Advertisement

A Novel Variant (Asn177Asp) in SPTLC2 Causing Hereditary Sensory Autonomic Neuropathy Type 1C

  • Saranya SuriyanarayananEmail author
  • Alaa Othman
  • Bianca Dräger
  • Anja Schirmacher
  • Peter Young
  • Lejla Mulahasanovic
  • Konstanze Hörtnagel
  • Saskia Biskup
  • Arnold von Eckardstein
  • Thorsten Hornemann
  • Museer A. Lone
Original Paper
  • 25 Downloads

Abstract

Hereditary sensory and autonomic neuropathy type 1 (HSAN1) is a rare, autosomal dominantly inherited, slowly progressive and length-dependent axonal peripheral neuropathy. HSAN1 is associated with several mutations in serine-palmitoyltransferase (SPT), the first enzyme in the de novo sphingolipid biosynthetic pathway. HSAN1 mutations alter the substrate specificity of SPT, which leads to the formation of 1-deoxysphingolipids, an atypical and neurotoxic subclass of sphingolipids. This study describes the clinical and neurophysiological phenotype of a German family with a novel SPTCL2 mutation (c.529A > G; N177D) associated with HSAN1 and the biochemical characterization of this mutation.) The mutaion was identified in five family members that segregated with the diesease. Patients were characterized genetically and clinically for neurophysiological function. Their plasma sphingolipid profiles were analyzed by LC–MS. The biochemical properties of the mutation were characterized in a cell-based activity assay. Affected family members showed elevated 1-deoxysphingolipid plasma levels. HEK293 cells expressing the N177D SPTLC2 mutant showed increased de novo 1-deoxysphingolipid formation, but also displayed elevated canonical SPT activity and increased C20 sphingoid base production. This study identifies the SPTLC2 N177D variant as a novel disease-causing mutation with increased 1-deoxySL formation and its association with a typical HSAN1 phenotype.

Keywords

HSAN1 Serine-palmitoyltransferase 1-deoxysphingolipids Neuropathy Mass spectrometry 

Notes

Acknowledgements

The family is thanked for participating in this study. The study was supported by 7th Framework Program of the European Commission (“RESOLVE,” Project number 305707); the Swiss National Foundation-SNF (Project 31003A_153390/1); and the Rare Disease Initiative Zurich (“radiz,”), University of Zurich).

Compliance with Ethical Standards

Conflict of interest

The authors have no conflict of interest to declare.

Ethical Approval

The manuscript is a retrospective case report that does not require ethics committee approval at our institution.

Informed Consent

Written informed consent was obtained from all participants involved in this study.

References

  1. Auer-Grumbach, M. (2013). Hereditary sensory and autonomic neuropathies. Handbook of Clinical Neurology, 115, 893–906.  https://doi.org/10.1016/b978-0-444-52902-2.00050-3.CrossRefGoogle Scholar
  2. Auer-Grumbach, M., Bode, H., Pieber, T. R., Schabhuttl, M., Fischer, D., Seidl, R., et al. (2013). Mutations at Ser331 in the HSN type I gene SPTLC1 are associated with a distinct syndromic phenotype. European Journal of Medical Genetics, 56(5), 266–269.  https://doi.org/10.1016/j.ejmg.2013.02.002.CrossRefGoogle Scholar
  3. Auranen, M., Toppila, J., Suriyanarayanan, S., Lone, M. A., Paetau, A., Tyynismaa, H., et al. (2017). Clinical and metabolic consequences of l-serine supplementation in hereditary sensory and autonomic neuropathy type 1C. Cold Spring Harbor Molecular Case Studies.  https://doi.org/10.1101/mcs.a002212.Google Scholar
  4. Bode, H., Bourquin, F., Suriyanarayanan, S., Wei, Y., Alecu, I., Othman, A., et al. (2016). HSAN1 mutations in serine palmitoyltransferase reveal a close structure-function-phenotype relationship. Human Molecular Genetics, 25(5), 853–865.  https://doi.org/10.1093/hmg/ddv611.CrossRefGoogle Scholar
  5. Breslow, D. K., Collins, S. R., Bodenmiller, B., Aebersold, R., Simons, K., Shevchenko, A., et al. (2010). Orm family proteins mediate sphingolipid homeostasis. Nature, 463, 1048–1053.  https://doi.org/10.1038/nature08787.CrossRefGoogle Scholar
  6. Davis, D. L., Gable, K., Suemitsu, J., Dunn, T. M., & Wattenberg, B. W. (2019). The ORMDL/Orm-serine palmitoyltransferase (SPT) complex is directly regulated by ceramide: Reconstitution of SPT regulation in isolated membranes. Journal of Biological Chemistry.  https://doi.org/10.1074/jbc.ra118.007291.Google Scholar
  7. Dawkins, J. L., Hulme, D. J., Brahmbhatt, S. B., Auer-Grumbach, M., & Nicholson, G. A. (2001). Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I. Nature Genetics, 27(3), 309–312.  https://doi.org/10.1038/85879.CrossRefGoogle Scholar
  8. Dohrn, M. F., Glockle, N., Mulahasanovic, L., Heller, C., Mohr, J., Bauer, C., et al. (2017). Frequent genes in rare diseases: panel-based next generation sequencing to disclose causal mutations in hereditary neuropathies. Journal of Neurochemistry, 143(5), 507–522.  https://doi.org/10.1111/jnc.14217.CrossRefGoogle Scholar
  9. Dyck, P. J. (1993). Neuronal atrophy and degeneration predominantly affecting peripheral sensory and autonomic neurons. In P. J. Dyck, K. P. Thomas, J. W. Griffin, P. A. Low, & J. F. Poduslo (Eds.), Peripheral Neuropathy (3rd ed., pp. 1065–1093). Philladelphia: Saunders.Google Scholar
  10. Edvardson, S., Cinnamon, Y., Jalas, C., Shaag, A., Maayan, C., Axelrod, F. B., et al. (2012). Hereditary sensory autonomic neuropathy caused by a mutation in dystonin. Annals of Neurology, 71(4), 569–572.  https://doi.org/10.1002/ana.23524.CrossRefGoogle Scholar
  11. Eichler, F. S., Hornemann, T., McCampbell, A., Kuljis, D., Penno, A., Vardeh, D., et al. (2009). Overexpression of the wild-type SPT1 subunit lowers desoxysphingolipid levels and rescues the phenotype of HSAN1. The Journal of Neuroscience, 29(46), 14646–14651.  https://doi.org/10.1523/jneurosci.2536-09.2009.CrossRefGoogle Scholar
  12. Ernst, D., Murphy, S. M., Sathiyanadan, K., Wei, Y., Othman, A., Laura, M., et al. (2015). Novel HSAN1 mutation in serine palmitoyltransferase resides at a putative phosphorylation site that is involved in regulating substrate specificity. NeuroMolecular Medicine, 17(1), 47–57.  https://doi.org/10.1007/s12017-014-8339-1.CrossRefGoogle Scholar
  13. Fridman, V., Suriyanarayanan, S., Novak, P., David, W., Macklin, E. A., McKenna-Yasek, D., et al. (2019). Randomized trial of l-serine in patients with hereditary sensory and autonomic neuropathy type 1. Neurology, 92(4), e359–e370.  https://doi.org/10.1212/wnl.0000000000006811.CrossRefGoogle Scholar
  14. Garofalo, K., Penno, A., Schmidt, B. P., Lee, H. J., Frosch, M. P., von Eckardstein, A., et al. (2011). Oral l-serine supplementation reduces production of neurotoxic deoxysphingolipids in mice and humans with hereditary sensory autonomic neuropathy type 1. Journal of Clinical Investigation, 121(12), 4735–4745.  https://doi.org/10.1172/jci57549.CrossRefGoogle Scholar
  15. Geraldes, R., de Carvalho, M., Santos-Bento, M., & Nicholson, G. (2004). Hereditary sensory neuropathy type 1 in a Portuguese family-electrodiagnostic and autonomic nervous system studies. Journal of the Neurological Sciences, 227, 35–38.  https://doi.org/10.1016/j.jns.2004.08.002.CrossRefGoogle Scholar
  16. Guntert, T., Hanggi, P., Othman, A., Suriyanarayanan, S., Sonda, S., Zuellig, R. A., et al. (2016). 1-Deoxysphingolipid-induced neurotoxicity involves N-methyl-d-aspartate receptor signaling. Neuropharmacology, 110(Pt A), 211–222.  https://doi.org/10.1016/j.neuropharm.2016.03.033.CrossRefGoogle Scholar
  17. Gupta, S. D., Gable, K., Alexaki, A., Chandris, P., Proia, R. L., Dunn, T. M., et al. (2015). Expression of the ORMDLS, modulators of serine palmitoyltransferase, is regulated by sphingolipids in mammalian cells. Journal of Biological Chemistry, 290(1), 90–98.  https://doi.org/10.1074/jbc.M114.588236.CrossRefGoogle Scholar
  18. Hornemann, T., Penno, A., Rütti, M. F., Ernst, D., Kivrak-Pfiffner, F., Rohrer, L., et al. (2009). The SPTLC3 subunit of serine palmitoyltransferase generates short chain sphingoid bases. The Journal of Biological Chemistry, 284, 26322–26330.  https://doi.org/10.1074/jbc.M109.023192.CrossRefGoogle Scholar
  19. Hornemann, T., Richard, S., Rütti, M. F., Wei, Y., von Eckardstein, A., Serine-palmitoyltransferase, M., et al. (2006). Cloning and initial characterization of a new subunit for mammalian serine-palmitoyltransferase. The Journal of Biological Chemistry, 281, 37275–37281.  https://doi.org/10.1074/jbc.M608066200.CrossRefGoogle Scholar
  20. Houlden, H., Blake, J., & Reily, M. M. (2004). Hereditary sensory neuropathies. Current Opinion in Neurology, 17(5), 569–577.CrossRefGoogle Scholar
  21. Houlden, H., King, R., Blake, J., Groves, M., Love, S., Woodward, C., et al. (2006). Clinical, pathological and genetic characterization of hereditary sensory and autonomic neuropathy type 1 (HSAN I). Brain, 129, 411–425.  https://doi.org/10.1093/brain/awh712.CrossRefGoogle Scholar
  22. Klein, C. J., Wu, Y., Kruckeberg, K. E., Hebbring, S. J., Anderson, S. A., Cunningham, J. M., et al. (2005). SPTLC1 and RAB7 mutation analysis in dominantly inherited and idiopathic sensory neuropathies. Journal of Neurology, Neurosurgery and Psychiatry, 76(7), 1022–1024.  https://doi.org/10.1136/jnnp.2004.050062.CrossRefGoogle Scholar
  23. Laura, M., Murphy, S. M., Hornemann, T., Bode, H., Polke, J., Blake, J., et al. (2012). P42 Hereditary sensory neuropathy type 1: correlation of severity and plasma atypical deoxy-sphyngoid bases. Neuromuscular Disorders, 22, S18.  https://doi.org/10.1016/S0960-8966(12)70050-0.CrossRefGoogle Scholar
  24. Leipold, E., Liebmann, L., Korenke, G. C., Heinrich, T., Gieszelmann, S., Baets, J., et al. (2013). A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nature Genetics, 45(11), 1399–1404.  https://doi.org/10.1038/ng.2767.CrossRefGoogle Scholar
  25. Murphy, S. M., Ernst, D., Wei, Y., Laurà, M., Liu, Y.-T., Polke, J., et al. (2013). Hereditary sensory and autonomic neuropathy type 1 (HSANI) caused by a novel mutation in SPTLC2. Neurology, 80, 2106–2111.  https://doi.org/10.1212/WNL.0b013e318295d789.CrossRefGoogle Scholar
  26. Penno, A., Reilly, M. M., Houlden, H., Laurá, M., Rentsch, K., Niederkofler, V., et al. (2010). Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. The Journal of Biological Chemistry, 285, 11178–11187.  https://doi.org/10.1074/jbc.M109.092973.CrossRefGoogle Scholar
  27. Rotthier, A., Auer-Grumbach, M., Janssens, K., Baets, J., Penno, A., Almeida-Souza, L., et al. (2010). Mutations in the SPTLC2 subunit of serine palmitoyltransferase cause hereditary sensory and autonomic neuropathy type I. American Journal of Human Genetics, 87(4), 513–522.  https://doi.org/10.1016/j.ajhg.2010.09.010.CrossRefGoogle Scholar
  28. Rotthier, A., Penno, A., Rautenstrauss, B., Auer-Grumbach, M., Stettner, G. M., Asselbergh, B., et al. (2011). Characterization of two mutations in the SPTLC1 subunit of serine palmitoyltransferase associated with hereditary sensory and autonomic neuropathy type I. Human Mutation, 32(6), E2211–E2225.  https://doi.org/10.1002/humu.21481.CrossRefGoogle Scholar
  29. Suh, B. C., Hong, Y. B., Nakhro, K., Nam, S. H., Chung, K. W., & Choi, B.-O. (2014). Early-onset severe hereditary sensory and autonomic neuropathy type 1 with S331F SPTLC1 mutation. Molecular medicine Reports, 9, 481–486.  https://doi.org/10.3892/mmr.2013.1808.CrossRefGoogle Scholar
  30. Suriyanarayanan, S., Toppila, J., Auranen, M., Paetau, A., Shcherbii, M., Palin, E., et al. (2016). The variant p.(Arg183Trp) in SPTLC2 causes late-onset hereditary sensory neuropathy. NeuroMolecular Medicine, 18(1), 81–90.  https://doi.org/10.1007/s12017-015-8379-1.CrossRefGoogle Scholar
  31. Yard, B. A., Carter, L. G., Johnson, K. A., Overton, I. M., Dorward, M., Liu, H., et al. (2007). The structure of serine palmitoyltransferase; gateway to sphingolipid biosynthesis. Journal of Molecular Biology, 370(5), 870–886.  https://doi.org/10.1016/j.jmb.2007.04.086.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Saranya Suriyanarayanan
    • 1
    • 2
    Email author
  • Alaa Othman
    • 1
  • Bianca Dräger
    • 3
  • Anja Schirmacher
    • 3
  • Peter Young
    • 3
  • Lejla Mulahasanovic
    • 4
  • Konstanze Hörtnagel
    • 4
  • Saskia Biskup
    • 4
  • Arnold von Eckardstein
    • 1
    • 2
  • Thorsten Hornemann
    • 1
    • 2
  • Museer A. Lone
    • 1
  1. 1.Institute for Clinical ChemistryUniversity Hospital Zurich, University of ZurichZurichSwitzerland
  2. 2.Competence Center for Personalized Medicine (CC-PM)ZurichSwitzerland
  3. 3.Department of Sleep Medicine and Neuromuscular DisordersUniversity Hospital of MuensterMuensterGermany
  4. 4.CeGaT GmbH and Praxis für Humangenetik TübingenTübingenGermany

Personalised recommendations