NeuroMolecular Medicine

, Volume 21, Issue 4, pp 529–539 | Cite as

Exosomes Secreted by the Cocultures of Normal and Oxygen–Glucose-Deprived Stem Cells Improve Post-stroke Outcome

  • Koteswara Rao Nalamolu
  • Ishwarya Venkatesh
  • Adithya Mohandass
  • Jeffrey D. Klopfenstein
  • David M. Pinson
  • David Z. Wang
  • Adinarayana Kunamneni
  • Krishna Kumar VeeravalliEmail author
Original Paper


Emerging stroke literature suggests that treatment of experimentally induced stroke with stem cells offered post-stroke neuroprotection via exosomes produced by these cells. Treatment with exosomes has great potential to overcome the limitations associated with cell-based therapies. However, in our preliminary studies, we noticed that the exosomes released from human umbilical cord blood-derived mesenchymal stem cells (MSCs) under standard culture conditions did not improve the post-stroke neurological outcome. Because of this apparent discrepancy, we hypothesized that exosome characteristics vary with the conditions of their production. Specifically, we suggest that the exosomes produced from the cocultures of regular and oxygen–glucose-deprived (OGD) MSCs in vitro would represent the exosomes produced from MSCs that are exposed to ischemic brain cells in vivo, and offer similar therapeutic benefits that the cell treatment would provide. We tested the efficacy of therapy with exosomes secreted from human umbilical cord blood (HUCB)-derived MSCs under in vitro hypoxic conditions on post-stroke brain damage and neurological outcome in a rat model of transient focal cerebral ischemia. We performed the TTC staining procedure as well as the neurological tests including the modified neurological severity scores (mNSS), the modified adhesive removal (sticky-tape), and the beam walking tests before ischemia and at regular intervals until 7 days reperfusion. Treatment with exosomes obtained from the cocultures of normal and OGD-induced MSCs reduced the infarct size and ipsilateral hemisphere swelling, preserved the neurological function, and facilitated the recovery of stroke-induced rats. Based on the results, we conclude that the treatment with exosomes secreted from MSCs at appropriate experimental conditions attenuates the post-stroke brain damage and improves the neurological outcome.


Stem cells Exosomes Ischemia Reperfusion Brain damage Neurological recovery 



We thank the William E. McElroy Charitable Foundation, the OSF HealthCare Illinois Neurological Institute, and the National Institutes of Health for the financial assistance. We thank Christina Constantinidou for assistance in manuscript format and review.

Author Contributions

KKV conceived and designed the study. KKV, KRN, IV and AM performed the experiments and collected the data. KKV and KRN analyzed the data. KKV wrote the paper. JDK, DMP, DZW, and AK reviewed and edited the manuscript. All authors read and approved the manuscript. KRN and IV contributed equally to this work.


This work was supported by Grants from the William E. McElroy Charitable Foundation, the OSF HealthCare Illinois Neurological Institute, and the NIH Grant 1R01NS102573-01A1 to KKV. The funders had no role in study design, data collection and analysis, data interpretation, decision to publish, or preparation of the manuscript.

Compliance with Ethical Standards

Conflicts of interest

The authors declare that they have no competing interests.

Ethical Approval

The Institutional Animal Care and Use Committee (IACUC) of the University of Illinois College of Medicine at Peoria approved all surgical interventions and post-operative animal care. All the animal experiments conducted were in accordance with the approved animal protocol and the IACUC guidelines.

Informed Consent

Not applicable to this study.

Supplementary material

12017_2019_8540_MOESM1_ESM.pdf (88 kb)
Supplementary material 1 (PDF 87 kb)
12017_2019_8540_MOESM2_ESM.pdf (91 kb)
Supplementary material 2 (PDF 91 kb)


  1. Broocks, G., Hanning, U., Flottmann, F., Schonfeld, M., Faizy, T. D., Sporns, P., et al. (2019). Clinical benefit of thrombectomy in stroke patients with low ASPECTS is mediated by oedema reduction. Brain,142, 1399–1407.PubMedGoogle Scholar
  2. Catanese, L., Tarsia, J., & Fisher, M. (2017). Acute ischemic stroke therapy overview. Circulation Research,120(3), 541–558.PubMedGoogle Scholar
  3. Chelluboina, B., Klopfenstein, J. D., Pinson, D. M., Wang, D. Z., & Veeravalli, K. K. (2014). Stem cell treatment after cerebral ischemia regulates the gene expression of apoptotic molecules. Neurochemical Research,39(8), 1511–1521.PubMedGoogle Scholar
  4. Chelluboina, B., Klopfenstein, J. D., Pinson, D. M., Wang, D. Z., Vemuganti, R., & Veeravalli, K. K. (2015). Matrix metalloproteinase-12 induces blood–brain barrier damage after focal cerebral ischemia. Stroke,46(12), 3523–3531.PubMedGoogle Scholar
  5. Chelluboina, B., Nalamolu, K. R., Klopfenstein, J. D., Pinson, D. M., Wang, D. Z., & Veeravalli, K. K. (2016). Stem cell treatment after ischemic stroke alters the expression of DNA damage signaling molecules. Journal of Stem Cell Research & Therapeutics,1(7), 281–288.Google Scholar
  6. Chelluboina, B., Nalamolu, K. R., Mendez, G. G., Klopfenstein, J. D., Pinson, D. M., Wang, D. Z., et al. (2017). Mesenchymal stem cell treatment prevents post-stroke dysregulation of matrix metalloproteinases and tissue inhibitors of metalloproteinases. Cellular Physiology and Biochemistry,44(4), 1360–1369.PubMedGoogle Scholar
  7. Chelluboina, B., & Veeravalli, K. K. (2015). Application of human umbilical cord blood-derived mononuclear cells in animal models of ischemic stroke. Journal of Stem Cell Research and Transplantation,2(1), 1014.Google Scholar
  8. Chung, D. J., Choi, C. B., Lee, S. H., Kang, E. H., Lee, J. H., Hwang, S. H., et al. (2009). Intraarterially delivered human umbilical cord blood-derived mesenchymal stem cells in canine cerebral ischemia. Journal of Neuroscience Research,87(16), 3554–3567.PubMedGoogle Scholar
  9. Clayton, A., Turkes, A., Dewitt, S., Steadman, R., Mason, M. D., & Hallett, M. B. (2004). Adhesion and signaling by B cell-derived exosomes: The role of integrins. FASEB J,18(9), 977–979.PubMedGoogle Scholar
  10. Dasari, V. R., Veeravalli, K. K., Tsung, A. J., Gondi, C. S., Gujrati, M., Dinh, D. H., et al. (2009). Neuronal apoptosis is inhibited by cord blood stem cells after spinal cord injury. Journal of Neurotrauma,26(11), 2057–2069.PubMedGoogle Scholar
  11. Doeppner, T. R., Herz, J., Gorgens, A., Schlechter, J., Ludwig, A. K., Radtke, S., et al. (2015). extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Transl Med,4(10), 1131–1143.PubMedPubMedCentralGoogle Scholar
  12. Eldh, M., Ekstrom, K., Valadi, H., Sjostrand, M., Olsson, B., Jernas, M., et al. (2010). Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS ONE,5(12), e15353.PubMedPubMedCentralGoogle Scholar
  13. Gondi, C. S., Veeravalli, K. K., Gorantla, B., Dinh, D. H., Fassett, D., Klopfenstein, J. D., et al. (2010). Human umbilical cord blood stem cells show PDGF-D-dependent glioma cell tropism in vitro and in vivo. Neuro-Oncology,12(5), 453–465.PubMedPubMedCentralGoogle Scholar
  14. Gupta, A. C., Schaefer, P. W., Chaudhry, Z. A., Leslie-Mazwi, T. M., Chandra, R. V., Gonzalez, R. G., et al. (2012). Interobserver reliability of baseline noncontrast CT Alberta Stroke Program Early CT Score for intra-arterial stroke treatment selection. AJNR American Journal of Neuroradiology,33(6), 1046–1049.PubMedGoogle Scholar
  15. Hu, Q., Chen, C., Khatibi, N. H., Li, L., Yang, L., Wang, K., et al. (2011). Lentivirus-mediated transfer of MMP-9 shRNA provides neuroprotection following focal ischemic brain injury in rats. Brain Research,1367, 347–359.PubMedGoogle Scholar
  16. Hu, Q., Chen, C., Yan, J., Yang, X., Shi, X., Zhao, J., et al. (2009). Therapeutic application of gene silencing MMP-9 in a middle cerebral artery occlusion-induced focal ischemia rat model. Experimental Neurology,216(1), 35–46.PubMedGoogle Scholar
  17. Jeong, J. O., Han, J. W., Kim, J. M., Cho, H. J., Park, C., Lee, N., et al. (2011). Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circulation Research,108(11), 1340–1347.PubMedPubMedCentralGoogle Scholar
  18. Katakowski, M., Buller, B., Wang, X., Rogers, T., & Chopp, M. (2010). Functional microRNA is transferred between glioma cells. Cancer Research,70(21), 8259–8263.PubMedPubMedCentralGoogle Scholar
  19. Katan, M., & Luft, A. (2018). Global burden of stroke. Seminars in Neurology,38(2), 208–211.PubMedGoogle Scholar
  20. Kenmuir, C. L., & Wechsler, L. R. (2017). Update on cell therapy for stroke. Stroke and Vascular Neurology,2(2), 59–64.PubMedPubMedCentralGoogle Scholar
  21. Kim, E. S., Ahn, S. Y., Im, G. H., Sung, D. K., Park, Y. R., Choi, S. H., et al. (2012). Human umbilical cord blood-derived mesenchymal stem cell transplantation attenuates severe brain injury by permanent middle cerebral artery occlusion in newborn rats. Pediatric Research,72(3), 277–284.PubMedGoogle Scholar
  22. Lim, J. Y., Jeong, C. H., Jun, J. A., Kim, S. M., Ryu, C. H., Hou, Y., et al. (2011). Therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells after intrathecal administration by lumbar puncture in a rat model of cerebral ischemia. Stem Cell Research & Therapy,2(5), 38.Google Scholar
  23. Lotvall, J., & Valadi, H. (2007). Cell to cell signalling via exosomes through esRNA. Cell Adhesion & Migration,1(3), 156–158.Google Scholar
  24. Marei, H. E., Hasan, A., Rizzi, R., Althani, A., Afifi, N., Cenciarelli, C., et al. (2018). Potential of stem cell-based therapy for ischemic stroke. Frontiers in Neurology,9, 34.PubMedPubMedCentralGoogle Scholar
  25. Moskowitz, M. A., Lo, E. H., & Iadecola, C. (2010). The science of stroke: Mechanisms in search of treatments. Neuron,67(2), 181–198.PubMedPubMedCentralGoogle Scholar
  26. Nalamolu, K. R., Chelluboina, B., Klopfenstein, J. D., Pinson, D. M., Wang, D. Z., & Veeravalli, K. K. (2018a). Sex differences after mesenchymal stem cell treatment on post-stroke neurological outcome. Stroke,49, ATP106.Google Scholar
  27. Nalamolu, K. R., Smith, N. J., Chelluboina, B., Klopfenstein, J. D., Pinson, D. M., Wang, D. Z., et al. (2018b). Prevention of the severity of post-ischemic inflammation and brain damage by simultaneous knockdown of toll-like receptors 2 and 4. Neuroscience,373, 82–91.PubMedGoogle Scholar
  28. Nalamolu, K. R., Venkatesh, I., Mohandass, A., Klopfenstein, J. D., Pinson, D. M., Wang, D. Z., et al. (2019). Exosomes treatment mitigates ischemic brain damage but does not improve post-stroke neurological outcome. Cellular Physiology and Biochemistry,52(6), 1280–1291.PubMedGoogle Scholar
  29. Powers, W. J., Rabinstein, A. A., Ackerson, T., Adeoye, O. M., Bambakidis, N. C., Becker, K., et al. (2018). 2018 Guidelines for the early management of patients with acute ischemic stroke: a GUIDELINE for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke,49(3), e46–e110.PubMedGoogle Scholar
  30. Qi, H., Liu, C., Long, L., Ren, Y., Zhang, S., Chang, X., et al. (2016). Blood exosomes endowed with magnetic and targeting properties for cancer therapy. ACS Nano,10(3), 3323–3333.PubMedGoogle Scholar
  31. Record, M., Subra, C., Silvente-Poirot, S., & Poirot, M. (2011). Exosomes as intercellular signalosomes and pharmacological effectors. Biochemical Pharmacology,81(10), 1171–1182.PubMedGoogle Scholar
  32. Smalheiser, N. R. (2007). Exosomal transfer of proteins and RNAs at synapses in the nervous system. Biology Direct,2, 35.PubMedPubMedCentralGoogle Scholar
  33. Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., & Lotvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology,9(6), 654–659.PubMedGoogle Scholar
  34. Wahlgren, J., Statello, L., Skogberg, G., Telemo, E., & Valadi, H. (2016). Delivery of Small Interfering RNAs to Cells via Exosomes. Methods in Molecular Biology,1364, 105–125.PubMedGoogle Scholar
  35. Xin, H., Li, Y., Buller, B., Katakowski, M., Zhang, Y., Wang, X., et al. (2012). Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells,30(7), 1556–1564.PubMedPubMedCentralGoogle Scholar
  36. Xin, H., Li, Y., Cui, Y., Yang, J. J., Zhang, Z. G., & Chopp, M. (2013a). Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. Journal of Cerebral Blood Flow and Metabolism,33(11), 1711–1715.PubMedPubMedCentralGoogle Scholar
  37. Xin, H., Li, Y., Liu, Z., Wang, X., Shang, X., Cui, Y., et al. (2013b). MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells,31(12), 2737–2746.PubMedPubMedCentralGoogle Scholar
  38. Xiong, Y., Mahmood, A., & Chopp, M. (2017). Emerging potential of exosomes for treatment of traumatic brain injury. Neural Regeneration Research,12(1), 19–22.PubMedPubMedCentralGoogle Scholar
  39. Zhang, Z. G., & Chopp, M. (2009). Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. The Lancet Neurology,8(5), 491–500.PubMedPubMedCentralGoogle Scholar
  40. Zhang, Y., Chopp, M., Zhang, Z. G., Katakowski, M., Xin, H., Qu, C., et al. (2017). Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochemistry International,111, 69–81.PubMedGoogle Scholar
  41. Zhu, Y., Guan, Y. M., Huang, H. L., & Wang, Q. S. (2014). Human umbilical cord blood mesenchymal stem cell transplantation suppresses inflammatory responses and neuronal apoptosis during early stage of focal cerebral ischemia in rabbits. Acta Pharmacologica Sinica,35(5), 585–591.PubMedPubMedCentralGoogle Scholar
  42. Zomer, A., Vendrig, T., Hopmans, E. S., van Eijndhoven, M., Middeldorp, J. M., & Pegtel, D. M. (2010). Exosomes: Fit to deliver small RNA. Communicative & Integrative Biology,3(5), 447–450.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Koteswara Rao Nalamolu
    • 1
  • Ishwarya Venkatesh
    • 2
  • Adithya Mohandass
    • 3
  • Jeffrey D. Klopfenstein
    • 1
    • 4
    • 8
  • David M. Pinson
    • 5
  • David Z. Wang
    • 6
    • 8
  • Adinarayana Kunamneni
    • 9
  • Krishna Kumar Veeravalli
    • 1
    • 4
    • 6
    • 7
    Email author
  1. 1.Department of Cancer Biology and PharmacologyUniversity of Illinois College of Medicine at PeoriaPeoriaUSA
  2. 2.Department of Internal MedicineRush University Medical CenterChicagoUSA
  3. 3.School of Pharmacy, College of Health SciencesUniversity of WyomingLaramieUSA
  4. 4.Department of NeurosurgeryUniversity of Illinois College of Medicine at PeoriaPeoriaUSA
  5. 5.Department of PathologyUniversity of Illinois College of Medicine at PeoriaPeoriaUSA
  6. 6.Department of NeurologyUniversity of Illinois College of Medicine at PeoriaPeoriaUSA
  7. 7.Department of Health Sciences EducationUniversity of Illinois College of Medicine at RockfordRockfordUSA
  8. 8.Comprehensive Stroke CenterOSF Illinois Neurological InstitutePeoriaUSA
  9. 9.Department of MedicineLoyola University Medical CenterChicagoUSA

Personalised recommendations