018.01.027.

  68. Gatto, G., Morales, D., Kania, A., & Klein, R. (2014). EphA4 receptor shedding regulates spinal motor axon guidance. Current Biology,24(20), 2355–2365. https://doi.org/10.1016/j.cub.2014.08.028.

  69. Gazit, N., Vertkin, I., Shapira, I., Helm, M., Slomowitz, E., Sheiba, M., et al. (2016). IGF-1 receptor differentially regulates spontaneous and evoked transmission via mitochondria at hippocampal synapses. Neuron,89(3), 583–597. https://doi.org/10.1016/j.neuron.2015.12.034.

  70. Georgakopoulos, A., Litterst, C., Ghersi, E., Baki, L., Xu, C., Serban, G., et al. (2006). Metalloproteinase/Presenilin1 processing of ephrinB regulates EphB-induced Src phosphorylation and signaling. EMBO Journal,25(6), 1242–1252. https://doi.org/10.1038/sj.emboj.7601031.

  71. Gersbacher, M. T., Goodger, Z. V., Trutzel, A., Bundschuh, D., Nitsch, R. M., & Konietzko, U. (2013). Turnover of amyloid precursor protein family members determines their nuclear signaling capability. PLoS ONE,8(7), e69363. https://doi.org/10.1371/journal.pone.0069363.

  72. Goldschneider, D., Rama, N., Guix, C., & Mehlen, P. (2008). The neogenin intracellular domain regulates gene transcription via nuclear translocation. Molecular and Cellular Biology,28(12), 4068–4079. https://doi.org/10.1128/mcb.02114-07.

  73. Gordon, W. R., Roy, M., Vardar-Ulu, D., Garfinkel, M., Mansour, M. R., Aster, J. C., et al. (2009). Structure of the Notch1-negative regulatory region: Implications for normal activation and pathogenic signaling in T-ALL. Blood,113(18), 4381–4390. https://doi.org/10.1182/blood-2008-08-174748.

  74. Grimm, M. O., Mett, J., Stahlmann, C. P., Grosgen, S., Haupenthal, V. J., Blumel, T., et al. (2015). APP intracellular domain derived from amyloidogenic beta- and gamma-secretase cleavage regulates neprilysin expression. Frontiers in Aging Neuroscience,7, 77. https://doi.org/10.3389/fnagi.2015.00077.

  75. Guo, Q., Li, H., Gaddam, S. S., Justice, N. J., Robertson, C. S., & Zheng, H. (2012). Amyloid precursor protein revisited: Neuron-specific expression and highly stable nature of soluble derivatives. Journal of Biological Chemistry,287(4), 2437–2445. https://doi.org/10.1074/jbc.M111.315051.

  76. Haapasalo, A., Kim, D. Y., Carey, B. W., Turunen, M. K., Pettingell, W. H., & Kovacs, D. M. (2007). Presenilin/gamma-secretase-mediated cleavage regulates association of leukocyte-common antigen-related (LAR) receptor tyrosine phosphatase with beta-catenin. Journal of Biological Chemistry,282(12), 9063–9072. https://doi.org/10.1074/jbc.M611324200.

  77. Haapasalo, A., & Kovacs, D. M. (2011). The many substrates of presenilin/gamma-secretase. Journal of Alzheimer’s Disease,25(1), 3–28. https://doi.org/10.3233/jad-2011-101065.

  78. Haas, I. G., Frank, M., Veron, N., & Kemler, R. (2005). Presenilin-dependent processing and nuclear function of gamma-protocadherins. Journal of Biological Chemistry,280(10), 9313–9319. https://doi.org/10.1074/jbc.M412909200.

  79. Hallaq, R., Volpicelli, F., Cuchillo-Ibanez, I., Hooper, C., Mizuno, K., Uwanogho, D., et al. (2015). The Notch intracellular domain represses CRE-dependent transcription. Cellular Signalling,27(3), 621–629. https://doi.org/10.1016/j.cellsig.2014.11.034.

  80. Hambsch, B., Grinevich, V., Seeburg, P. H., & Schwarz, M. K. (2005). {gamma}-Protocadherins, presenilin-mediated release of C-terminal fragment promotes locus expression. Journal of Biological Chemistry,280(16), 15888–15897. https://doi.org/10.1074/jbc.M414359200.

  81. Hartl, D., Nebrich, G., Klein, O., Stephanowitz, H., Krause, E., & Rohe, M. (2016). SORLA regulates calpain-dependent degradation of synapsin. Alzheimers and Dementia,12(9), 952–963. https://doi.org/10.1016/j.jalz.2016.02.008.

  82. Hatzimanolis, A., McGrath, J. A., Wang, R., Li, T., Wong, P. C., Nestadt, G., et al. (2013). Multiple variants aggregate in the neuregulin signaling pathway in a subset of schizophrenia patients. Translational Psychiatry,3, e264. https://doi.org/10.1038/tp.2013.33.

  83. Hayashi, N., Oohira, A., & Miyata, S. (2005). Synaptic localization of receptor-type protein tyrosine phosphatase zeta/beta in the cerebral and hippocampal neurons of adult rats. Brain Research,1050(1–2), 163–169. https://doi.org/10.1016/j.brainres.2005.05.047.

  84. Hayashida, K., Bartlett, A. H., Chen, Y., & Park, P. W. (2010). Molecular and cellular mechanisms of ectodomain shedding. The Anatomical Record (Hoboken),293(6), 925–937. https://doi.org/10.1002/ar.20757.

  85. Heber, S., Herms, J., Gajic, V., Hainfellner, J., Aguzzi, A., Rulicke, T., et al. (2000). Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members. Journal of Neuroscience,20(21), 7951–7963.

  86. Hebert, S. S., Serneels, L., Tolia, A., Craessaerts, K., Derks, C., Filippov, M. A., et al. (2006). Regulated intramembrane proteolysis of amyloid precursor protein and regulation of expression of putative target genes. EMBO Reports,7(7), 739–745. https://doi.org/10.1038/sj.embor.7400704.

  87. Heitzler, P. (2010). Biodiversity and noncanonical Notch signaling. Current Topics in Developmental Biology,92, 457–481. https://doi.org/10.1016/s0070-2153(10)92014-0.

  88. Henriques, A. G., Vieira, S. I., da Cruz e Silva, E. F., & da Cruz e Silva, O. A. (2009). Alphabeta hinders nuclear targeting of AICD and Fe65 in primary neuronal cultures. Journal of Molecular Neuroscience,39(1–2), 248–255. https://doi.org/10.1007/s12031-009-9192-9.

  89. Herbst, W. A., & Martin, K. C. (2017). Regulated transport of signaling proteins from synapse to nucleus. Current Opinion in Neurobiology,45, 78–84. https://doi.org/10.1016/j.conb.2017.04.006.

  90. Hiramoto, M., Hiromi, Y., Giniger, E., & Hotta, Y. (2000). The Drosophila Netrin receptor Frazzled guides axons by controlling Netrin distribution. Nature,406(6798), 886–889. https://doi.org/10.1038/35022571.

  91. Ho, A., & Shen, J. (2011). Presenilins in synaptic function and disease. Trends in Molecular Medicine,17(11), 617–624. https://doi.org/10.1016/j.molmed.2011.06.002.

  92. Hoe, H. S., & Rebeck, G. W. (2005). Regulation of ApoE receptor proteolysis by ligand binding. Brain Research,137(1–2), 31–39. https://doi.org/10.1016/j.molbrainres.2005.02.013.

  93. Honda, T., & Nakajima, K. (2016). Proper level of cytosolic disabled-1, which is regulated by dual nuclear translocation pathways, is important for cortical neuronal migration. Cerebral Cortex,26(7), 3219–3236. https://doi.org/10.1093/cercor/bhv162.

  94. Horn, K. E., Glasgow, S. D., Gobert, D., Bull, S. J., Luk, T., Girgis, J., et al. (2013). DCC expression by neurons regulates synaptic plasticity in the adult brain. Cell Reports,3(1), 173–185. https://doi.org/10.1016/j.celrep.2012.12.005.

  95. Hsueh, Y. P., Roberts, A. M., Volta, M., Sheng, M., & Roberts, R. G. (2001). Bipartite interaction between neurofibromatosis type I protein (neurofibromin) and syndecan transmembrane heparan sulfate proteoglycans. Journal of Neuroscience,21(11), 3764–3770.

  96. Huang, T. Y., Zhao, Y., Jiang, L. L., Li, X., Liu, Y., Sun, Y., et al. (2017). SORLA attenuates EphA4 signaling and amyloid beta-induced neurodegeneration. Journal of Experimental Medicine,214(12), 3669–3685. https://doi.org/10.1084/jem.20171413.

  97. Huenniger, K., Kramer, A., Soom, M., Chang, I., Kohler, M., Depping, R., et al. (2010). Notch1 signaling is mediated by importins alpha 3, 4, and 7. Cellular and Molecular Life Sciences,67(18), 3187–3196. https://doi.org/10.1007/s00018-010-0378-7.

  98. Imamoto, N., & Kose, S. (2012). Heat-shock stress activates a novel nuclear import pathway mediated by Hikeshi. Nucleus,3(5), 422–428. https://doi.org/10.4161/nucl.21713.

  99. Inoue, E., Deguchi-Tawarada, M., Togawa, A., Matsui, C., Arita, K., Katahira-Tayama, S., et al. (2009). Synaptic activity prompts gamma-secretase-mediated cleavage of EphA4 and dendritic spine formation. Journal of Cell Biology,185(3), 551–564. https://doi.org/10.1083/jcb.200809151.

  100. Ivanova, D., Dirks, A., Montenegro-Venegas, C., Schone, C., Altrock, W. D., Marini, C., et al. (2015). Synaptic activity controls localization and function of CtBP1 via binding to Bassoon and Piccolo. EMBO Journal,34(8), 1056–1077. https://doi.org/10.15252/embj.201488796.

  101. Iwakura, Y., & Nawa, H. (2013). ErbB1-4-dependent EGF/neuregulin signals and their cross talk in the central nervous system: Pathological implications in schizophrenia and Parkinson’s disease. Frontiers in Cellular Neuroscience,7, 4. https://doi.org/10.3389/fncel.2013.00004.

  102. Jeffrey, R. A., Ch’ng, T. H., O’Dell, T. J., & Martin, K. C. (2009). Activity-dependent anchoring of importin alpha at the synapse involves regulated binding to the cytoplasmic tail of the NR1-1a subunit of the NMDA receptor. Journal of Neuroscience,29(50), 15613–15620. https://doi.org/10.1523/jneurosci.3314-09.2009.

  103. Jordan, B. A., & Kreutz, M. R. (2009). Nucleocytoplasmic protein shuttling: The direct route in synapse-to-nucleus signaling. Trends in Neurosciences,32(7), 392–401. https://doi.org/10.1016/j.tins.2009.04.001.

  104. Jung, K. M., Tan, S., Landman, N., Petrova, K., Murray, S., Lewis, R., et al. (2003). Regulated intramembrane proteolysis of the p75 neurotrophin receptor modulates its association with the TrkA receptor. Journal of Biological Chemistry,278(43), 42161–42169. https://doi.org/10.1074/jbc.M306028200.

  105. Kamenetz, F., Tomita, T., Hsieh, H., Seabrook, G., Borchelt, D., Iwatsubo, T., et al. (2003). APP processing and synaptic function. Neuron,37(6), 925–937.

  106. Kannan, R., Cox, E., Wang, L., Kuzina, I., Gu, Q., & Giniger, E. (2018). Tyrosine phosphorylation and proteolytic cleavage of Notch are required for non-canonical Notch/Abl signaling in Drosophila axon guidance. Development,145(2), dev151548. https://doi.org/10.1242/dev.151548.

  107. Karpova, A., Bar, J., & Kreutz, M. R. (2012). Long-distance signaling from synapse to nucleus via protein messengers. Advances in Experimental Medicine and Biology,970, 355–376. https://doi.org/10.1007/978-3-7091-0932-8_16.

  108. Karpova, A., Mikhaylova, M., Bera, S., Bar, J., Reddy, P. P., Behnisch, T., et al. (2013). Encoding and transducing the synaptic or extrasynaptic origin of NMDA receptor signals to the nucleus. Cell,152(5), 1119–1133. https://doi.org/10.1016/j.cell.2013.02.002.

  109. Kasuga, K., Kaneko, H., Nishizawa, M., Onodera, O., & Ikeuchi, T. (2007). Generation of intracellular domain of insulin receptor tyrosine kinase by gamma-secretase. Biochemical and Biophysical Research Communications,360(1), 90–96. https://doi.org/10.1016/j.bbrc.2007.06.022.

  110. Ke, C., Gao, F., Tian, X., Li, C., Shi, D., He, W., et al. (2017). Slit2/Robo1 mediation of synaptic plasticity contributes to bone cancer pain. Molecular Neurobiology,54(1), 295–307. https://doi.org/10.1007/s12035-015-9564-9.

  111. Kesten, D., Horovitz-Fried, M., Brutman-Barazani, T., & Sampson, S. R. (2018). Insulin-induced translocation of IR to the nucleus in insulin responsive cells requires a nuclear translocation sequence. Biochim Biophys Acta Mol Cell Res,1865(4), 551–559. https://doi.org/10.1016/j.bbamcr.2018.01.004.

  112. Kidd, T., Brose, K., Mitchell, K. J., Fetter, R. D., Tessier-Lavigne, M., Goodman, C. S., et al. (1998). Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell,92(2), 205–215.

  113. Kim, D. Y., Carey, B. W., Wang, H., Ingano, L. A., Binshtok, A. M., Wertz, M. H., et al. (2007). BACE1 regulates voltage-gated sodium channels and neuronal activity. Nature Cell Biology,9(7), 755–764. https://doi.org/10.1038/ncb1602.

  114. Kim, J., Chang, A., Dudak, A., Federoff, H. J., & Lim, S. T. (2011). Characterization of nectin processing mediated by presenilin-dependent gamma-secretase. Journal of Neurochemistry,119(5), 945–956. https://doi.org/10.1111/j.1471-4159.2011.07479.x.

  115. Kim, D. Y., Ingano, L. A., & Kovacs, D. M. (2002). Nectin-1alpha, an immunoglobulin-like receptor involved in the formation of synapses, is a substrate for presenilin/gamma-secretase-like cleavage. Journal of Biological Chemistry,277(51), 49976–49981. https://doi.org/10.1074/jbc.M210179200.

  116. Kim, J., Lilliehook, C., Dudak, A., Prox, J., Saftig, P., Federoff, H. J., et al. (2010). Activity-dependent alpha-cleavage of nectin-1 is mediated by a disintegrin and metalloprotease 10 (ADAM10). Journal of Biological Chemistry,285(30), 22919–22926. https://doi.org/10.1074/jbc.M110.126649.

  117. Kimberly, W. T., Zheng, J. B., Guenette, S. Y., & Selkoe, D. J. (2001). The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. Journal of Biological Chemistry,276(43), 40288–40292. https://doi.org/10.1074/jbc.C100447200.

  118. Kimura, M., & Imamoto, N. (2014). Biological significance of the importin-beta family-dependent nucleocytoplasmic transport pathways. Traffic,15(7), 727–748. https://doi.org/10.1111/tra.12174.

  119. Kinoshita, A., Shah, T., Tangredi, M. M., Strickland, D. K., & Hyman, B. T. (2003). The intracellular domain of the low density lipoprotein receptor-related protein modulates transactivation mediated by amyloid precursor protein and Fe65. Journal of Biological Chemistry,278(42), 41182–41188. https://doi.org/10.1074/jbc.M306403200.

  120. Kiyota, T., & Kinoshita, T. (2004). The intracellular domain of X-Serrate-1 is cleaved and suppresses primary neurogenesis in Xenopus laevis. Mechanisms of Development,121(6), 573–585. https://doi.org/10.1016/j.mod.2004.03.034.

  121. Klug, W., Dietl, A., Simon, B., Sinning, I., & Wild, K. (2011). Phosphorylation of LRP1 regulates the interaction with Fe65. FEBS Letters,585(20), 3229–3235. https://doi.org/10.1016/j.febslet.2011.09.028.

  122. Knight, D., Iliadi, K., Charlton, M. P., Atwood, H. L., & Boulianne, G. L. (2007). Presynaptic plasticity and associative learning are impaired in a Drosophila presenilin null mutant. Developmental Neurobiology,67(12), 1598–1613. https://doi.org/10.1002/dneu.20532.

  123. Kohmura, N., Senzaki, K., Hamada, S., Kai, N., Yasuda, R., Watanabe, M., et al. (1998). Diversity revealed by a novel family of cadherins expressed in neurons at a synaptic complex. Neuron,20(6), 1137–1151.

  124. Konietzko, U., Goodger, Z. V., Meyer, M., Kohli, B. M., Bosset, J., Lahiri, D. K., et al. (2010). Co-localization of the amyloid precursor protein and Notch intracellular domains in nuclear transcription factories. Neurobiology of Aging,31(1), 58–73. https://doi.org/10.1016/j.neurobiolaging.2008.03.001.

  125. Kravchick, D. O., & Jordan, B. A. (2015). Presynapses go nuclear! EMBO Journal,34(8), 984–986. https://doi.org/10.15252/embj.201591331.

  126. Krivosheya, D., Tapia, L., Levinson, J. N., Huang, K., Kang, Y., Hines, R., et al. (2008). ErbB4-neuregulin signaling modulates synapse development and dendritic arborization through distinct mechanisms. Journal of Biological Chemistry,283(47), 32944–32956. https://doi.org/10.1074/jbc.M800073200.

  127. Lai, K. O., Zhao, Y., Ch’ng, T. H., & Martin, K. (2008). Importin-mediated retrograde transport of CREB2 from distal processes to the nucleus in neurons. Proceedings of the National Academy of Sciences USA,105(44), 17175–17180. https://doi.org/10.1073/pnas.0803906105.

  128. Lal, M., & Caplan, M. (2011). Regulated intramembrane proteolysis: Signaling pathways and biological functions. Physiology (Bethesda),26(1), 34–44. https://doi.org/10.1152/physiol.00028.2010.

  129. Lalonde, R., Qian, S., & Strazielle, C. (2003). Transgenic mice expressing the PS1-A246E mutation: Effects on spatial learning, exploration, anxiety, and motor coordination. Behavioural Brain Research,138(1), 71–79.

  130. Lammich, S., Okochi, M., Takeda, M., Kaether, C., Capell, A., Zimmer, A. K., et al. (2002). Presenilin-dependent intramembrane proteolysis of CD44 leads to the liberation of its intracellular domain and the secretion of an Abeta-like peptide. Journal of Biological Chemistry,277(47), 44754–44759. https://doi.org/10.1074/jbc.M206872200.

  131. Lathia, J. D., Mattson, M. P., & Cheng, A. (2008). Notch: From neural development to neurological disorders. Journal of Neurochemistry,107(6), 1471–1481. https://doi.org/10.1111/j.1471-4159.2008.05715.x.

  132. LaVoie, M. J., & Selkoe, D. J. (2003). The Notch ligands, Jagged and Delta, are sequentially processed by alpha-secretase and presenilin/gamma-secretase and release signaling fragments. Journal of Biological Chemistry,278(36), 34427–34437. https://doi.org/10.1074/jbc.M302659200.

  133. Lee, S. H., Sharma, M., Sudhof, T. C., & Shen, J. (2014). Synaptic function of nicastrin in hippocampal neurons. Proceedings of the National Academy of Sciences USA,111(24), 8973–8978. https://doi.org/10.1073/pnas.1408554111.

  134. Levi, S., Grady, R. M., Henry, M. D., Campbell, K. P., Sanes, J. R., & Craig, A. M. (2002). Dystroglycan is selectively associated with inhibitory GABAergic synapses but is dispensable for their differentiation. Journal of Neuroscience,22(11), 4274–4285.

  135. Li, Y., Chen, Z., Gao, Y., Pan, G., Zheng, H., Zhang, Y., et al. (2017a). Synaptic adhesion molecule Pcdh-gammaC5 mediates synaptic dysfunction in Alzheimer’s disease. Journal of Neuroscience,37(38), 9259–9268. https://doi.org/10.1523/jneurosci.1051-17.2017.

  136. Li, Y., Gao, Y., Xu, X., Shi, R., Liu, J., Yao, W., et al. (2017b). Slit2/Robo1 promotes synaptogenesis and functional recovery of spinal cord injury. NeuroReport,28(2), 75–81. https://doi.org/10.1097/wnr.0000000000000715.

  137. Li, Q., Vo, H. T., Wang, J., Fox-Quick, S., Dobrunz, L. E., & King, G. D. (2017c). Klotho regulates CA1 hippocampal synaptic plasticity. Neuroscience,347, 123–133. https://doi.org/10.1016/j.neuroscience.2017.02.006.

  138. Li, B., Woo, R. S., Mei, L., & Malinow, R. (2007). The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity. Neuron,54(4), 583–597. https://doi.org/10.1016/j.neuron.2007.03.028.

  139. Lichtenthaler, S. F., Haass, C., & Steiner, H. (2011). Regulated intramembrane proteolysis–lessons from amyloid precursor protein processing. Journal of Neurochemistry,117(5), 779–796. https://doi.org/10.1111/j.1471-4159.2011.07248.x.

  140. Lichtenthaler, S. F., Lemberg, M. K., & Fluhrer, R. (2018). Proteolytic ectodomain shedding of membrane proteins in mammals-hardware, concepts, and recent developments. The Embo Journal,37(15), 99456. https://doi.org/10.15252/embj.201899456.

  141. Lim, A. F., Lim, W. L., & Ch’ng, T. H. (2017). Activity-dependent synapse to nucleus signaling. Neurobiology of Learning and Memory,138, 78–84. https://doi.org/10.1016/j.nlm.2016.07.024.

  142. Lim, S. T., Lim, K. C., Giuliano, R. E., & Federoff, H. J. (2008). Temporal and spatial localization of nectin-1 and l-afadin during synaptogenesis in hippocampal neurons. Journal of Comparative Neurology,507(2), 1228–1244. https://doi.org/10.1002/cne.21608.

  143. Lin, K. T., Sloniowski, S., Ethell, D. W., & Ethell, I. M. (2008). Ephrin-B2-induced cleavage of EphB2 receptor is mediated by matrix metalloproteinases to trigger cell repulsion. Journal of Biological Chemistry,283(43), 28969–28979. https://doi.org/10.1074/jbc.M804401200.

  144. Litterst, C., Georgakopoulos, A., Shioi, J., Ghersi, E., Wisniewski, T., Wang, R., et al. (2007). Ligand binding and calcium influx induce distinct ectodomain/gamma-secretase-processing pathways of EphB2 receptor. Journal of Biological Chemistry,282(22), 16155–16163. https://doi.org/10.1074/jbc.M611449200.

  145. Liu, S., Wang, Y., Worley, P. F., Mattson, M. P., & Gaiano, N. (2015). The canonical Notch pathway effector RBP-J regulates neuronal plasticity and expression of GABA transporters in hippocampal networks. Hippocampus,25(5), 670–678. https://doi.org/10.1002/hipo.22402.

  146. Liu, A., Zhou, Z., Dang, R., Zhu, Y., Qi, J., He, G., et al. (2016). Neuroligin 1 regulates spines and synaptic plasticity via LIMK1/cofilin-mediated actin reorganization. Journal of Cell Biology,212(4), 449–463. https://doi.org/10.1083/jcb.201509023.

  147. Lozsadi, D. A., & Larner, A. J. (2006). Prevalence and causes of seizures at the time of diagnosis of probable Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders,22(2), 121–124. https://doi.org/10.1159/000093664.

  148. Lutz, D., Wolters-Eisfeld, G., Schachner, M., & Kleene, R. (2014). Cathepsin E generates a sumoylated intracellular fragment of the cell adhesion molecule L1 to promote neuronal and Schwann cell migration as well as myelination. Journal of Neurochemistry,128(5), 713–724. https://doi.org/10.1111/jnc.12473.

  149. Marambaud, P., Wen, P. H., Dutt, A., Shioi, J., Takashima, A., Siman, R., et al. (2003). A CBP binding transcriptional repressor produced by the PS1/epsilon-cleavage of N-cadherin is inhibited by PS1 FAD mutations. Cell,114(5), 635–645.

  150. Maretzky, T., Schulte, M., Ludwig, A., Rose-John, S., Blobel, C., Hartmann, D., et al. (2005). L1 is sequentially processed by two differently activated metalloproteases and presenilin/gamma-secretase and regulates neural cell adhesion, cell migration, and neurite outgrowth. Molecular and Cellular Biology,25(20), 9040–9053. https://doi.org/10.1128/mcb.25.20.9040-9053.2005.

  151. Martin, L., Fluhrer, R., Reiss, K., Kremmer, E., Saftig, P., & Haass, C. (2008). Regulated intramembrane proteolysis of Bri2 (Itm2b) by ADAM10 and SPPL2a/SPPL2b. Journal of Biological Chemistry,283(3), 1644–1652. https://doi.org/10.1074/jbc.M706661200.

  152. Martins, F., Marafona, A. M., Pereira, C. D., Muller, T., Loosse, C., Kolbe, K., et al. (2018). Identification and characterization of the BRI2 interactome in the brain. Science Reports,8(1), 3548. https://doi.org/10.1038/s41598-018-21453-3.

  153. Martins, F., Rebelo, S., Santos, M., Cotrim, C. Z., da Cruz e Silva, E. F., & da Cruz e Silva, O. A. (2016). BRI2 and BRI3 are functionally distinct phosphoproteins. Cellular Signalling,28(1), 130–144. https://doi.org/10.1016/j.cellsig.2015.10.012.

  154. Mata-Balaguer, T., Cuchillo-Ibanez, I., Calero, M., Ferrer, I., & Saez-Valero, J. (2018). Decreased generation of C-terminal fragments of ApoER2 and increased reelin expression in Alzheimer’s disease. The FASEB Journal,32(7), 3536–3546. https://doi.org/10.1096/fj.201700736RR.

  155. Matsui, C., Inoue, E., Kakita, A., Arita, K., Deguchi-Tawarada, M., Togawa, A., et al. (2012). Involvement of the gamma-secretase-mediated EphA4 signaling pathway in synaptic pathogenesis of Alzheimer’s disease. Brain Pathology,22(6), 776–787. https://doi.org/10.1111/j.1750-3639.2012.00587.x.

  156. Matusica, D., Skeldal, S., Sykes, A. M., Palstra, N., Sharma, A., & Coulson, E. J. (2013). An intracellular domain fragment of the p75 neurotrophin receptor (p75(NTR)) enhances tropomyosin receptor kinase A (TrkA) receptor function. Journal of Biological Chemistry,288(16), 11144–11154. https://doi.org/10.1074/jbc.M112.436469.

  157. May, P., Rohlmann, A., Bock, H. H., Zurhove, K., Marth, J. D., Schomburg, E. D., et al. (2004). Neuronal LRP1 functionally associates with postsynaptic proteins and is required for normal motor function in mice. Molecular and Cellular Biology,24(20), 8872–8883. https://doi.org/10.1128/mcb.24.20.8872-8883.2004.

  158. McCarthy, A. J., Coleman-Vaughan, C., & McCarthy, J. V. (2017). Regulated intramembrane proteolysis: Emergent role in cell signalling pathways. Biochemical Society Transactions,45(6), 1185–1202. https://doi.org/10.1042/bst20170002.

  159. McClelland, A. C., Sheffler-Collins, S. I., Kayser, M. S., & Dalva, M. B. (2009). Ephrin-B1 and ephrin-B2 mediate EphB-dependent presynaptic development via syntenin-1. Proceedings of the National Academy of Sciences USA,106(48), 20487–20492. https://doi.org/10.1073/pnas.0811862106.

  160. McElroy, B., Powell, J. C., & McCarthy, J. V. (2007). The insulin-like growth factor 1 (IGF-1) receptor is a substrate for gamma-secretase-mediated intramembrane proteolysis. Biochemical and Biophysical Research Communications,358(4), 1136–1141. https://doi.org/10.1016/j.bbrc.2007.05.062.

  161. Meckler, X., & Checler, F. (2016). Presenilin 1 and presenilin 2 target gamma-secretase complexes to distinct cellular compartments. Journal of Biological Chemistry,291(24), 12821–12837. https://doi.org/10.1074/jbc.M115.708297.

  162. Mei, L., & Nave, K. A. (2014). Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron,83(1), 27–49. https://doi.org/10.1016/j.neuron.2014.06.007.

  163. Mei, L., & Xiong, W. C. (2008). Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nature Reviews Neuroscience,9(6), 437–452. https://doi.org/10.1038/nrn2392.

  164. Mentrup, T., Fluhrer, R., & Schroder, B. (2017a). Latest emerging functions of SPP/SPPL intramembrane proteases. European Journal of Cell Biology,96(5), 372–382. https://doi.org/10.1016/j.ejcb.2017.03.002.

  165. Mentrup, T., Hasler, R., Fluhrer, R., Saftig, P., & Schroder, B. (2015). A cell-based assay reveals nuclear translocation of intracellular domains released by SPPL proteases. Traffic,16(8), 871–892. https://doi.org/10.1111/tra.12287.

  166. Mentrup, T., Loock, A. C., Fluhrer, R., & Schroder, B. (2017b). Signal peptide peptidase and SPP-like proteases—Possible therapeutic targets? Biochim Biophys Acta Molecular Cell Research,1864(11 Pt B), 2169–2182. https://doi.org/10.1016/j.bbamcr.2017.06.007.

  167. Miletti-Gonzalez, K. E., Murphy, K., Kumaran, M. N., Ravindranath, A. K., Wernyj, R. P., Kaur, S., et al. (2012). Identification of function for CD44 intracytoplasmic domain (CD44-ICD): Modulation of matrix metalloproteinase 9 (MMP-9) transcription via novel promoter response element. Journal of Biological Chemistry,287(23), 18995–19007. https://doi.org/10.1074/jbc.M111.318774.

  168. Mosca, T. J., & Schwarz, T. L. (2010). Drosophila Importin-alpha2 is involved in synapse, axon and muscle development. PLoS ONE,5(12), e15223. https://doi.org/10.1371/journal.pone.0015223.

  169. Multhaup, G., Huber, O., Buee, L., & Galas, M. C. (2015). Amyloid precursor protein (APP) metabolites APP intracellular fragment (AICD), Abeta42, and Tau in nuclear roles. Journal of Biological Chemistry,290(39), 23515–23522. https://doi.org/10.1074/jbc.R115.677211.

  170. Murata, Y., Hamada, S., Morishita, H., Mutoh, T., & Yagi, T. (2004). Interaction with protocadherin-gamma regulates the cell surface expression of protocadherin-alpha. Journal of Biological Chemistry,279(47), 49508–49516. https://doi.org/10.1074/jbc.M408771200.

  171. Nagara, Y., Hagiyama, M., Hatano, N., Futai, E., Suo, S., Takaoka, Y., et al. (2012). Tumor suppressor cell adhesion molecule 1 (CADM1) is cleaved by a disintegrin and metalloprotease 10 (ADAM10) and subsequently cleaved by gamma-secretase complex. Biochemical and Biophysical Research Communications,417(1), 462–467. https://doi.org/10.1016/j.bbrc.2011.11.140.

  172. Nakajima, C., Kulik, A., Frotscher, M., Herz, J., Schafer, M., Bock, H. H., et al. (2013). Low density lipoprotein receptor-related protein 1 (LRP1) modulates N-methyl-D-aspartate (NMDA) receptor-dependent intracellular signaling and NMDA-induced regulation of postsynaptic protein complexes. Journal of Biological Chemistry,288(30), 21909–21923. https://doi.org/10.1074/jbc.M112.444364.

  173. Nakajo, H., Ishibashi, K., Aoyama, K., Kubota, S., Hasegawa, H., Yamaguchi, N., et al. (2019). Role for tyrosine phosphorylation of SUV39H1 histone methyltransferase in enhanced trimethylation of histone H3K9 via neuregulin-1/ErbB4 nuclear signaling. Biochemical and Biophysical Research Communications,511(4), 765–771. https://doi.org/10.1016/j.bbrc.2019.02.130.

  174. Nakaya, T., & Suzuki, T. (2006). Role of APP phosphorylation in FE65-dependent gene transactivation mediated by AICD. Genes to Cells,11(6), 633–645. https://doi.org/10.1111/j.1365-2443.2006.00968.x.

  175. Nakayama, K., Ohkawara, T., Hiratochi, M., Koh, C. S., & Nagase, H. (2008). The intracellular domain of amyloid precursor protein induces neuron-specific apoptosis. Neuroscience Letters,444(2), 127–131. https://doi.org/10.1016/j.neulet.2008.08.034.

  176. Nam, S. H., Seo, S. J., Goo, J. S., Kim, J. E., Choi, S. I., Lee, H. R., et al. (2011). Pen-2 overexpression induces Abeta-42 production, memory defect, motor activity enhancement and feeding behavior dysfunction in NSE/Pen-2 transgenic mice. International Journal of Molecular Medicine,28(6), 961–971. https://doi.org/10.3892/ijmm.2011.767.

  177. Naresh, A., Long, W., Vidal, G. A., Wimley, W. C., Marrero, L., Sartor, C. I., et al. (2006). The ERBB4/HER4 intracellular domain 4ICD is a BH3-only protein promoting apoptosis of breast cancer cells. Cancer Research,66(12), 6412–6420. https://doi.org/10.1158/0008-5472.can-05-2368.

  178. Neuhaus-Follini, A., & Bashaw, G. J. (2015). The intracellular domain of the frazzled/DCC receptor is a transcription factor required for commissural axon guidance. Neuron,87(4), 751–763. https://doi.org/10.1016/j.neuron.2015.08.006.

  179. Nhan, H. S., Chiang, K., & Koo, E. H. (2015). The multifaceted nature of amyloid precursor protein and its proteolytic fragments: Friends and foes. Acta Neuropathologica,129(1), 1–19. https://doi.org/10.1007/s00401-014-1347-2.

  180. Niwa, M., Sidrauski, C., Kaufman, R. J., & Walter, P. (1999). A role for presenilin-1 in nuclear accumulation of Ire1 fragments and induction of the mammalian unfolded protein response. Cell,99(7), 691–702.

  181. Nyborg, A. C., Ladd, T. B., Zwizinski, C. W., Lah, J. J., & Golde, T. E. (2006). Sortilin, SorCS1b, and SorLA Vps10p sorting receptors, are novel gamma-secretase substrates. Molecular Neurodegeneration,1, 3. https://doi.org/10.1186/1750-1326-1-3.

  182. Oblander, S. A., Ensslen-Craig, S. E., Longo, F. M., & Brady-Kalnay, S. M. (2007). E-cadherin promotes retinal ganglion cell neurite outgrowth in a protein tyrosine phosphatase-mu-dependent manner. Molecular and Cellular Neuroscience,34(3), 481–492. https://doi.org/10.1016/j.mcn.2006.12.002.

  183. Pardossi-Piquard, R., & Checler, F. (2012). The physiology of the beta-amyloid precursor protein intracellular domain AICD. Journal of Neurochemistry,120(Suppl 1), 109–124. https://doi.org/10.1111/j.1471-4159.2011.07475.x.

  184. Pardossi-Piquard, R., Petit, A., Kawarai, T., Sunyach, C., Alves da Costa, C., Vincent, B., et al. (2005). Presenilin-dependent transcriptional control of the Abeta-degrading enzyme neprilysin by intracellular domains of betaAPP and APLP. Neuron,46(4), 541–554. https://doi.org/10.1016/j.neuron.2005.04.008.

  185. Parkhurst, C. N., Zampieri, N., & Chao, M. V. (2010). Nuclear localization of the p75 neurotrophin receptor intracellular domain. Journal of Biological Chemistry,285(8), 5361–5368. https://doi.org/10.1074/jbc.M109.045054.

  186. Parra, L. M., Hartmann, M., Schubach, S., Li, Y., Herrlich, P., & Herrlich, A. (2015). Distinct intracellular domain substrate modifications selectively regulate ectodomain cleavage of NRG1 or CD44. Molecular and Cellular Biology,35(19), 3381–3395. https://doi.org/10.1128/mcb.00500-15.

  187. Paschkowsky, S., Oestereich, F., & Munter, L. M. (2018). Embedded in the membrane: How lipids confer activity and specificity to intramembrane proteases. Journal of Membrane Biology,251(3), 369–378. https://doi.org/10.1007/s00232-017-0008-5.

  188. Pathak, A., Stanley, E. M., Hickman, F. E., Wallace, N., Brewer, B., Li, D., et al. (2018). Retrograde degenerative signaling mediated by the p75 neurotrophin receptor requires p150(Glued) deacetylation by axonal HDAC1. Developmental Cell,46(3), 376–387.e377. https://doi.org/10.1016/j.devcel.2018.07.001.

  189. Peixoto, R. T., Kunz, P. A., Kwon, H., Mabb, A. M., Sabatini, B. L., Philpot, B. D., et al. (2012). Transsynaptic signaling by activity-dependent cleavage of neuroligin-1. Neuron,76(2), 396–409. https://doi.org/10.1016/j.neuron.2012.07.006.

  190. Perry, R. B., Doron-Mandel, E., Iavnilovitch, E., Rishal, I., Dagan, S. Y., Tsoory, M., et al. (2012). Subcellular knockout of importin beta1 perturbs axonal retrograde signaling. Neuron,75(2), 294–305. https://doi.org/10.1016/j.neuron.2012.05.033.

  191. Phillips, G. R., Tanaka, H., Frank, M., Elste, A., Fidler, L., Benson, D. L., et al. (2003). Gamma-protocadherins are targeted to subsets of synapses and intracellular organelles in neurons. Journal of Neuroscience,23(12), 5096–5104.

  192. Piao, Y., Kimura, A., Urano, S., Saito, Y., Taru, H., Yamamoto, T., et al. (2013). Mechanism of intramembrane cleavage of alcadeins by gamma-secretase. PLoS ONE,8(4), e62431. https://doi.org/10.1371/journal.pone.0062431.

  193. Pierfelice, T., Alberi, L., & Gaiano, N. (2011). Notch in the vertebrate nervous system: An old dog with new tricks. Neuron,69(5), 840–855. https://doi.org/10.1016/j.neuron.2011.02.031.

  194. Podlesniy, P., Kichev, A., Pedraza, C., Saurat, J., Encinas, M., Perez, B., et al. (2006). Pro-NGF from Alzheimer’s disease and normal human brain displays distinctive abilities to induce processing and nuclear translocation of intracellular domain of p75NTR and apoptosis. American Journal of Pathology,169(1), 119–131. https://doi.org/10.2353/ajpath.2006.050787.

  195. Poreba, M., Szalek, A., Rut, W., Kasperkiewicz, P., Rutkowska-Wlodarczyk, I., Snipas, S. J., et al. (2017). Highly sensitive and adaptable fluorescence-quenched pair discloses the substrate specificity profiles in diverse protease families. Science Reports,7, 43135. https://doi.org/10.1038/srep43135.

  196. Pribiag, H., Peng, H., Shah, W. A., Stellwagen, D., & Carbonetto, S. (2014). Dystroglycan mediates homeostatic synaptic plasticity at GABAergic synapses. Proceedings of the National Academy of Sciences USA,111(18), 6810–6815. https://doi.org/10.1073/pnas.1321774111.

  197. Rawson, R. B. (2003). Control of lipid metabolism by regulated intramembrane proteolysis of sterol regulatory element binding proteins (SREBPs). Biochemical Society Symposia,70, 221–231.

  198. Restituito, S., Khatri, L., Ninan, I., Mathews, P. M., Liu, X., Weinberg, R. J., et al. (2011). Synaptic autoregulation by metalloproteases and gamma-secretase. Journal of Neuroscience,31(34), 12083–12093. https://doi.org/10.1523/jneurosci.2513-11.2011.

  199. Rico, B., & Marin, O. (2011). Neuregulin signaling, cortical circuitry development and schizophrenia. Current Opinion in Genetics & Development,21(3), 262–270. https://doi.org/10.1016/j.gde.2010.12.010.

  200. Riedle, S., Kiefel, H., Gast, D., Bondong, S., Wolterink, S., Gutwein, P., et al. (2009). Nuclear translocation and signalling of L1-CAM in human carcinoma cells requires ADAM10 and presenilin/gamma-secretase activity. Biochemical Journal,420(3), 391–402. https://doi.org/10.1042/bj20081625.

  201. Rosenstein, J. M., Mani, N., Khaibullina, A., & Krum, J. M. (2003). Neurotrophic effects of vascular endothelial growth factor on organotypic cortical explants and primary cortical neurons. Journal of Neuroscience,23(35), 11036–11044.

  202. Roszkowska, M., Skupien, A., Wojtowicz, T., Konopka, A., Gorlewicz, A., Kisiel, M., et al. (2016). CD44: A novel synaptic cell adhesion molecule regulating structural and functional plasticity of dendritic spines. Molecular Biology of the Cell,27(25), 4055–4066. https://doi.org/10.1091/mbc.E16-06-0423.

  203. Roth, D. M., Moseley, G. W., Pouton, C. W., & Jans, D. A. (2011). Mechanism of microtubule-facilitated “fast track” nuclear import. Journal of Biological Chemistry,286(16), 14335–14351. https://doi.org/10.1074/jbc.M110.210302.

  204. Sachse, C. C., Kim, Y. H., Agsten, M., Huth, T., Alzheimer, C., Kovacs, D. M., et al. (2013). BACE1 and presenilin/gamma-secretase regulate proteolytic processing of KCNE1 and 2, auxiliary subunits of voltage-gated potassium channels. The FASEB Journal,27(6), 2458–2467. https://doi.org/10.1096/fj.12-214056.

  205. Sachse, S. M., Lievens, S., Ribeiro, L. F., Dascenco, D., Masschaele, D., Horre, K., et al. (2019). Nuclear import of the DSCAM-cytoplasmic domain drives signaling capable of inhibiting synapse formation. EMBO Journal,38(6), e99669. https://doi.org/10.15252/embj.201899669.

  206. Saito, A., Cai, L., Matsuhisa, K., Ohtake, Y., Kaneko, M., Kanemoto, S., et al. (2018). Neuronal activity-dependent local activation of dendritic unfolded protein response promotes expression of brain-derived neurotrophic factor in cell soma. Journal of Neurochemistry,144(1), 35–49. https://doi.org/10.1111/jnc.14221.

  207. Sardi, S. P., Murtie, J., Koirala, S., Patten, B. A., & Corfas, G. (2006). Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell,127(1), 185–197. https://doi.org/10.1016/j.cell.2006.07.037.

  208. Saura, C. A., Servian-Morilla, E., & Scholl, F. G. (2011). Presenilin/gamma-secretase regulates neurexin processing at synapses. PLoS ONE,6(4), e19430. https://doi.org/10.1371/journal.pone.0019430.

  209. Schedin-Weiss, S., Caesar, I., Winblad, B., Blom, H., & Tjernberg, L. O. (2016). Super-resolution microscopy reveals gamma-secretase at both sides of the neuronal synapse. Acta Neuropathologica Communications,4, 29. https://doi.org/10.1186/s40478-016-0296-5.

  210. Scheinfeld, M. H., Ghersi, E., Laky, K., Fowlkes, B. J., & D’Adamio, L. (2002). Processing of beta-amyloid precursor-like protein-1 and -2 by gamma-secretase regulates transcription. Journal of Biological Chemistry,277(46), 44195–44201. https://doi.org/10.1074/jbc.M208110200.

  211. Schilling, S., Mehr, A., Ludewig, S., Stephan, J., Zimmermann, M., August, A., et al. (2017). APLP1 is a synaptic cell adhesion molecule, supporting maintenance of dendritic spines and basal synaptic transmission. Journal of Neuroscience,37(21), 5345–5365. https://doi.org/10.1523/jneurosci.1875-16.2017.

  212. Schulz, J. G., Annaert, W., Vandekerckhove, J., Zimmermann, P., De Strooper, B., & David, G. (2003). Syndecan 3 intramembrane proteolysis is presenilin/gamma-secretase-dependent and modulates cytosolic signaling. Journal of Biological Chemistry,278(49), 48651–48657. https://doi.org/10.1074/jbc.M308424200.

  213. Seki, M., Watanabe, A., Enomoto, S., Kawamura, T., Ito, H., Kodama, T., et al. (2010). Human ROBO1 is cleaved by metalloproteinases and gamma-secretase and migrates to the nucleus in cancer cells. FEBS Letters,584(13), 2909–2915. https://doi.org/10.1016/j.febslet.2010.05.009.

  214. Shamir, A., Kwon, O. B., Karavanova, I., Vullhorst, D., Leiva-Salcedo, E., Janssen, M. J., et al. (2012). The importance of the NRG-1/ErbB4 pathway for synaptic plasticity and behaviors associated with psychiatric disorders. Journal of Neuroscience,32(9), 2988–2997. https://doi.org/10.1523/jneurosci.1899-11.2012.

  215. Shintani, T., & Noda, M. (2008). Functions of receptor-type protein tyrosine phosphatase in the formation of retinal projection. Seikagaku,80(8), 733–742.

  216. Six, E., Ndiaye, D., Laabi, Y., Brou, C., Gupta-Rossi, N., Israel, A., et al. (2003). The Notch ligand Delta1 is sequentially cleaved by an ADAM protease and gamma-secretase. Proceedings of the National Academy of Sciences USA,100(13), 7638–7643. https://doi.org/10.1073/pnas.1230693100.

  217. Smith, H. M., & Raikhel, N. V. (1998). Nuclear localization signal receptor importin alpha associates with the cytoskeleton. Plant Cell,10(11), 1791–1799.

  218. Song, Y. S., Lee, H. J., Prosselkov, P., Itohara, S., & Kim, E. (2013). Trans-induced cis interaction in the tripartite NGL-1, netrin-G1 and LAR adhesion complex promotes development of excitatory synapses. Journal of Cell Science,126(Pt 21), 4926–4938. https://doi.org/10.1242/jcs.129718.

  219. Sudhof, T. C. (2017). Synaptic neurexin complexes: A molecular code for the logic of neural circuits. Cell,171(4), 745–769. https://doi.org/10.1016/j.cell.2017.10.024.

  220. Sun, X., Beglopoulos, V., Mattson, M. P., & Shen, J. (2005). Hippocampal spatial memory impairments caused by the familial Alzheimer’s disease-linked presenilin 1 M146 V mutation. Neurodegenerative Disease,2(1), 6–15. https://doi.org/10.1159/000086426.

  221. Suzuki, K., Hayashi, Y., Nakahara, S., Kumazaki, H., Prox, J., Horiuchi, K., et al. (2012). Activity-dependent proteolytic cleavage of neuroligin-1. Neuron,76(2), 410–422. https://doi.org/10.1016/j.neuron.2012.10.003.

  222. Takei, N., Sobu, Y., Kimura, A., Urano, S., Piao, Y., Araki, Y., et al. (2015). Cytoplasmic fragment of Alcadein alpha generated by regulated intramembrane proteolysis enhances amyloid beta-protein precursor (APP) transport into the late secretory pathway and facilitates APP cleavage. Journal of Biological Chemistry,290(2), 987–995. https://doi.org/10.1074/jbc.M114.599852.

  223. Tamura, H., Fukada, M., Fujikawa, A., & Noda, M. (2006). Protein tyrosine phosphatase receptor type Z is involved in hippocampus-dependent memory formation through dephosphorylation at Y1105 on p190 RhoGAP. Neuroscience Letters,399(1–2), 33–38. https://doi.org/10.1016/j.neulet.2006.01.045.

  224. Taniguchi, Y., Kim, S. H., & Sisodia, S. S. (2003). Presenilin-dependent “gamma-secretase” processing of deleted in colorectal cancer (DCC). Journal of Biological Chemistry,278(33), 30425–30428. https://doi.org/10.1074/jbc.C300239200.

  225. Tcherkezian, J., Brittis, P. A., Thomas, F., Roux, P. P., & Flanagan, J. G. (2010). Transmembrane receptor DCC associates with protein synthesis machinery and regulates translation. Cell,141(4), 632–644. https://doi.org/10.1016/j.cell.2010.04.008.

  226. Telese, F., Ma, Q., Perez, P. M., Notani, D., Oh, S., Li, W., et al. (2015). LRP8-reelin-regulated neuronal enhancer signature underlying learning and memory formation. Neuron,86(3), 696–710. https://doi.org/10.1016/j.neuron.2015.03.033.

  227. Thompson, K. R., Otis, K. O., Chen, D. Y., Zhao, Y., O’Dell, T. J., & Martin, K. C. (2004). Synapse to nucleus signaling during long-term synaptic plasticity; a role for the classical active nuclear import pathway. Neuron,44(6), 997–1009. https://doi.org/10.1016/j.neuron.2004.11.025.

  228. Tisi, M. A., Xie, Y., Yeo, T. T., & Longo, F. M. (2000). Downregulation of LAR tyrosine phosphatase prevents apoptosis and augments NGF-induced neurite outgrowth. Journal of Neurobiology,42(4), 477–486.

  229. Tomita, T., Tanaka, S., Morohashi, Y., & Iwatsubo, T. (2006). Presenilin-dependent intramembrane cleavage of ephrin-B1. Molecular Neurodegeneration,1, 2. https://doi.org/10.1186/1750-1326-1-2.

  230. Triana-Baltzer, G. B., Liu, Z., Gounko, N. V., & Berg, D. K. (2008). Multiple cell adhesion molecules shaping a complex nicotinic synapse on neurons. Molecular and Cellular Neuroscience,39(1), 74–82. https://doi.org/10.1016/j.mcn.2008.05.017.

  231. Trillaud-Doppia, E., & Boehm, J. (2018). The amyloid precursor protein intracellular domain is an effector molecule of metaplasticity. Biological Psychiatry,83(5), 406–415. https://doi.org/10.1016/j.biopsych.2016.12.015.

  232. Tu, M., Zhu, P., Hu, S., Wang, W., Su, Z., Guan, J., et al. (2017). Notch1 signaling activation contributes to adult hippocampal neurogenesis following traumatic brain injury. Medical Science Monitor,23, 5480–5487.

  233. Underwood, C. K., & Coulson, E. J. (2008). The p75 neurotrophin receptor. International Journal of Biochemistry & Cell Biology,40(9), 1664–1668. https://doi.org/10.1016/j.biocel.2007.06.010.

  234. Vasquez-Limeta, A., Wagstaff, K. M., Ortega, A., Crouch, D. H., Jans, D. A., & Cisneros, B. (2014). Nuclear import of beta-dystroglycan is facilitated by ezrin-mediated cytoskeleton reorganization. PLoS ONE,9(3), e90629. https://doi.org/10.1371/journal.pone.0090629.

  235. Vicario, A., Kisiswa, L., Tann, J. Y., Kelly, C. E., & Ibanez, C. F. (2015). Neuron-type-specific signaling by the p75NTR death receptor is regulated by differential proteolytic cleavage. Journal of Cell Science,128(8), 1507–1517. https://doi.org/10.1242/jcs.161745.

  236. Vogt, L., Schrimpf, S. P., Meskenaite, V., Frischknecht, R., Kinter, J., Leone, D. P., et al. (2001). Calsyntenin-1, a proteolytically processed postsynaptic membrane protein with a cytoplasmic calcium-binding domain. Molecular and Cellular Neuroscience,17(1), 151–166. https://doi.org/10.1006/mcne.2000.0937.

  237. Vogt, D. L., Thomas, D., Galvan, V., Bredesen, D. E., Lamb, B. T., & Pimplikar, S. W. (2011). Abnormal neuronal networks and seizure susceptibility in mice overexpressing the APP intracellular domain. Neurobiology of Aging,32(9), 1725–1729. https://doi.org/10.1016/j.neurobiolaging.2009.09.002.

  238. Wagstaff, K. M., & Jans, D. A. (2009). Importins and beyond: Non-conventional nuclear transport mechanisms. Traffic,10(9), 1188–1198. https://doi.org/10.1111/j.1600-0854.2009.00937.x.

  239. Waldron, E., Isbert, S., Kern, A., Jaeger, S., Martin, A. M., Hebert, S. S., et al. (2008). Increased AICD generation does not result in increased nuclear translocation or activation of target gene transcription. Experimental Cell Research,314(13), 2419–2433. https://doi.org/10.1016/j.yexcr.2008.05.003.

  240. Walsh, D. M., Fadeeva, J. V., LaVoie, M. J., Paliga, K., Eggert, S., Kimberly, W. T., et al. (2003). gamma-Secretase cleavage and binding to FE65 regulate the nuclear translocation of the intracellular C-terminal domain (ICD) of the APP family of proteins. Biochemistry,42(22), 6664–6673. https://doi.org/10.1021/bi027375c.

  241. Waschbusch, D., Born, S., Niediek, V., Kirchgessner, N., Tamboli, I. Y., Walter, J., et al. (2009). Presenilin 1 affects focal adhesion site formation and cell force generation via c-Src transcriptional and posttranslational regulation. Journal of Biological Chemistry,284(15), 10138–10149. https://doi.org/10.1074/jbc.M806825200.

  242. Weinmaster, G. (2000). Notch signal transduction: A real rip and more. Current Opinion in Genetics & Development,10(4), 363–369.

  243. Wiegert, J. S., Bengtson, C. P., & Bading, H. (2007). Diffusion and not active transport underlies and limits ERK1/2 synapse-to-nucleus signaling in hippocampal neurons. Journal of Biological Chemistry,282(40), 29621–29633. https://doi.org/10.1074/jbc.M701448200.

  244. Williams, C. C., Allison, J. G., Vidal, G. A., Burow, M. E., Beckman, B. S., Marrero, L., et al. (2004). The ERBB4/HER4 receptor tyrosine kinase regulates gene expression by functioning as a STAT5A nuclear chaperone. Journal of Cell Biology,167(3), 469–478. https://doi.org/10.1083/jcb.200403155.

  245. Wolfe, M. S. (2019). Dysfunctional gamma-secretase in familial Alzheimer’s disease. Neurochemical Research,44(1), 5–11. https://doi.org/10.1007/s11064-018-2511-1.

  246. Wong, H. K., Sakurai, T., Oyama, F., Kaneko, K., Wada, K., Miyazaki, H., et al. (2005). beta Subunits of voltage-gated sodium channels are novel substrates of beta-site amyloid precursor protein-cleaving enzyme (BACE1) and gamma-secretase. Journal of Biological Chemistry,280(24), 23009–23017. https://doi.org/10.1074/jbc.M414648200.

  247. Wu, L., Walas, S. J., Leung, W., Lo, E. H., & Lok, J. (2015). Brain neurotrauma: Molecular, neuropsychological, and rehabilitation aspects. Boca Raton, FL: CRC Press.

  248. Wu, Q., Zhang, T., Cheng, J. F., Kim, Y., Grimwood, J., Schmutz, J., et al. (2001). Comparative DNA sequence analysis of mouse and human protocadherin gene clusters. Genome Research,11(3), 389–404. https://doi.org/10.1101/gr.167301.

  249. Xu, J., Litterst, C., Georgakopoulos, A., Zaganas, I., & Robakis, N. K. (2009). Peptide EphB2/CTF2 generated by the gamma-secretase processing of EphB2 receptor promotes tyrosine phosphorylation and cell surface localization of N-methyl-D-aspartate receptors. Journal of Biological Chemistry,284(40), 27220–27228. https://doi.org/10.1074/jbc.M109.048728.

  250. Yang, Z., Li, P. F., Chen, R. C., Wang, J., Wang, S., Shen, Y., et al. (2017). ADAM10-initiated release of notch intracellular domain regulates microtubule stability and radial migration of cortical neurons. Cerebral Cortex,27(2), 919–932. https://doi.org/10.1093/cercor/bhx006.

  251. Ying, Z., Misra, V., & Verge, V. M. (2014). Sensing nerve injury at the axonal ER: Activated Luman/CREB3 serves as a novel axonally synthesized retrograde regeneration signal. Proceedings of the National Academy of Sciences USA,111(45), 16142–16147. https://doi.org/10.1073/pnas.1407462111.

  252. Yuk, D. Y., Lee, Y. K., Nam, S. Y., Yun, Y. W., Hwang, D. Y., Choi, D. Y., et al. (2009). Reduced anxiety in the mice expressing mutant (N141I) presenilin 2. Journal of Neuroscience Research,87(2), 522–531. https://doi.org/10.1002/jnr.21861.

  253. Zatti, G., Burgo, A., Giacomello, M., Barbiero, L., Ghidoni, R., Sinigaglia, G., et al. (2006). Presenilin mutations linked to familial Alzheimer’s disease reduce endoplasmic reticulum and Golgi apparatus calcium levels. Cell Calcium,39(6), 539–550. https://doi.org/10.1016/j.ceca.2006.03.002.

  254. Zhai, S., Ark, E. D., Parra-Bueno, P., & Yasuda, R. (2013). Long-distance integration of nuclear ERK signaling triggered by activation of a few dendritic spines. Science,342(6162), 1107–1111. https://doi.org/10.1126/science.1245622.

  255. Zhang, C., Wu, B., Beglopoulos, V., Wines-Samuelson, M., Zhang, D., Dragatsis, I., et al. (2009). Presenilins are essential for regulating neurotransmitter release. Nature,460(7255), 632–636. https://doi.org/10.1038/nature08177.

  256. Zhang, J., Yin, J. C., & Wesley, C. S. (2013). From Drosophila development to adult: Clues to Notch function in long-term memory. Front Cell Neurosci,7, 222. https://doi.org/10.3389/fncel.2013.00222.

  257. Zhang, J., Yin, J. C., & Wesley, C. S. (2015). Notch intracellular domain (NICD) suppresses long-term memory formation in adult drosophila flies. Cellular and Molecular Neurobiology,35(6), 763–768. https://doi.org/10.1007/s10571-015-0183-9.

  258. Zhang, D., Zhang, C., Ho, A., Kirkwood, A., Sudhof, T. C., & Shen, J. (2010). Inactivation of presenilins causes pre-synaptic impairment prior to post-synaptic dysfunction. Journal of Neurochemistry,115(5), 1215–1221. https://doi.org/10.1111/j.1471-4159.2010.07011.x.

  259. Zhu, J. M., Li, K. X., Cao, S. X., Chen, X. J., Shen, C. J., Zhang, Y., et al. (2017). Increased NRG1-ErbB4 signaling in human symptomatic epilepsy. Science Reports,7(1), 141. https://doi.org/10.1038/s41598-017-00207-7.

Download references

Funding

Toh Hean Ch’ng was supported by Lee Kong Chian School of Medicine, Nanyang Technological University under Nanyang Assistant Professorship and Ministry of Education-Singapore under Grant Academic Research Fund Tier 1 (2016-T1-001-116).

Author information

Correspondence to Toh Hean Ch’ng.

Ethics declarations

Conflict of interest

The authors would like to declare that they have no conflicts of interest.

Informed Consent

Informed consent was obtained from all authors associated with the writing of this review article.

Research Involving Human and Animal Rights

This article does not contain any studies with human subjects or animals performed by any authors in the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.J., Ch’ng, T.H. RIP at the Synapse and the Role of Intracellular Domains in Neurons. Neuromol Med 22, 1–24 (2020). https://doi.org/10.1007/s12017-019-08556-4

Download citation

Keywords

  • Synapse
  • Nucleus
  • Regulated intramembrane proteolysis
  • Intracellular domain
  • Secretase
  • i-CLiPs
  • Synapse-to-nucleus