Advertisement

NeuroMolecular Medicine

, Volume 21, Issue 4, pp 344–368 | Cite as

Blood Biomarkers for Stroke Diagnosis and Management

  • Joseph Kamtchum-TatueneEmail author
  • Glen C. Jickling
Review Paper

Abstract

Biomarkers are objective indicators used to assess normal or pathological processes, evaluate responses to treatment and predict outcomes. Many blood biomarkers already guide decision-making in clinical practice. In stroke, the number of candidate biomarkers is constantly increasing. These biomarkers include proteins, ribonucleic acids, lipids or metabolites. Although biomarkers have the potential to improve the diagnosis and the management of patients with stroke, there is currently no marker that has demonstrated sufficient sensitivity, specificity, rapidity, precision, and cost-effectiveness to be used in the routine management of stroke, thus highlighting the need for additional work. A better standardization of clinical, laboratory and statistical procedures between centers is indispensable to optimize biomarker performance. This review focuses on blood biomarkers that have shown promise for translation into clinical practice and describes some newly reported markers that could add to routine stroke care. Avenues for the discovery of new stroke biomarkers and future research are discussed. The description of the biomarkers is organized according to their expected application in clinical practice: diagnosis, treatment decision, and outcome prediction.

Keywords

Stroke Biomarker Genomics Proteomics Diagnosis Management 

Abbreviations

aHR

Adjusted hazard ratio

aOR

Adjusted odds ratio

ADAMTS13

A disintegrin and metalloproteinase with thrombospondin type-1 motif, member 13

ANP

Atrial natriuretic peptide

APOA1-UP

Apolipoprotein A1 unique peptide

BNP

B-type natriuretic peptide

CDM

Clinical diffusion mismatch

c-Fn

Cellular fibronectin

CRP

C-reactive protein

CT

Computerized tomography

DHC

Decompressive hemicraniectomy

END

Early neurological deterioration

EVT

Endovascular thrombectomy

FC

Fold change

GFAP

Glial fibrillary acid protein

HbA1c

Glycated hemoglobin

HFABP

Heart-type fatty acid-binding protein

HR

Hazard ratio

HT

Hemorrhagic transformation

ICAM

Intercellular adhesion molecule

ICH

Intracerebral hemorrhage

IL-10

Interleukin 10

IL-6

Interleukin-6

IS

Ischemic stroke

LAA

Large artery atherosclerosis

lncRNA

Long non-coding RNA

Lp-PLA2

Lipoprotein-associated phospholipase A2

MCA

Middle cerebral artery

MBL

Mannose-binding lectin

MMP9

Matrix metalloproteinase 9

MiRNA

MicroRNA

MR-proANP

Mid-regional pro-atrial natriuretic peptide

MRI

Magnetic resonance imaging

mRS

Modified Rankin Scale

MS

Mass spectrometry

N/A

Not applicable or not available

NDKA

Nucleoside diphosphate kinase A

NfL

Neurofilament light

NMDA

N-methyl-d-aspartate

NIHSS

National Institutes of Health Stroke Scale

NSE

Neuron-specific enolase

NT-proBNP

N-terminal pro-B-type natriuretic peptide

OR

Odds ratio

PAI-1

Plasminogen activator inhibitor 1

PARK7

Parkinson disease protein 7

PBP

Platelet basic protein

RBP4

Retinol-binding protein 4

RNA

Ribonucleic acid

S100B

Serum calcium-binding protein

Se

Sensitivity

Sp

Specificity

TAFI

Thrombin-activatable fibrinolysis inhibitor

TIA

Transient ischemic attack

TNF-α

Tumor necrosis factor α

tPA

Tissue plasminogen activator

VCAM

Vascular cell adhesion molecule

VEGF

Vascular endothelial growth factor

vWF

von Willebrand factor

ZFAS1

Zinc finger antisense 1

Notes

Author Contributions

JK-T did the literature search and drafted the manuscript. GCJ critically revised the initial draft and all the subsequent versions. All authors have approved the final version of the manuscript.

Funding

GCJ receives research support from the Canadian Institutes of Health Research (CIHR), the Heart and Stroke Foundation, the University Hospital Foundation, and the National Institutes of Health (NIH).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This review is based solely on previously published articles from ethically approved studies. The work did not involve human or animal experiments and did not require the collection of new data. Therefore, no ethical approval or consent was required.

References

  1. Adams, H. P. Jr., Bendixen, B. H., Kappelle, L. J., Biller, J., Love, B. B., Gordon, D. L., et al. (1993). Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment. Stroke, 24(1), 35–41.CrossRefGoogle Scholar
  2. Albers, G. W., Marks, M. P., Kemp, S., Christensen, S., Tsai, J. P., Ortega-Gutierrez, S., et al. (2018). Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. The New England Journal of Medicine, 378(8), 708–718.  https://doi.org/10.1056/NEJMoa1713973.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Allard, L., Burkhard, P. R., Lescuyer, P., Burgess, J. A., Walter, N., Hochstrasser, D. F., et al. (2005). PARK7 and nucleoside diphosphate kinase A as plasma markers for the early diagnosis of stroke. Clinical Chemistry, 51(11), 2043–2051.  https://doi.org/10.1373/clinchem.2005.053942.CrossRefPubMedGoogle Scholar
  4. Alvarez-Perez, F. J., Castelo-Branco, M., & Alvarez-Sabin, J. (2011). Usefulness of measurement of fibrinogen, D-dimer, D-dimer/fibrinogen ratio, C reactive protein and erythrocyte sedimentation rate to assess the pathophysiology and mechanism of ischaemic stroke. Journal of Neurology, Neurosurgery, and Psychiatry, 82(9), 986–992.  https://doi.org/10.1136/jnnp.2010.230870.CrossRefPubMedGoogle Scholar
  5. Anand, N., & Stead, L. G. (2005). Neuron-specific enolase as a marker for acute ischemic stroke: A systematic review. Cerebrovascular Diseases, 20(4), 213–219.  https://doi.org/10.1159/000087701.CrossRefPubMedGoogle Scholar
  6. Anderson, C. S., Selim, M. H., Molina, C. A., & Qureshi, A. I. (2017). Intensive blood pressure lowering in intracerebral hemorrhage. Stroke, 48(7), 2034–2037.  https://doi.org/10.1161/STROKEAHA.117.016185.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Arenillas, J. F., Alvarez-Sabin, J., Molina, C. A., Chacon, P., Fernandez-Cadenas, I., Ribo, M., et al. (2008). Progression of symptomatic intracranial large artery atherosclerosis is associated with a proinflammatory state and impaired fibrinolysis. Stroke, 39(5), 1456–1463.  https://doi.org/10.1161/STROKEAHA.107.498600.CrossRefPubMedGoogle Scholar
  8. Ariesen, M. J., Claus, S. P., Rinkel, G. J., & Algra, A. (2003). Risk factors for intracerebral hemorrhage in the general population: A systematic review. Stroke, 34(8), 2060–2065.  https://doi.org/10.1161/01.STR.0000080678.09344.8D.CrossRefPubMedGoogle Scholar
  9. Atkinson, A. J., Colburn, W. A., DeGruttola, A. G., DeMets, D. L., Downing, G. J., Hoth, J. F., et al. (2001). Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clinical Pharmacology & Therapeutics, 69(3), 89–95.  https://doi.org/10.1067/mcp.2001.113989.CrossRefGoogle Scholar
  10. Bai, J., Sun, H., Xie, L., Zhu, Y., & Feng, Y. (2018). Detection of cardioembolic stroke with B-type natriuretic peptide or N-terminal pro-BNP: A comparative diagnostic meta-analysis. International Journal of Neuroscience.  https://doi.org/10.1080/00207454.2017.1408612.CrossRefPubMedGoogle Scholar
  11. Balami, J. S., Chen, R. L., Grunwald, I. Q., & Buchan, A. M. (2011). Neurological complications of acute ischaemic stroke. The Lancet Neurology, 10(4), 357–371.  https://doi.org/10.1016/S1474-4422(10)70313-6.CrossRefPubMedGoogle Scholar
  12. Balami, J. S., Hadley, G., Sutherland, B. A., Karbalai, H., & Buchan, A. M. (2013). The exact science of stroke thrombolysis and the quiet art of patient selection. Brain, 136(Pt 12), 3528–3553.  https://doi.org/10.1093/brain/awt201.CrossRefPubMedGoogle Scholar
  13. Bang, O. Y. (2017). Advances in biomarker for stroke patients: From marker to regulator. Precision and Future Medicine, 1(1), 32–42.  https://doi.org/10.23838/pfm.2017.00052.CrossRefGoogle Scholar
  14. Bang, O. Y., Saver, J. L., Ovbiagele, B., Choi, Y. J., Yoon, S. R., & Lee, K. H. (2007). Adiponectin levels in patients with intracranial atherosclerosis. Neurology, 68(22), 1931–1937.  https://doi.org/10.1212/01.wnl.0000263186.20988.9f.CrossRefPubMedGoogle Scholar
  15. Bhatia, R., Hill, M. D., Shobha, N., Menon, B., Bal, S., Kochar, P., et al. (2010). Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: Real-world experience and a call for action. Stroke, 41(10), 2254–2258.  https://doi.org/10.1161/STROKEAHA.110.592535.CrossRefPubMedGoogle Scholar
  16. Bitsch, A., Klene, W., Murtada, L., Prange, H., & Rieckmann, P. (1998). A longitudinal prospective study of soluble adhesion molecules in acute stroke. Stroke, 29(10), 2129–2135.CrossRefGoogle Scholar
  17. Bozkurt, S., Kaya, E. B., Okutucu, S., Aytemir, K., Coskun, F., & Oto, A. (2011). The diagnostic and prognostic value of first hour glycogen phosphorylase isoenzyme BB level in acute coronary syndrome. Cardiology Journal, 18(5), 496–502.CrossRefGoogle Scholar
  18. Briard, J. N., Zewude, R. T., Kate, M. P., Rowe, B. H., Buck, B., Butcher, K., et al. (2018). Stroke mimics transported by emergency medical services to a comprehensive stroke center: The magnitude of the problem. Journal of Stroke and Cerebrovascular Diseases, 27(10), 2738–2745.  https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.05.046.CrossRefGoogle Scholar
  19. Brott, T. G., Lyden, P., Grotta, J. C., Kwiatkowski, T. G., Levine, S. R., Frankel, M. R., et al. (1997). Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. The NINDS t-PA Stroke Study Group. Stroke, 28(11), 2109–2118.CrossRefGoogle Scholar
  20. Brunkhorst, R., Pfeilschifter, W., & Foerch, C. (2010). Astroglial proteins as diagnostic markers of acute intracerebral hemorrhage-pathophysiological background and clinical findings. Translational Stroke Research, 1(4), 246–251.  https://doi.org/10.1007/s12975-010-0040-6.CrossRefPubMedGoogle Scholar
  21. Bruns, A. H., Oosterheert, J. J., Hak, E., & Hoepelman, A. I. (2008). Usefulness of consecutive C-reactive protein measurements in follow-up of severe community-acquired pneumonia. European Respiratory Journal, 32(3), 726–732.  https://doi.org/10.1183/09031936.00003608.CrossRefPubMedGoogle Scholar
  22. Bustamante, A., Lopez-Cancio, E., Pich, S., Penalba, A., Giralt, D., Garcia-Berrocoso, T., et al. (2017a). Blood biomarkers for the early diagnosis of stroke: The stroke-chip study. Stroke, 48(9), 2419–2425.  https://doi.org/10.1161/STROKEAHA.117.017076.CrossRefPubMedGoogle Scholar
  23. Bustamante, A., Ning, M., Garcia-Berrocoso, T., Penalba, A., Boada, C., Simats, A., et al. (2018). Usefulness of ADAMTS13 to predict response to recanalization therapies in acute ischemic stroke. Neurology, 90(12), e995–e1004.  https://doi.org/10.1212/WNL.0000000000005162.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Bustamante, A., Vilar-Bergua, A., Guettier, S., Sanchez-Poblet, J., Garcia-Berrocoso, T., Giralt, D., et al. (2017b). C-reactive protein in the detection of post-stroke infections: Systematic review and individual participant data analysis. Journal of Neurochemistry, 141(2), 305–314.  https://doi.org/10.1111/jnc.13973.CrossRefPubMedGoogle Scholar
  25. Cabral, N. L., Muller, M., Franco, S. C., Longo, A., Moro, C., Nagel, V., et al. (2015). Three-year survival and recurrence after first-ever stroke: The Joinville stroke registry. BMC Neurology, 15, 70.  https://doi.org/10.1186/s12883-015-0317-1.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Campbell, B. C. V., Mitchell, P. J., Churilov, L., Yassi, N., Kleinig, T. J., Dowling, R. J., et al. (2018). Tenecteplase versus alteplase before thrombectomy for ischemic stroke. The New England Journal of Medicine, 378(17), 1573–1582.  https://doi.org/10.1056/NEJMoa1716405.CrossRefPubMedGoogle Scholar
  27. Carbone, F., Burger, F., Roversi, G., Tamborino, C., Casetta, I., Seraceni, S., et al. (2015). Leptin/adiponectin ratio predicts poststroke neurological outcome. European Journal of Clinical Investigation, 45(11), 1184–1191.  https://doi.org/10.1111/eci.12538.CrossRefPubMedGoogle Scholar
  28. Castellanos, M., Castillo, J., Garcia, M. M., Leira, R., Serena, J., Chamorro, A., et al. (2002). Inflammation-mediated damage in progressing lacunar infarctions: A potential therapeutic target. Stroke, 33(4), 982–987.CrossRefGoogle Scholar
  29. Castellanos, M., Leira, R., Serena, J., Blanco, M., Pedraza, S., Castillo, J., et al. (2004). Plasma cellular-fibronectin concentration predicts hemorrhagic transformation after thrombolytic therapy in acute ischemic stroke. Stroke, 35(7), 1671–1676.  https://doi.org/10.1161/01.STR.0000131656.47979.39.CrossRefPubMedGoogle Scholar
  30. Castellanos, M., Leira, R., Serena, J., Pumar, J. M., Lizasoain, I., Castillo, J., et al. (2003). Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke, 34(1), 40–46.CrossRefGoogle Scholar
  31. Castellanos, M., Sobrino, T., & Castillo, J. (2006). Evolving paradigms for neuroprotection: Molecular identification of ischemic penumbra. Cerebrovascular Diseases, 21(Suppl 2), 71–79.  https://doi.org/10.1159/000091706.CrossRefPubMedGoogle Scholar
  32. Castellanos, M., Sobrino, T., Millan, M., Garcia, M., Arenillas, J., Nombela, F., et al. (2007). Serum cellular fibronectin and matrix metalloproteinase-9 as screening biomarkers for the prediction of parenchymal hematoma after thrombolytic therapy in acute ischemic stroke: A multicenter confirmatory study. Stroke, 38(6), 1855–1859.  https://doi.org/10.1161/STROKEAHA.106.481556.CrossRefPubMedGoogle Scholar
  33. Castellanos, M., Sobrino, T., Pedraza, S., Moldes, O., Pumar, J. M., Silva, Y., et al. (2008). High plasma glutamate concentrations are associated with infarct growth in acute ischemic stroke. Neurology, 71(23), 1862–1868.  https://doi.org/10.1212/01.wnl.0000326064.42186.7e.CrossRefPubMedGoogle Scholar
  34. Castillo, J., Rama, R., & Davalos, A. (2000). Nitric oxide-related brain damage in acute ischemic stroke. Stroke, 31(4), 852–857.CrossRefGoogle Scholar
  35. Chaturvedi, S., & Bhattacharya, P. (2014). Large artery atherosclerosis: Carotid stenosis, vertebral artery disease, and intracranial atherosclerosis. Continuum (Minneap Minn), 20(2 Cerebrovascular Disease), 323–334.  https://doi.org/10.1212/01.CON.0000446104.90043.a5.CrossRefGoogle Scholar
  36. Chen, X. L., Li, Q., Huang, W. S., Lin, Y. S., Xue, J., Wang, B., et al. (2017). Serum YKL-40, a prognostic marker in patients with large-artery atherosclerotic stroke. Acta Neurologica Scandinavica, 136(2), 97–102.  https://doi.org/10.1111/ane.12688.CrossRefPubMedGoogle Scholar
  37. Choi, J. Y., Kim, J. S., Kim, J. H., Oh, K., Koh, S. B., & Seo, W. K. (2014). High free fatty acid level is associated with recurrent stroke in cardioembolic stroke patients. Neurology, 82(13), 1142–1148.  https://doi.org/10.1212/WNL.0000000000000264.CrossRefPubMedGoogle Scholar
  38. Crawford, F., Andras, A., Welch, K., Sheares, K., Keeling, D., & Chappell, F. M. (2016). D-dimer test for excluding the diagnosis of pulmonary embolism. Cochrane Library: Cochrane Review, 8, CD010864.  https://doi.org/10.1002/14651858.CD010864.pub2.CrossRefGoogle Scholar
  39. Dambinova, S. A., Khounteev, G. A., Izykenova, G. A., Zavolokov, I. G., Ilyukhina, A. Y., & Skoromets, A. A. (2003). Blood test detecting autoantibodies to N-methyl-D-aspartate neuroreceptors for evaluation of patients with transient ischemic attack and stroke. Clinical Chemistry, 49(10), 1752–1762.CrossRefGoogle Scholar
  40. Dasenbrock, H. H., Robertson, F. C., Vaitkevicius, H., Aziz-Sultan, M. A., Guttieres, D., Dunn, I. F., et al. (2017). Timing of decompressive hemicraniectomy for stroke: A nationwide inpatient sample analysis. Stroke, 48(3), 704–711.  https://doi.org/10.1161/STROKEAHA.116.014727.CrossRefPubMedGoogle Scholar
  41. Dastur, C. K., & Yu, W. (2017). Current management of spontaneous intracerebral haemorrhage. Stroke and Vascular Neurology, 2(1), 21–29.  https://doi.org/10.1136/svn-2016-000047.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Davalos, A., Castillo, J., Marrugat, J., Fernandez-Real, J. M., Armengou, A., Cacabelos, P., et al. (2000). Body iron stores and early neurologic deterioration in acute cerebral infarction. Neurology, 54(8), 1568–1574.CrossRefGoogle Scholar
  43. De Marchis, G. M., Katan, M., Weck, A., Fluri, F., Foerch, C., Findling, O., et al. (2013). Copeptin adds prognostic information after ischemic stroke: Results from the CoRisk study. Neurology, 80(14), 1278–1286.  https://doi.org/10.1212/WNL.0b013e3182887944.CrossRefPubMedGoogle Scholar
  44. De Marchis, G. M., Weck, A., Audebert, H., Benik, S., Foerch, C., Buhl, D., et al. (2014). Copeptin for the prediction of recurrent cerebrovascular events after transient ischemic attack: Results from the CoRisk study. Stroke, 45(10), 2918–2923.  https://doi.org/10.1161/STROKEAHA.114.005584.CrossRefPubMedGoogle Scholar
  45. de Oliveira Manoel, A. L., Goffi, A., Zampieri, F. G., Turkel-Parrella, D., Duggal, A., Marotta, T. R., et al. (2016). The critical care management of spontaneous intracranial hemorrhage: A contemporary review. Critical Care, 20, 272.  https://doi.org/10.1186/s13054-016-1432-0.CrossRefPubMedPubMedCentralGoogle Scholar
  46. DeGraba, T. J., Siren, A. L., Penix, L., McCarron, R. M., Hargraves, R., Sood, S., et al. (1998). Increased endothelial expression of intercellular adhesion molecule-1 in symptomatic versus asymptomatic human carotid atherosclerotic plaque. Stroke, 29(7), 1405–1410.CrossRefGoogle Scholar
  47. del Zoppo, G. J., Levy, D. E., Wasiewski, W. W., Pancioli, A. M., Demchuk, A. M., Trammel, J., et al. (2009). Hyperfibrinogenemia and functional outcome from acute ischemic stroke. Stroke, 40(5), 1687–1691.  https://doi.org/10.1161/STROKEAHA.108.527804.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Delgado, P., Chacon, P., Penalba, A., Pelegri, D., Garcia-Berrocoso, T., Giralt, D., et al. (2012). Lipoprotein-associated phospholipase A(2) activity is associated with large-artery atherosclerotic etiology and recurrent stroke in TIA patients. Cerebrovascular Diseases, 33(2), 150–158.  https://doi.org/10.1159/000334193.CrossRefPubMedGoogle Scholar
  49. Denorme, F., Langhauser, F., Desender, L., Vandenbulcke, A., Rottensteiner, H., Plaimauer, B., et al. (2016). ADAMTS13-mediated thrombolysis of t-PA-resistant occlusions in ischemic stroke in mice. Blood, 127(19), 2337–2345.  https://doi.org/10.1182/blood-2015-08-662650.CrossRefPubMedGoogle Scholar
  50. Dieplinger, B., Bocksrucker, C., Egger, M., Eggers, C., Haltmayer, M., & Mueller, T. (2017). Prognostic value of inflammatory and cardiovascular biomarkers for prediction of 90-day all-cause mortality after acute ischemic stroke-results from the linz stroke unit study. Clinical Chemistry, 63(6), 1101–1109.  https://doi.org/10.1373/clinchem.2016.269969.CrossRefPubMedGoogle Scholar
  51. Dolz, S., Gorriz, D., Tembl, J. I., Sanchez, D., Fortea, G., Parkhutik, V., et al. (2017). Circulating MicroRNAs as novel biomarkers of stenosis progression in asymptomatic carotid stenosis. Stroke, 48(1), 10–16.  https://doi.org/10.1161/STROKEAHA.116.013650.CrossRefPubMedGoogle Scholar
  52. Dykstra-Aiello, C., Jickling, G. C., Ander, B. P., Shroff, N., Zhan, X., Liu, D., et al. (2016). Altered expression of long noncoding RNAs in blood after ischemic stroke and proximity to putative stroke risk loci. Stroke, 47(12), 2896–2903.  https://doi.org/10.1161/STROKEAHA.116.013869.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Efstathiou, S. P., Tsioulos, D. I., Tsiakou, A. G., Gratsias, Y. E., Pefanis, A. V., & Mountokalakis, T. D. (2005). Plasma adiponectin levels and five-year survival after first-ever ischemic stroke. Stroke, 36(9), 1915–1919.  https://doi.org/10.1161/01.STR.0000177874.29849.f0.CrossRefPubMedGoogle Scholar
  54. El Husseini, N., & Laskowitz, D. T. (2010). Clinical application of blood biomarkers in cerebrovascular disease. Expert Review of Neurotherapeutics, 10(2), 189–203.  https://doi.org/10.1586/ern.09.151.CrossRefPubMedGoogle Scholar
  55. Elkind, M. S., Luna, J. M., McClure, L. A., Zhang, Y., Coffey, C. S., Roldan, A., et al. (2014). C-reactive protein as a prognostic marker after lacunar stroke: Levels of inflammatory markers in the treatment of stroke study. Stroke, 45(3), 707–716.  https://doi.org/10.1161/STROKEAHA.113.004562.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Elkind, M. S., Tai, W., Coates, K., Paik, M. C., & Sacco, R. L. (2009). Lipoprotein-associated phospholipase A2 activity and risk of recurrent stroke. Cerebrovascular Diseases, 27(1), 42–50.  https://doi.org/10.1159/000172633.CrossRefPubMedGoogle Scholar
  57. Eng, L. F., Ghirnikar, R. S., & Lee, Y. L. (2000). Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochemical Research, 25(9–10), 1439–1451.CrossRefGoogle Scholar
  58. Feinberg, M. W., & Moore, K. J. (2016). MicroRNA regulation of atherosclerosis. Circulation Research, 118(4), 703–720.  https://doi.org/10.1161/CIRCRESAHA.115.306300.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Foerch, C., Montaner, J., Furie, K. L., Ning, M. M., & Lo, E. H. (2009). Invited article: Searching for oracles? Blood biomarkers in acute stroke. Neurology, 73(5), 393–399.  https://doi.org/10.1212/WNL.0b013e3181b05ef9.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Foerch, C., Niessner, M., Back, T., Bauerle, M., De Marchis, G. M., Ferbert, A., et al. (2012). Diagnostic accuracy of plasma glial fibrillary acidic protein for differentiating intracerebral hemorrhage and cerebral ischemia in patients with symptoms of acute stroke. Clinical Chemistry, 58(1), 237–245.  https://doi.org/10.1373/clinchem.2011.172676.CrossRefPubMedGoogle Scholar
  61. Foerch, C., Otto, B., Singer, O. C., Neumann-Haefelin, T., Yan, B., Berkefeld, J., et al. (2004). Serum S100B predicts a malignant course of infarction in patients with acute middle cerebral artery occlusion. Stroke, 35(9), 2160–2164.  https://doi.org/10.1161/01.STR.0000138730.03264.ac.CrossRefPubMedGoogle Scholar
  62. Foerch, C., Wunderlich, M. T., Dvorak, F., Humpich, M., Kahles, T., Goertler, M., et al. (2007). Elevated serum S100B levels indicate a higher risk of hemorrhagic transformation after thrombolytic therapy in acute stroke. Stroke, 38(9), 2491–2495.  https://doi.org/10.1161/STROKEAHA.106.480111.CrossRefPubMedGoogle Scholar
  63. Ganz, P., Amarenco, P., Goldstein, L. B., Sillesen, H., Bao, W., Preston, G. M., et al. (2017). Association of osteopontin, neopterin, and myeloperoxidase with stroke risk in patients with prior stroke or transient ischemic attacks: Results of an analysis of 13 biomarkers from the stroke prevention by aggressive reduction in cholesterol levels trial. Stroke, 48(12), 3223–3231.  https://doi.org/10.1161/STROKEAHA.117.017965.CrossRefPubMedGoogle Scholar
  64. George, P. M., Mlynash, M., Adams, C. M., Kuo, C. J., Albers, G. W., & Olivot, J. M. (2015). Novel TIA biomarkers identified by mass spectrometry-based proteomics. International Journal of Stroke, 10(8), 1204–1211.  https://doi.org/10.1111/ijs.12603.CrossRefPubMedGoogle Scholar
  65. Giles, M. F., & Rothwell, P. M. (2007). Risk of stroke early after transient ischaemic attack: A systematic review and meta-analysis. The Lancet Neurology, 6(12), 1063–1072.  https://doi.org/10.1016/S1474-4422(07)70274-0.CrossRefPubMedGoogle Scholar
  66. Glushakova, O. Y., Glushakov, A. V., Miller, E. R., Valadka, A. B., & Hayes, R. L. (2016). Biomarkers for acute diagnosis and management of stroke in neurointensive care units. Brain Circulation, 2(1), 28–47.  https://doi.org/10.4103/2394-8108.178546.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Haapaniemi, E., & Tatlisumak, T. (2009). Is D-dimer helpful in evaluating stroke patients? A systematic review. Acta Neurol Scand, 119(3), 141–150.  https://doi.org/10.1111/j.1600-0404.2008.01081.x.CrossRefPubMedGoogle Scholar
  68. Hacke, W., Kaste, M., Bluhmki, E., Brozman, M., Davalos, A., Guidetti, D., et al. (2008). Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. The New England Journal of Medicine, 359(13), 1317–1329.  https://doi.org/10.1056/NEJMoa0804656.CrossRefPubMedGoogle Scholar
  69. Hart, R. G., Diener, H. C., Coutts, S. B., Easton, J. D., Granger, C. B., O’Donnell, M. J., et al. (2014). Embolic strokes of undetermined source: The case for a new clinical construct. The Lancet Neurology, 13(4), 429–438.  https://doi.org/10.1016/S1474-4422(13)70310-7.CrossRefPubMedGoogle Scholar
  70. Hart, R. G., Sharma, M., Mundl, H., Kasner, S. E., Bangdiwala, S. I., Berkowitz, S. D., et al. (2018). Rivaroxaban for stroke prevention after embolic stroke of undetermined source. The New England Journal of Medicine, 378(23), 2191–2201.  https://doi.org/10.1056/NEJMoa1802686.CrossRefPubMedGoogle Scholar
  71. Hassan, A., Hunt, B. J., O’Sullivan, M., Parmar, K., Bamford, J. M., Briley, D., et al. (2003). Markers of endothelial dysfunction in lacunar infarction and ischaemic leukoaraiosis. Brain, 126(Pt 2), 424–432.CrossRefGoogle Scholar
  72. Hu, L., Dong, M. X., Zhao, H., Xu, G. H., & Qin, X. Y. (2016). Fibulin-5: A novel biomarker for evaluating severity and predicting prognosis in patients with acute intracerebral haemorrhage. European Journal of Neurology, 23(7), 1195–1201.  https://doi.org/10.1111/ene.13013.CrossRefPubMedGoogle Scholar
  73. Huang, Y. Q., Li, J., Huang, C., & Feng, Y. Q. (2018). Plasma MicroRNA-29c levels are associated with carotid intima-media thickness and is a potential biomarker for the early detection of atherosclerosis. Cellular Physiology and Biochemistry, 50(2), 452–459.  https://doi.org/10.1159/000494158.CrossRefPubMedGoogle Scholar
  74. Im, H. I., & Kenny, P. J. (2012). MicroRNAs in neuronal function and dysfunction. Trends in Neurosciences, 35(5), 325–334.  https://doi.org/10.1016/j.tins.2012.01.004.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Jaillard, A., Cornu, C., Durieux, A., Moulin, T., Boutitie, F., Lees, K. R., et al. (1999). Hemorrhagic transformation in acute ischemic stroke. The MAST-E study. MAST-E group. Stroke, 30(7), 1326–1332.CrossRefGoogle Scholar
  76. Jauch, E. C., Lindsell, C., Broderick, J., Fagan, S. C., Tilley, B. C., Levine, S. R., et al. (2006). Association of serial biochemical markers with acute ischemic stroke: The National Institute of Neurological Disorders and Stroke recombinant tissue plasminogen activator Stroke Study. Stroke, 37(10), 2508–2513.  https://doi.org/10.1161/01.STR.0000242290.01174.9e.CrossRefPubMedGoogle Scholar
  77. Jickling, G. C., Ander, B. P., Shroff, N., Orantia, M., Stamova, B., Dykstra-Aiello, C., et al. (2016). Leukocyte response is regulated by microRNA let7i in patients with acute ischemic stroke. Neurology, 87(21), 2198–2205.  https://doi.org/10.1212/WNL.0000000000003354.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Jickling, G. C., Ander, B. P., Stamova, B., Zhan, X., Liu, D., Rothstein, L., et al. (2013). RNA in blood is altered prior to hemorrhagic transformation in ischemic stroke. Annals of Neurology, 74(2), 232–240.  https://doi.org/10.1002/ana.23883.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Jickling, G. C., Ander, B. P., Zhan, X., Noblett, D., Stamova, B., & Liu, D. (2014a). microRNA expression in peripheral blood cells following acute ischemic stroke and their predicted gene targets. PLoS ONE, 9(6), e99283.  https://doi.org/10.1371/journal.pone.0099283.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Jickling, G. C., Liu, D., Stamova, B., Ander, B. P., Zhan, X., Lu, A., et al. (2014b). Hemorrhagic transformation after ischemic stroke in animals and humans. Journal of Cerebral Blood Flow & Metabolism, 34(2), 185–199.  https://doi.org/10.1038/jcbfm.2013.203.CrossRefGoogle Scholar
  81. Jickling, G. C., & Sharp, F. R. (2011). Blood biomarkers of ischemic stroke. Neurotherapeutics, 8(3), 349–360.  https://doi.org/10.1007/s13311-011-0050-4.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Jickling, G. C., & Sharp, F. R. (2015). Biomarker panels in ischemic stroke. Stroke, 46(3), 915–920.  https://doi.org/10.1161/STROKEAHA.114.005604.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Jickling, G. C., Stamova, B., Ander, B. P., Zhan, X., Tian, Y., Liu, D., et al. (2011). Profiles of lacunar and nonlacunar stroke. Annals of Neurology, 70(3), 477–485.  https://doi.org/10.1002/ana.22497.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Jickling, G. C., Xu, H., Stamova, B., Ander, B. P., Zhan, X., Tian, Y., et al. (2010). Signatures of cardioembolic and large-vessel ischemic stroke. Annals of Neurology, 68(5), 681–692.  https://doi.org/10.1002/ana.22187.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Jickling, G. C., Zhan, X., Stamova, B., Ander, B. P., Tian, Y., Liu, D., et al. (2012). Ischemic transient neurological events identified by immune response to cerebral ischemia. Stroke, 43(4), 1006–1012.  https://doi.org/10.1161/STROKEAHA.111.638577.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Jove, M., Mauri-Capdevila, G., Suarez, I., Cambray, S., Sanahuja, J., Quilez, A., et al. (2015). Metabolomics predicts stroke recurrence after transient ischemic attack. Neurology, 84(1), 36–45.  https://doi.org/10.1212/WNL.0000000000001093.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Kamel, H., Longstreth, W. T. Jr., Tirschwell, D. L., Kronmal, R. A., Broderick, J. P., Palesch, Y. Y., et al. (2018). The AtRial cardiopathy and antithrombotic drugs in prevention after cryptogenic stroke randomized trial: Rationale and methods. International Journal of Stroke.  https://doi.org/10.1177/1747493018799981.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Katan, M., & Elkind, M. S. V. (2018). The potential role of blood biomarkers in patients with ischemic stroke: An expert opinion. Clinical and Translational Neuroscience, 2(1), 1–7.  https://doi.org/10.1177/2514183X18768050.CrossRefGoogle Scholar
  89. Katan, M., Fluri, F., Morgenthaler, N. G., Schuetz, P., Zweifel, C., Bingisser, R., et al. (2009). Copeptin: A novel, independent prognostic marker in patients with ischemic stroke. Annals of Neurology, 66(6), 799–808.  https://doi.org/10.1002/ana.21783.CrossRefPubMedGoogle Scholar
  90. Katan, M., Fluri, F., Schuetz, P., Morgenthaler, N. G., Zweifel, C., Bingisser, R., et al. (2010). Midregional pro-atrial natriuretic peptide and outcome in patients with acute ischemic stroke. Journal of the American College of Cardiology, 56(13), 1045–1053.  https://doi.org/10.1016/j.jacc.2010.02.071.CrossRefPubMedGoogle Scholar
  91. Katan, M., Moon, Y. P., Paik, M. C., Mueller, B., Huber, A., Sacco, R. L., et al. (2016). Procalcitonin and midregional proatrial natriuretic peptide as markers of ischemic stroke: The Northern Manhattan Study. Stroke, 47(7), 1714–1719.  https://doi.org/10.1161/STROKEAHA.115.011392.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Katan, M., Moon, Y. P., Paik, M. C., Wolfert, R. L., Sacco, R. L., & Elkind, M. S. (2014). Lipoprotein-associated phospholipase A2 is associated with atherosclerotic stroke risk: The Northern Manhattan Study. PLoS ONE, 9(1), e83393.  https://doi.org/10.1371/journal.pone.0083393.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Katan, M., Nigro, N., Fluri, F., Schuetz, P., Morgenthaler, N. G., Jax, F., et al. (2011). Stress hormones predict cerebrovascular re-events after transient ischemic attacks. Neurology, 76(6), 563–566.  https://doi.org/10.1212/WNL.0b013e31820b75e6.CrossRefPubMedGoogle Scholar
  94. Katsanos, A. H., Makris, K., Stefani, D., Koniari, K., Gialouri, E., Lelekis, M., et al. (2017). Plasma glial fibrillary acidic protein in the differential diagnosis of intracerebral hemorrhage. Stroke, 48(9), 2586–2588.  https://doi.org/10.1161/STROKEAHA.117.018409.CrossRefPubMedGoogle Scholar
  95. Kazmierski, R., Michalak, S., Wencel-Warot, A., & Nowinski, W. L. (2012). Serum tight-junction proteins predict hemorrhagic transformation in ischemic stroke patients. Neurology, 79(16), 1677–1685.  https://doi.org/10.1212/WNL.0b013e31826e9a83.CrossRefPubMedGoogle Scholar
  96. Kelly, P. J., Albers, G. W., Chatzikonstantinou, A., De Marchis, G. M., Ferrari, J., George, P., et al. (2016). Validation and comparison of imaging-based scores for prediction of early stroke risk after transient ischaemic attack: A pooled analysis of individual-patient data from cohort studies. The Lancet Neurology, 15(12), 1238–1247.  https://doi.org/10.1016/S1474-4422(16)30236-8.CrossRefPubMedGoogle Scholar
  97. Kernagis, D. N., & Laskowitz, D. T. (2012). Evolving role of biomarkers in acute cerebrovascular disease. Annals of Neurology, 71(3), 289–303.  https://doi.org/10.1002/ana.22553.CrossRefPubMedGoogle Scholar
  98. Kernan, W. N., Viscoli, C. M., Brass, L. M., Makuch, R. W., Sarrel, P. M., Roberts, R. S., et al. (2000). The stroke prognosis instrument II (SPI-II): A clinical prediction instrument for patients with transient ischemia and nondisabling ischemic stroke. Stroke, 31(2), 456–462.CrossRefGoogle Scholar
  99. Keyt, B. A., Paoni, N. F., Refino, C. J., Berleau, L., Nguyen, H., Chow, A., et al. (1994). A faster-acting and more potent form of tissue plasminogen activator. Proceedings of the National Academy of Sciences of the United States of America, 91(9), 3670–3674.CrossRefGoogle Scholar
  100. Khan, S. Q., Dhillon, O., Kelly, D., Squire, I. B., Struck, J., Quinn, P., et al. (2008). Plasma N-terminal B-Type natriuretic peptide as an indicator of long-term survival after acute myocardial infarction: Comparison with plasma midregional pro-atrial natriuretic peptide: The LAMP (Leicester Acute Myocardial Infarction Peptide) study. Journal of the American College of Cardiology, 51(19), 1857–1864.  https://doi.org/10.1016/j.jacc.2008.01.041.CrossRefPubMedGoogle Scholar
  101. Knoflach, M., Lang, W., Seyfang, L., Fertl, E., Oberndorfer, S., Daniel, G., et al. (2016). Predictive value of ABCD2 and ABCD3-I scores in TIA and minor stroke in the stroke unit setting. Neurology, 87(9), 861–869.  https://doi.org/10.1212/WNL.0000000000003033.CrossRefPubMedGoogle Scholar
  102. Kumar, S., Selim, M. H., & Caplan, L. R. (2010). Medical complications after stroke. The Lancet Neurology, 9(1), 105–118.  https://doi.org/10.1016/S1474-4422(09)70266-2.CrossRefPubMedGoogle Scholar
  103. Lalive, P. H. (2011). Biomarkers in neuroimmunology. Revue Médicale Suisse, 7(291), 860–866.PubMedGoogle Scholar
  104. Li, J., & Wang, Y. (2016). Blood biomarkers in minor stroke and transient ischemic attack. Neuroscience Bulletin, 32(5), 463–468.  https://doi.org/10.1007/s12264-016-0038-5.CrossRefPubMedPubMedCentralGoogle Scholar
  105. Li, J., Wang, Y., Wang, D., Lin, J., Wang, A., Zhao, X., et al. (2015). Glycated albumin predicts the effect of dual and single antiplatelet therapy on recurrent stroke. Neurology, 84(13), 1330–1336.  https://doi.org/10.1212/WNL.0000000000001421.CrossRefPubMedGoogle Scholar
  106. Li, J., Zhao, X., Meng, X., Lin, J., Liu, L., Wang, C., et al. (2016). High-sensitive C-reactive protein predicts recurrent stroke and poor functional outcome: Subanalysis of the clopidogrel in high-risk patients with acute nondisabling cerebrovascular events trial. Stroke, 47(8), 2025–2030.  https://doi.org/10.1161/STROKEAHA.116.012901.CrossRefPubMedGoogle Scholar
  107. Llombart, V., Antolin-Fontes, A., Bustamante, A., Giralt, D., Rost, N. S., Furie, K., et al. (2015). B-type natriuretic peptides help in cardioembolic stroke diagnosis: Pooled data meta-analysis. Stroke, 46(5), 1187–1195.  https://doi.org/10.1161/STROKEAHA.114.008311.CrossRefPubMedGoogle Scholar
  108. Llombart, V., Garcia-Berrocoso, T., Bustamante, A., Giralt, D., Rodriguez-Luna, D., Muchada, M., et al. (2016). Plasmatic retinol-binding protein 4 and glial fibrillary acidic protein as biomarkers to differentiate ischemic stroke and intracerebral hemorrhage. Journal of Neurochemistry, 136(2), 416–424.  https://doi.org/10.1111/jnc.13419.CrossRefPubMedGoogle Scholar
  109. Longstreth, W. T. Jr., Kronmal, R. A., Thompson, J. L., Christenson, R. H., Levine, S. R., Gross, R., et al. (2013). Amino terminal pro-B-type natriuretic peptide, secondary stroke prevention, and choice of antithrombotic therapy. Stroke, 44(3), 714–719.  https://doi.org/10.1161/STROKEAHA.112.675942.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Lorenz, M. W., Markus, H. S., Bots, M. L., Rosvall, M., & Sitzer, M. (2007). Prediction of clinical cardiovascular events with carotid intima-media thickness: A systematic review and meta-analysis. Circulation, 115(4), 459–467.  https://doi.org/10.1161/CIRCULATIONAHA.106.628875.CrossRefPubMedGoogle Scholar
  111. Luger, S., Witsch, J., Dietz, A., Hamann, G. F., Minnerup, J., Schneider, H., et al. (2017). Glial fibrillary acidic protein serum levels distinguish between intracerebral hemorrhage and cerebral ischemia in the early phase of stroke. Clinical Chemistry, 63(1), 377–385.  https://doi.org/10.1373/clinchem.2016.263335.CrossRefPubMedGoogle Scholar
  112. Lynch, J. R., Blessing, R., White, W. D., Grocott, H. P., Newman, M. F., & Laskowitz, D. T. (2004). Novel diagnostic test for acute stroke. Stroke, 35(1), 57–63.  https://doi.org/10.1161/01.STR.0000105927.62344.4C.CrossRefPubMedGoogle Scholar
  113. Magenta, A., Sileno, S., D’Agostino, M., Persiani, F., Beji, S., Paolini, A., et al. (2018). Atherosclerotic plaque instability in carotid arteries: miR-200c as a promising biomarker. Clinical Science(London), 132(22), 2423–2436.  https://doi.org/10.1042/CS20180684.CrossRefGoogle Scholar
  114. Maitrias, P., Metzinger-Le Meuth, V., Nader, J., Reix, T., Caus, T., & Metzinger, L. (2017). The involvement of miRNA in carotid-related stroke. Arteriosclerosis, Thrombosis, and Vascular Biology, 37(9), 1608–1617.  https://doi.org/10.1161/ATVBAHA.117.309233.CrossRefPubMedGoogle Scholar
  115. Makris, K., Haliassos, A., Chondrogianni, M., & Tsivgoulis, G. (2018). Blood biomarkers in ischemic stroke: Potential role and challenges in clinical practice and research. Critical Reviews in Clinical Laboratory Sciences, 55(5), 294–328.  https://doi.org/10.1080/10408363.2018.1461190.CrossRefPubMedGoogle Scholar
  116. Markus, H. S., Larsson, S. C., Kuker, W., Schulz, U. G., Ford, I., Rothwell, P. M., et al. (2017). Stenting for symptomatic vertebral artery stenosis: The vertebral artery ischaemia stenting trial. Neurology, 89(12), 1229–1236.  https://doi.org/10.1212/WNL.0000000000004385.CrossRefPubMedPubMedCentralGoogle Scholar
  117. Marti-Fabregas, J., Borrell, M., Cocho, D., Belvis, R., Castellanos, M., Montaner, J., et al. (2005). Hemostatic markers of recanalization in patients with ischemic stroke treated with rt-PA. Neurology, 65(3), 366–370.  https://doi.org/10.1212/01.wnl.0000171704.50395.ba.CrossRefPubMedGoogle Scholar
  118. Missler, U., Wiesmann, M., Friedrich, C., & Kaps, M. (1997). S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke, 28(10), 1956–1960.CrossRefGoogle Scholar
  119. Missler, U., Wiesmann, M., Wittmann, G., Magerkurth, O., & Hagenstrom, H. (1999). Measurement of glial fibrillary acidic protein in human blood: Analytical method and preliminary clinical results. Clinical Chemistry, 45(1), 138–141.PubMedGoogle Scholar
  120. Mocco, J., Choudhri, T. F., Mack, W. J., Laufer, I., Lee, J., Kiss, S., et al. (2001). Elevation of soluble intercellular adhesion molecule-1 levels in symptomatic and asymptomatic carotid atherosclerosis. Neurosurgery, 48(4), 718–721. (discussion 721–712).PubMedGoogle Scholar
  121. Modak, J. M., Roy-O’Reilly, M., Zhu, L., Staff, I., & McCullough, L. D. (2018). Differential microribonucleic acid expression in cardioembolic stroke. Journal of Stroke and Cerebrovascular Diseases.  https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.09.018.CrossRefPubMedGoogle Scholar
  122. Montaner, J., Perea-Gainza, M., Delgado, P., Ribo, M., Chacon, P., Rosell, A., et al. (2008). Etiologic diagnosis of ischemic stroke subtypes with plasma biomarkers. Stroke, 39(8), 2280–2287.  https://doi.org/10.1161/STROKEAHA.107.505354.CrossRefPubMedGoogle Scholar
  123. Nash, D. L., Bellolio, M. F., & Stead, L. G. (2008). S100 as a marker of acute brain ischemia: A systematic review. Neurocritical Care, 8(2), 301–307.  https://doi.org/10.1007/s12028-007-9019-x.CrossRefPubMedGoogle Scholar
  124. Ng, G. J. L., Quek, A. M. L., Cheung, C., Arumugam, T. V., & Seet, R. C. S (2017). Stroke biomarkers in clinical practice: A critical appraisal. Neurochemistry International, 107, 11–22.  https://doi.org/10.1016/j.neuint.2017.01.005.CrossRefPubMedGoogle Scholar
  125. Nogueira, R. G., Jadhav, A. P., Haussen, D. C., Bonafe, A., Budzik, R. F., Bhuva, P., et al. (2018). Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. The New England Journal of Medicine, 378(1), 11–21.  https://doi.org/10.1056/NEJMoa1706442.CrossRefPubMedGoogle Scholar
  126. Olivot, J. M., Labreuche, J., Aiach, M., Amarenco, P., & Investigators, G. (2004). Soluble thrombomodulin and brain infarction: Case-control and prospective study. Stroke, 35(8), 1946–1951.  https://doi.org/10.1161/01.STR.0000133340.37712.9b.CrossRefPubMedGoogle Scholar
  127. Paraskevas, K. I., Veith, F. J., & Spence, J. D. (2018). How to identify which patients with asymptomatic carotid stenosis could benefit from endarterectomy or stenting. Stroke and Vascular Neurology, 3(2), 92–100.  https://doi.org/10.1136/svn-2017-000129.CrossRefPubMedPubMedCentralGoogle Scholar
  128. Park, S. Y., Kim, J., Kim, O. J., Kim, J. K., Song, J., Shin, D. A., et al. (2013a). Predictive value of circulating interleukin-6 and heart-type fatty acid binding protein for three months clinical outcome in acute cerebral infarction: Multiple blood markers profiling study. Critical Care, 17(2), R45.  https://doi.org/10.1186/cc12564.CrossRefPubMedPubMedCentralGoogle Scholar
  129. Park, S. Y., Kim, M. H., Kim, O. J., Ahn, H. J., Song, J. Y., Jeong, J. Y., et al. (2013b). Plasma heart-type fatty acid binding protein level in acute ischemic stroke: Comparative analysis with plasma S100B level for diagnosis of stroke and prediction of long-term clinical outcome. Clinical Neurology and Neurosurgery, 115(4), 405–410.  https://doi.org/10.1016/j.clineuro.2012.06.004.CrossRefPubMedGoogle Scholar
  130. Park, K. Y., Ay, I., Avery, R., Caceres, J. A., Siket, M. S., Pontes-Neto, O. M., et al. (2018). New biomarker for acute ischaemic stroke: Plasma glycogen phosphorylase isoenzyme BB. Journal of Neurology, Neurosurgery, and Psychiatry, 89(4), 404–409.  https://doi.org/10.1136/jnnp-2017-316084.CrossRefPubMedGoogle Scholar
  131. Penn, A. M., Bibok, M. B., Saly, V. K., Coutts, S. B., Lesperance, M. L., Balshaw, R. F., et al. (2018). Verification of a proteomic biomarker panel to diagnose minor stroke and transient ischaemic attack: Phase 1 of SpecTRA, a large scale translational study. Biomarkers, 23(4), 392–405.  https://doi.org/10.1080/1354750X.2018.1434681.CrossRefPubMedGoogle Scholar
  132. Perry, L. A., Lucarelli, T., Penny-Dimri, J. C., McInnes, M. D., Mondello, S., Bustamante, A., et al. (2018). Glial fibrillary acidic protein for the early diagnosis of intracerebral hemorrhage: Systematic review and meta-analysis of diagnostic test accuracy. International Journal of Stroke.  https://doi.org/10.1177/1747493018806167.CrossRefPubMedGoogle Scholar
  133. Poli, S., Hartig, F., Selim, M. H., Molina, C. A., & Dowlatshahi, D. (2017). Prothrombin complex concentrates use in intracerebral hemorrhage. Stroke, 48(9), 2644–2646.  https://doi.org/10.1161/STROKEAHA.117.017591.CrossRefPubMedGoogle Scholar
  134. Powers, W. J., Rabinstein, A. A., Ackerson, T., Adeoye, O. M., Bambakidis, N. C., Becker, K., et al. (2018). 2018 guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 49(3), e46–e110.  https://doi.org/10.1161/STR.0000000000000158.CrossRefPubMedGoogle Scholar
  135. Ramos-Fernandez, M., Bellolio, M. F., & Stead, L. G. (2011). Matrix metalloproteinase-9 as a marker for acute ischemic stroke: A systematic review. Journal of Stroke and Cerebrovascular Diseases, 20(1), 47–54.  https://doi.org/10.1016/j.jstrokecerebrovasdis.2009.10.008.CrossRefPubMedGoogle Scholar
  136. Ren, C., Kobeissy, F., Alawieh, A., Li, N., Li, N., Zibara, K., et al. (2016). Assessment of Serum UCH-L1 and GFAP in acute stroke patients. Scientific Reports, 6, 24588.  https://doi.org/10.1038/srep24588.CrossRefPubMedPubMedCentralGoogle Scholar
  137. Ribo, M., Montaner, J., Molina, C. A., Arenillas, J. F., Santamarina, E., & Alvarez-Sabin, J. (2004a). Admission fibrinolytic profile predicts clot lysis resistance in stroke patients treated with tissue plasminogen activator. Thrombosis and Haemostasis, 91(6), 1146–1151.  https://doi.org/10.1160/TH04-02-0097.CrossRefPubMedGoogle Scholar
  138. Ribo, M., Montaner, J., Molina, C. A., Arenillas, J. F., Santamarina, E., Quintana, M., et al. (2004b). Admission fibrinolytic profile is associated with symptomatic hemorrhagic transformation in stroke patients treated with tissue plasminogen activator. Stroke, 35(9), 2123–2127.  https://doi.org/10.1161/01.STR.0000137608.73660.4c.CrossRefPubMedGoogle Scholar
  139. Ridker, P. M., MacFadyen, J. G., Wolfert, R. L., & Koenig, W. (2012). Relationship of lipoprotein-associated phospholipase A(2) mass and activity with incident vascular events among primary prevention patients allocated to placebo or to statin therapy: An analysis from the JUPITER trial. Clinical Chemistry, 58(5), 877–886.  https://doi.org/10.1373/clinchem.2011.180281.CrossRefPubMedGoogle Scholar
  140. Riedel, C. H., Zimmermann, P., Jensen-Kondering, U., Stingele, R., Deuschl, G., & Jansen, O. (2011). The importance of size: Successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke, 42(6), 1775–1777.  https://doi.org/10.1161/STROKEAHA.110.609693.CrossRefPubMedGoogle Scholar
  141. Rodriguez-Yanez, M., Sobrino, T., Arias, S., Vazquez-Herrero, F., Brea, D., Blanco, M., et al. (2011). Early biomarkers of clinical-diffusion mismatch in acute ischemic stroke. Stroke, 42(10), 2813–2818.  https://doi.org/10.1161/STROKEAHA.111.614503.CrossRefPubMedGoogle Scholar
  142. Rosell, A., Cuadrado, E., Alvarez-Sabin, J., Hernandez-Guillamon, M., Delgado, P., Penalba, A., et al. (2008). Caspase-3 is related to infarct growth after human ischemic stroke. Neuroscience Letters, 430(1), 1–6.  https://doi.org/10.1016/j.neulet.2007.05.006.CrossRefPubMedGoogle Scholar
  143. Rothwell, P. M. (2018). Clinical innovation in stroke: Getting the simple things right. The Lancet Neurology, 17(6), 491–493.  https://doi.org/10.1016/S1474-4422(18)30113-3.CrossRefPubMedGoogle Scholar
  144. Rozanski, M., & Audebert, H. J. (2018). Glial fibrillary acidic protein in acute stroke: What we know and what we need to know. AME Medical Journal.  https://doi.org/10.21037/amj.2018.01.04 CrossRefGoogle Scholar
  145. Rozanski, M., Waldschmidt, C., Kunz, A., Grittner, U., Ebinger, M., Wendt, M., et al. (2017). Glial fibrillary acidic protein for prehospital diagnosis of intracerebral hemorrhage. Cerebrovascular Diseases, 43(1–2), 76–81.  https://doi.org/10.1159/000453460.CrossRefPubMedGoogle Scholar
  146. Sato, M., Suzuki, A., Nagata, K., & Uchiyama, S. (2006). Increased von Willebrand factor in acute stroke patients with atrial fibrillation. Journal of Stroke and Cerebrovascular Diseases, 15(1), 1–7.  https://doi.org/10.1016/j.jstrokecerebrovasdis.2005.09.005.CrossRefPubMedGoogle Scholar
  147. Saver, J. L. (2016). Cryptogenic stroke. The New England Journal of Medicine, 375(11), e26.  https://doi.org/10.1056/NEJMc1609156.CrossRefPubMedGoogle Scholar
  148. Seiffge, D. J., Werring, D. J., Paciaroni, M., Dawson, J., Warach, S., Milling, T. J., et al. (2018). Timing of anticoagulation after recent ischaemic stroke in patients with atrial fibrillation. The Lancet Neurology.  https://doi.org/10.1016/S1474-4422(18)30356-9.CrossRefPubMedPubMedCentralGoogle Scholar
  149. Serena, J., Blanco, M., Castellanos, M., Silva, Y., Vivancos, J., Moro, M. A., et al. (2005). The prediction of malignant cerebral infarction by molecular brain barrier disruption markers. Stroke, 36(9), 1921–1926.  https://doi.org/10.1161/01.STR.0000177870.14967.94.CrossRefPubMedGoogle Scholar
  150. Sharp, F. R., & Jickling, G. C. (2013). Whole genome expression of cellular response to stroke. Stroke, 44(6 Suppl 1), S23–S25.  https://doi.org/10.1161/STROKEAHA.112.679357.CrossRefPubMedPubMedCentralGoogle Scholar
  151. Sharp, F. R., Jickling, G. C., Stamova, B., Tian, Y., Zhan, X., Liu, D., et al. (2011). Molecular markers and mechanisms of stroke: RNA studies of blood in animals and humans. Journal of Cerebral Blood Flow & Metabolism, 31(7), 1513–1531.  https://doi.org/10.1038/jcbfm.2011.45.CrossRefGoogle Scholar
  152. Sharp, F. R., Lu, A., Tang, Y., & Millhorn, D. E. (2000). Multiple molecular penumbras after focal cerebral ischemia. Journal of Cerebral Blood Flow & Metabolism, 20(7), 1011–1032.  https://doi.org/10.1097/00004647-200007000-00001.CrossRefGoogle Scholar
  153. Si, W., He, P., Wang, Y., Fu, Y., Li, X., Lin, X., et al. (2018). Complement complex C5b-9 levels are associated with the clinical outcomes of acute ischemic stroke and carotid plaque stability. Translational Stroke Research.  https://doi.org/10.1007/s12975-018-0658-3.CrossRefPubMedPubMedCentralGoogle Scholar
  154. Simats, A., Garcia-Berrocoso, T., & Montaner, J. (2016). Neuroinflammatory biomarkers: From stroke diagnosis and prognosis to therapy. Biochimica et Biophysica Acta, 1862(3), 411–424.  https://doi.org/10.1016/j.bbadis.2015.10.025.CrossRefPubMedGoogle Scholar
  155. Sonneveld, M. A., de Maat, M. P., Portegies, M. L., Kavousi, M., Hofman, A., Turecek, P. L., et al. (2015). Low ADAMTS13 activity is associated with an increased risk of ischemic stroke. Blood, 126(25), 2739–2746.  https://doi.org/10.1182/blood-2015-05-643338.CrossRefPubMedGoogle Scholar
  156. Sonneveld, M. A., Franco, O. H., Ikram, M. A., Hofman, A., Kavousi, M., de Maat, M. P., et al. (2016). Von Willebrand Factor, ADAMTS13, and the risk of mortality: The Rotterdam study. Arteriosclerosis, Thrombosis, and Vascular Biology, 36(12), 2446–2451.  https://doi.org/10.1161/ATVBAHA.116.308225.CrossRefPubMedGoogle Scholar
  157. Stability Investigators, White, H. D., Held, C., Stewart, R., Tarka, E., Brown, R., et al. (2014). Darapladib for preventing ischemic events in stable coronary heart disease. The New England Journal of Medicine, 370(18), 1702–1711.  https://doi.org/10.1056/NEJMoa1315878.CrossRefGoogle Scholar
  158. Stamova, B., Ander, B. P., Jickling, G., Hamade, F., Durocher, M., Zhan, X., et al. (2018). The intracerebral hemorrhage blood transcriptome in humans differs from the ischemic stroke and vascular risk factor control blood transcriptomes. Journal of Cerebral Blood Flow & Metabolism.  https://doi.org/10.1177/0271678X18769513.CrossRefGoogle Scholar
  159. Stamova, B., Xu, H., Jickling, G., Bushnell, C., Tian, Y., Ander, B. P., et al. (2010). Gene expression profiling of blood for the prediction of ischemic stroke. Stroke, 41(10), 2171–2177.  https://doi.org/10.1161/STROKEAHA.110.588335.CrossRefPubMedPubMedCentralGoogle Scholar
  160. Stanca, D. M., Marginean, I. C., Soritau, O., Dragos, C., Marginean, M., Muresanu, D. F., et al. (2015). GFAP and antibodies against NMDA receptor subunit NR2 as biomarkers for acute cerebrovascular diseases. Journal of Cellular and Molecular Medicine, 19(9), 2253–2261.  https://doi.org/10.1111/jcmm.12614.CrossRefPubMedPubMedCentralGoogle Scholar
  161. Steadman, C. D., Ray, S., Ng, L. L., & McCann, G. P. (2010). Natriuretic peptides in common valvular heart disease. Journal of the American College of Cardiology, 55(19), 2034–2048.  https://doi.org/10.1016/j.jacc.2010.02.021.CrossRefPubMedGoogle Scholar
  162. Suwanwela, N. C., Chutinet, A., & Phanthumchinda, K. (2006). Inflammatory markers and conventional atherosclerotic risk factors in acute ischemic stroke: Comparative study between vascular disease subtypes. Journal of the Medical Association of Thailand, 89(12), 2021–2027.PubMedGoogle Scholar
  163. Switzer, J. A., Hess, D. C., Ergul, A., Waller, J. L., Machado, L. S., Portik-Dobos, V., et al. (2011). Matrix metalloproteinase-9 in an exploratory trial of intravenous minocycline for acute ischemic stroke. Stroke, 42(9), 2633–2635.  https://doi.org/10.1161/STROKEAHA.111.618215.CrossRefPubMedPubMedCentralGoogle Scholar
  164. Tang, Y., Lu, A., Aronow, B. J., & Sharp, F. R. (2001). Blood genomic responses differ after stroke, seizures, hypoglycemia, and hypoxia: Blood genomic fingerprints of disease. Annals of Neurology, 50(6), 699–707.CrossRefGoogle Scholar
  165. Tang, Y., Xu, H., Du, X., Lit, L., Walker, W., Lu, A., et al. (2006). Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans: A microarray study. Journal of Cerebral Blood Flow & Metabolism, 26(8), 1089–1102.  https://doi.org/10.1038/sj.jcbfm.9600264.CrossRefGoogle Scholar
  166. Tanne, D., Macko, R. F., Lin, Y., Tilley, B. C., Levine, S. R., & Group, N. r. S. S. (2006). Hemostatic activation and outcome after recombinant tissue plasminogen activator therapy for acute ischemic stroke. Stroke, 37(7), 1798–1804.  https://doi.org/10.1161/01.STR.0000226897.43749.27.CrossRefPubMedGoogle Scholar
  167. Thiebaut, A. M., Gauberti, M., Ali, C., De Lizarrondo, M., Vivien, S., Yepes, D., M., et al (2018). The role of plasminogen activators in stroke treatment: Fibrinolysis and beyond. The Lancet Neurology, 17(12), 1121–1132.  https://doi.org/10.1016/S1474-4422(18)30323-5.CrossRefPubMedGoogle Scholar
  168. Thomalla, G., Simonsen, C. Z., Boutitie, F., Andersen, G., Berthezene, Y., Cheng, B., et al. (2018). MRI-guided thrombolysis for stroke with unknown time of onset. The New England Journal of Medicine, 379(7), 611–622.  https://doi.org/10.1056/NEJMoa1804355.CrossRefPubMedGoogle Scholar
  169. Tiedt, S., Duering, M., Barro, C., Kaya, A. G., Boeck, J., Bode, F. J., et al. (2018). Serum neurofilament light: A biomarker of neuroaxonal injury after ischemic stroke. Neurology, 91(14), e1338–e1347.  https://doi.org/10.1212/WNL.0000000000006282.CrossRefPubMedGoogle Scholar
  170. Touboul, P. J., Hennerici, M. G., Meairs, S., Adams, H., Amarenco, P., Bornstein, N., et al. (2012). Mannheim carotid intima-media thickness and plaque consensus (2004-2006-2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovascular Diseases, 34(4), 290–296.  https://doi.org/10.1159/000343145.CrossRefPubMedGoogle Scholar
  171. Tu, L., Liu, X., Li, T., Yang, X., Ren, Y., Zhang, Q., et al. (2018). Admission serum calcium level as a prognostic marker for intracerebral hemorrhage. Neurocritical Care.  https://doi.org/10.1007/s12028-018-0574-0.CrossRefPubMedGoogle Scholar
  172. Tu, W. J., Zhao, S. J., Xu, D. J., & Chen, H. (2014). Serum 25-hydroxyvitamin D predicts the short-term outcomes of Chinese patients with acute ischaemic stroke. Clinical Science (London), 126(5), 339–346.  https://doi.org/10.1042/CS20130284.CrossRefGoogle Scholar
  173. Turaj, W., Slowik, A., Dziedzic, T., Pulyk, R., Adamski, M., Strojny, J., et al. (2006). Increased plasma fibrinogen predicts one-year mortality in patients with acute ischemic stroke. Journal of the Neurological Sciences, 246(1–2), 13–19.  https://doi.org/10.1016/j.jns.2006.01.020.CrossRefPubMedGoogle Scholar
  174. Tuttolomondo, A., Di Sciacca, R., Di Raimondo, D., Serio, A., D’Aguanno, G., La Placa, S., et al. (2009). Plasma levels of inflammatory and thrombotic/fibrinolytic markers in acute ischemic strokes: Relationship with TOAST subtype, outcome and infarct site. Journal of Neuroimmunology, 215(1–2), 84–89.  https://doi.org/10.1016/j.jneuroim.2009.06.019.CrossRefPubMedGoogle Scholar
  175. Twerenbold, R., Boeddinghaus, J., Nestelberger, T., Wildi, K., Rubini Gimenez, M., Badertscher, P., et al. (2017). Clinical use of high-sensitivity cardiac troponin in patients with suspected myocardial infarction. Journal of the American College of Cardiology, 70(8), 996–1012.  https://doi.org/10.1016/j.jacc.2017.07.718.CrossRefPubMedGoogle Scholar
  176. Uno, M., Kitazato, K. T., Nishi, K., Itabe, H., & Nagahiro, S. (2003). Raised plasma oxidised LDL in acute cerebral infarction. Journal of Neurology, Neurosurgery, and Psychiatry, 74(3), 312–316.CrossRefGoogle Scholar
  177. Urbich, C., Kuehbacher, A., & Dimmeler, S. (2008). Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovascular Research, 79(4), 581–588.  https://doi.org/10.1093/cvr/cvn156.CrossRefPubMedGoogle Scholar
  178. Vahedi, K., Hofmeijer, J., Juettler, E., Vicaut, E., George, B., Algra, A., et al. (2007). Early decompressive surgery in malignant infarction of the middle cerebral artery: A pooled analysis of three randomised controlled trials. The Lancet Neurology, 6(3), 215–222.  https://doi.org/10.1016/S1474-4422(07)70036-4.CrossRefPubMedGoogle Scholar
  179. VanGilder, R. L., Davidov, D. M., Stinehart, K. R., Huber, J. D., Turner, R. C., Wilson, K. S., et al. (2014). C-reactive protein and long-term ischemic stroke prognosis. Journal of Clinical Neuroscience, 21(4), 547–553.  https://doi.org/10.1016/j.jocn.2013.06.015.CrossRefPubMedGoogle Scholar
  180. Wang, H., Cheng, Y., Chen, S., Li, X., Zhu, Z., & Zhang, W. (2018). Impact of elevated hemoglobin A1c levels on functional outcome in patients with acute ischemic stroke. Journal of Stroke and Cerebrovascular Diseases.  https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.10.026.CrossRefPubMedPubMedCentralGoogle Scholar
  181. Wang, J., Ruan, J., Zhu, M., Yang, J., Du, S., Xu, P., et al. (2018). Predictive value of long noncoding RNA ZFAS1 in patients with ischemic stroke. Clinical and Experimental Hypertension.  https://doi.org/10.1080/10641963.2018.1529774.CrossRefPubMedGoogle Scholar
  182. White, H. D., Simes, J., Stewart, R. A., Blankenberg, S., Barnes, E. H., Marschner, I. C., et al. (2013). Changes in lipoprotein-Associated phospholipase A2 activity predict coronary events and partly account for the treatment effect of pravastatin: Results from the Long-Term Intervention with Pravastatin in Ischemic Disease study. Journal of the American Heart Association, 2(5), e000360.  https://doi.org/10.1161/JAHA.113.000360.CrossRefPubMedPubMedCentralGoogle Scholar
  183. Whiteley, W., Chong, W. L., Sengupta, A., & Sandercock, P. (2009a). Blood markers for the prognosis of ischemic stroke: A systematic review. Stroke, 40(5), e380–e389.  https://doi.org/10.1161/STROKEAHA.108.528752.CrossRefPubMedGoogle Scholar
  184. Whiteley, W., Jackson, C., Lewis, S., Lowe, G., Rumley, A., Sandercock, P., et al. (2009b). Inflammatory markers and poor outcome after stroke: A prospective cohort study and systematic review of interleukin-6. PLoS Medicine, 6(9), e1000145.  https://doi.org/10.1371/journal.pmed.1000145.CrossRefPubMedPubMedCentralGoogle Scholar
  185. Whiteley, W., Tian, Y., & Jickling, G. C. (2012a). Blood biomarkers in stroke: Research and clinical practice. International Journal of Stroke, 7(5), 435–439.  https://doi.org/10.1111/j.1747-4949.2012.00784.x.CrossRefPubMedGoogle Scholar
  186. Whiteley, W., Tseng, M. C., & Sandercock, P. (2008). Blood biomarkers in the diagnosis of ischemic stroke: A systematic review. Stroke, 39(10), 2902–2909.  https://doi.org/10.1161/STROKEAHA.107.511261.CrossRefPubMedGoogle Scholar
  187. Whiteley, W., Wardlaw, J., Dennis, M., Lowe, G., Rumley, A., Sattar, N., et al. (2012b). The use of blood biomarkers to predict poor outcome after acute transient ischemic attack or ischemic stroke. Stroke, 43(1), 86–91.  https://doi.org/10.1161/STROKEAHA.111.634089.CrossRefPubMedGoogle Scholar
  188. Wiseman, S., Marlborough, F., Doubal, F., Webb, D. J., & Wardlaw, J. (2014). Blood markers of coagulation, fibrinolysis, endothelial dysfunction and inflammation in lacunar stroke versus non-lacunar stroke and non-stroke: Systematic review and meta-analysis. Cerebrovascular Diseases, 37(1), 64–75.  https://doi.org/10.1159/000356789.CrossRefPubMedGoogle Scholar
  189. Wunderlich, M. T., Lins, H., Skalej, M., Wallesch, C. W., & Goertler, M. (2006). Neuron-specific enolase and tau protein as neurobiochemical markers of neuronal damage are related to early clinical course and long-term outcome in acute ischemic stroke. Clinical Neurology and Neurosurgery, 108(6), 558–563.  https://doi.org/10.1016/j.clineuro.2005.12.006.CrossRefPubMedGoogle Scholar
  190. Wyseure, T., Rubio, M., Denorme, F., Martinez de Lizarrondo, S., Peeters, M., Gils, A., et al. (2015). Innovative thrombolytic strategy using a heterodimer diabody against TAFI and PAI-1 in mouse models of thrombosis and stroke. Blood, 125(8), 1325–1332.  https://doi.org/10.1182/blood-2014-07-588319.CrossRefPubMedGoogle Scholar
  191. Xie, S., Lu, L., Liu, L., Bi, G., & Zheng, L. (2016). Progranulin and short-term outcome in patients with acute ischaemic stroke. European Journal of Neurology, 23(3), 648–655.  https://doi.org/10.1111/ene.12920.CrossRefPubMedGoogle Scholar
  192. Xiong, L., Yang, Y., Zhang, M., & Xu, W. (2015). The use of serum glial fibrillary acidic protein test as a promising tool for intracerebral hemorrhage diagnosis in Chinese patients and prediction of the short-term functional outcomes. Neurological Sciences, 36(11), 2081–2087.  https://doi.org/10.1007/s10072-015-2317-8.CrossRefPubMedGoogle Scholar
  193. Xu, Q., Tian, Y., Peng, H., & Li, H. (2017). Copeptin as a biomarker for prediction of prognosis of acute ischemic stroke and transient ischemic attack: A meta-analysis. Hypertension Research, 40(5), 465–471.  https://doi.org/10.1038/hr.2016.165.CrossRefPubMedGoogle Scholar
  194. Xu, T., Zuo, P., Cao, L., Gao, Z., & Ke, K. (2018). Omentin-1 is associated with carotid plaque instability among ischemic stroke patients. Journal of Atherosclerosis and Thrombosis, 25(6), 505–511.  https://doi.org/10.5551/jat.42135.CrossRefPubMedPubMedCentralGoogle Scholar
  195. Yaghi, S., Bernstein, R. A., Passman, R., Okin, P. M., & Furie, K. L. (2017a). Cryptogenic stroke: Research and practice. Circulation Research, 120(3), 527–540.  https://doi.org/10.1161/CIRCRESAHA.116.308447.CrossRefPubMedGoogle Scholar
  196. Yaghi, S., Willey, J. Z., Cucchiara, B., Goldstein, J. N., Gonzales, N. R., Khatri, P., et al. (2017b). Treatment and outcome of hemorrhagic transformation after intravenous alteplase in acute ischemic stroke: A scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 48(12), e343–e361.  https://doi.org/10.1161/STR.0000000000000152.CrossRefPubMedGoogle Scholar
  197. Yip, H. K., Lu, C. H., Yang, C. H., Chang, H. W., Hung, W. C., Cheng, C. I., et al. (2006). Levels and value of platelet activity in patients with severe internal carotid artery stenosis. Neurology, 66(6), 804–808.  https://doi.org/10.1212/01.wnl.0000208220.04165.05.CrossRefPubMedGoogle Scholar
  198. Yoon, C. W., Kim, S. J., Bang, O. Y., Chung, C. S., Lee, K. H., & Kim, G. M. (2012). Premorbid warfarin use and lower D-dimer levels are associated with a spontaneous early improvement in an atrial fibrillation-related stroke. Journal of Thrombosis and Haemostasis, 10(11), 2394–2396.  https://doi.org/10.1111/j.1538-7836.2012.04909.x.CrossRefPubMedGoogle Scholar
  199. Zhan, X., Jickling, G. C., Tian, Y., Stamova, B., Xu, H., Ander, B. P., et al. (2011). Transient ischemic attacks characterized by RNA profiles in blood. Neurology, 77(19), 1718–1724.  https://doi.org/10.1212/WNL.0b013e318236eee6.CrossRefPubMedPubMedCentralGoogle Scholar
  200. Zhang, Z. G., Wang, C., Wang, J., Zhang, Z., Yang, Y. L., Gao, L., et al. (2015). Prognostic value of mannose-binding lectin: 90-day outcome in patients with acute ischemic stroke. Molecular Neurobiology, 51(1), 230–239.  https://doi.org/10.1007/s12035-014-8682-0.CrossRefPubMedGoogle Scholar
  201. Zhao, X., Yu, Y., Xu, W., Dong, L., Wang, Y., Gao, B., et al. (2016). Apolipoprotein A1-unique peptide as a diagnostic biomarker for acute ischemic stroke. International Journal of Molecular Sciences, 17(4), 458.  https://doi.org/10.3390/ijms17040458.CrossRefPubMedPubMedCentralGoogle Scholar
  202. Zhou, S., Bao, J., Wang, Y., & Pan, S. (2016). S100beta as a biomarker for differential diagnosis of intracerebral hemorrhage and ischemic stroke. Neurological Research, 38(4), 327–332.  https://doi.org/10.1080/01616412.2016.1152675.CrossRefPubMedGoogle Scholar
  203. Zhu, Y. Y., Zhang, J. L., Liu, L., Han, Y., Ge, X., & Zhao, S. (2018). Evaluation of serum retinol-binding protein-4 levels as a biomarker of poor short-term prognosis in ischemic stroke. Bioscience Reports.  https://doi.org/10.1042/BSR20180786.CrossRefPubMedPubMedCentralGoogle Scholar
  204. Zhu, Z., Tang, W., Ge, L., Han, X., & Dong, Q. (2018). The value of plasma fibrillin-1 level in patients with spontaneous cerebral artery dissection. Neurology, 90(9), e732–e737.  https://doi.org/10.1212/WNL.0000000000005027.CrossRefPubMedGoogle Scholar
  205. Zimmermann-Ivol, C. G., Burkhard, P. R., Floch-Rohr, L., Allard, L., Hochstrasser, D. F., & Sanchez, J. C. (2004). Fatty acid binding protein as a serum marker for the early diagnosis of stroke: A pilot study. Molecular & Cellular Proteomics, 3(1), 66–72.  https://doi.org/10.1074/mcp.M300066-MCP200.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Neuroscience and Mental Health Institute, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonCanada
  2. 2.Division of Neurology, Department of MedicineUniversity of AlbertaEdmontonCanada

Personalised recommendations