Advertisement

NeuroMolecular Medicine

, Volume 21, Issue 1, pp 75–84 | Cite as

Variants of the OLIG2 Gene are Associated with Cerebral Palsy in Chinese Han Infants with Hypoxic–Ischemic Encephalopathy

  • Liya Sun
  • Lei Xia
  • Mingtai Wang
  • Dengna Zhu
  • Yangong Wang
  • Dan Bi
  • Juan Song
  • Caiyun Ma
  • Chao Gao
  • Xiaoli Zhang
  • Yanyan Sun
  • Xiaoyang Wang
  • Changlian ZhuEmail author
  • Qinghe XingEmail author
Original Paper

Abstract

Cerebral palsy (CP) is a leading cause of neurological disability among young children. Congenial and adverse perinatal clinical conditions, such as genetic factors, perinatal infection, and asphyxia, are risk factors for CP. Oligodendrocyte transcription factor (OLIG2) is a protein that is expressed in brain oligodendrocyte cells and is involved in neuron repair after brain injury. In this study, we employed a Chinese Han cohort of 763 CP infants and 738 healthy controls to study the association of OLIG2 gene polymorphisms with CP. We found marginal association of the SNP rs6517135 with CP (p = 0.044) at the genotype level, and the association was greatly strengthened when we focused on the subgroup of CP infants who suffered from hypoxic–ischemic encephalopathy (HIE) after birth, with p = 0.003 (OR = 0.558) at the allele level and p = 0.007 at the genotype level, indicating a risk-associated role of the T allele of the SNP rs6517135 under HIE conditions. The haplotype CTTG for rs6517135–rs1005573–rs6517137–rs9653711 in OLIG2 was also significantly associated with the occurrence of CP in infants with HIE (p = 0.01, OR = 0.521). Our results indicate that in the Han Chinese population, the polymorphisms of OLIG2 were associated with CP, especially in patients who had suffered HIE injury. This finding could be used to develop personalized care for infants with high susceptibility to CP.

Keywords

Cerebral palsy OLIG2 HIE SNP Hypoxia Ischemia 

Notes

Acknowledgements

This work was supported by the Shanghai Municipal Commission of Science and Technology Program (14DJ1400101), the Fourth Round of the Shanghai Three-year Action Plan on Public Health Discipline and Talent Program: Women and Children’s Health (No. 15GWZK0401), the National Key Research and Development Plan for Stem Cell and Transformation Research (2017YFA0104202), the National Natural Science Foundation of China (Grants 31611130035, 31371274, 81300556, 81571503, 81771655, U1604165), the VINNMER Marie Curie international qualification (VINNOVA, 2015-04780), the Swedish Medical Research Council (VR 2013-2475, VR 2015-06276), Swedish governmental grants to researchers in the public health service (ALFGBG-429271;ALFGBG-429801), and the 973 Projects (2011CB710801).

Author Contributions

LS analyzed the data and prepared the manuscript. LX and MW collected the clinical data and blood samples. DZ, JS, CM, CG, XZ and YS helped collect the clinical data and blood samples. YW and DB performed the MassARRAY genotyping experiment. QX guided the experiment and data analysis. QX, CZ and XW conceived the study. QX and CZ reviewed and edited the manuscript and gave the final approval for publication of this version of the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest. The submitted work was carried out in the absence of any personal, professional or financial relationships that could potentially be construed as a conflict of interest.

Supplementary material

12017_2018_8510_MOESM1_ESM.xlsx (19 kb)
Supplementary material 1 (XLSX 18 KB)

References

  1. Aucott, S. W., Donohue, P. K., & Northington, F. J. (2004). Increased morbidity in severe early intrauterine growth restriction. Journal of Perinatology, 24(7), 435–440.  https://doi.org/10.1038/sj.jp.7211116.Google Scholar
  2. Avasiloaiei, A., Dimitriu, C., Moscalu, M., Paduraru, L., & Stamatin, M. (2013). High-dose phenobarbital or erythropoietin for the treatment of perinatal asphyxia in term newborns. Pediatrics International, 55(5), 589–593.  https://doi.org/10.1111/ped.12121.Google Scholar
  3. Baburamani, A. A., Ek, C. J., Walker, D. W., & Castillo-Melendez, M. (2012). Vulnerability of the developing brain to hypoxic-ischemic damage: contribution of the cerebral vasculature to injury and repair? Frontiers in Physiology, 3, 424.  https://doi.org/10.3389/fphys.2012.00424.Google Scholar
  4. Bax, M., Goldstein, M., Rosenbaum, P., Leviton, A., Paneth, N., & Dan, B., Executive Committee for the Definition of Cerebral, P. (2005). Proposed definition and classification of cerebral palsy. Developmental Medicine & Child Neurology, 47(8), 571–576.Google Scholar
  5. Benders, M. J., Kersbergen, K. J., & de Vries, L. S. (2014). Neuroimaging of white matter injury, intraventricular and cerebellar hemorrhage. Clinics in Perinatology, 41(1), 69–82.  https://doi.org/10.1016/j.clp.2013.09.005.Google Scholar
  6. Bi, D., Chen, M., Zhang, X., Wang, H., Xia, L., Shang, Q., et al. (2014). The association between sex-related interleukin-6 gene polymorphisms and the risk for cerebral palsy. Journal of Neuroinflammation, 11, 100.  https://doi.org/10.1186/1742-2094-11-100.Google Scholar
  7. Buffo, A., Vosko, M. R., Erturk, D., Hamann, G. F., Jucker, M., Rowitch, D., et al. (2005). Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. Proceedings of the National Academy of Sciences of the United States of America, 102(50), 18183–18188.  https://doi.org/10.1073/pnas.0506535102.Google Scholar
  8. Campbell, M. K., Cartier, S., Xie, B., Kouniakis, G., Huang, W., & Han, V. (2012). Determinants of small for gestational age birth at term. Paediatric and Perinatal Epidemiology, 26(6), 525–533.  https://doi.org/10.1111/j.1365-3016.2012.01319.x.Google Scholar
  9. Derrick, M., Drobyshevsky, A., Ji, X., & Tan, S. (2007). A model of cerebral palsy from fetal hypoxia-ischemia. Stroke, 38(2 Suppl), 731–735.  https://doi.org/10.1161/01.STR.0000251445.94697.64.Google Scholar
  10. Dizon, M., Szele, F., & Kessler, J. A. (2010). Hypoxia-ischemia induces an endogenous reparative response by local neural progenitors in the postnatal mouse telencephalon. Developmental Neuroscience, 32(3), 173–183.  https://doi.org/10.1159/000313468.Google Scholar
  11. Downs, J., Blackmore, A. M., Epstein, A., Skoss, R., Langdon, K., & Jacoby, P., Cerebral Palsy Mental Health Group. (2018). The prevalence of mental health disorders and symptoms in children and adolescents with cerebral palsy: A systematic review and meta-analysis. Developmental Medicine & Child Neurology, 60(1), 30–38.  https://doi.org/10.1111/dmcn.13555.Google Scholar
  12. Edwards, A. D., Brocklehurst, P., Gunn, A. J., Halliday, H., Juszczak, E., Levene, M., et al. (2010). Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: Synthesis and meta-analysis of trial data. BMJ, 340, c363.  https://doi.org/10.1136/bmj.c363.Google Scholar
  13. Fathali, N., Lekic, T., Zhang, J. H., & Tang, J. (2010). Long-term evaluation of granulocyte-colony stimulating factor on hypoxic-ischemic brain damage in infant rats. Intensive Care Medicine, 36(9), 1602–1608.  https://doi.org/10.1007/s00134-010-1913-6.Google Scholar
  14. Ferrell, G., Lu, M., Stoddard, P., Sammel, M. D., Romero, R., Strauss, J. F. 3rd, & Matthews, C. A. (2009). A single nucleotide polymorphism in the promoter of the LOXL1 gene and its relationship to pelvic organ prolapse and preterm premature rupture of membranes. Reproductive Sciences, 16(5), 438–446.  https://doi.org/10.1177/1933719108330567.Google Scholar
  15. Gaber, Z. B., & Novitch, B. G. (2011). All the embryo’s a stage, and Olig2 in its time plays many parts. Neuron, 69(5), 833–835.  https://doi.org/10.1016/j.neuron.2011.02.037.Google Scholar
  16. Georgieva, L., Moskvina, V., Peirce, T., Norton, N., Bray, N. J., Jones, L., et al. (2006). Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12469–12474.  https://doi.org/10.1073/pnas.0603029103.Google Scholar
  17. Graham, H. K., Rosenbaum, P., Paneth, N., Dan, B., Lin, J. P., Damiano, D. L., et al. (2016). Cerebral palsy. Nature Reviews Disease Primers, 2, 15082.  https://doi.org/10.1038/nrdp.2015.82.Google Scholar
  18. Hou, X., Sun, J., & Yu, L. (2009). Fetal growth curve tracing and its clinical significance. Chinese Journal of Primary Medicine and Pharmacy, 16(8), 1455–1456.Google Scholar
  19. Huang, K., Tang, W., Tang, R., Xu, Z., He, Z., Li, Z., et al. (2008). Positive association between OLIG2 and schizophrenia in the Chinese Han population. Human Genetics, 122(6), 659–660.  https://doi.org/10.1007/s00439-007-0434-z.Google Scholar
  20. Hustin, J., Jauniaux, E., & Schaaps, J. P. (1990). Histological study of the materno-embryonic interface in spontaneous abortion. Placenta, 11(6), 477–486.Google Scholar
  21. Kosty, J., Lu, F., Kupp, R., Mehta, S., & Lu, Q. R. (2017). Harnessing OLIG2 function in tumorigenicity and plasticity to target malignant gliomas. Cell Cycle, 16(18), 1654–1660.  https://doi.org/10.1080/15384101.2017.1361062.Google Scholar
  22. Kruer, M. C., Jepperson, T., Dutta, S., Steiner, R. D., Cottenie, E., Sanford, L., et al. (2013). Mutations in gamma adducin are associated with inherited cerebral palsy. Annals in Neurology, 74(6), 805–814.  https://doi.org/10.1002/ana.23971.Google Scholar
  23. Kurinczuk, J. J., White-Koning, M., & Badawi, N. (2010). Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Human Development, 86(6), 329–338.  https://doi.org/10.1016/j.earlhumdev.2010.05.010.Google Scholar
  24. Lang, U., Baker, R. S., Braems, G., Zygmunt, M., Kunzel, W., & Clark, K. E. (2003). Uterine blood flow—A determinant of fetal growth. European Journal of Obstetrics & Gynecology and Reproductive Biology, 110(Suppl 1), S55–S61.Google Scholar
  25. Li, P., Li, M., Tang, X., Wang, S., Zhang, Y. A., & Chen, Z. (2016). Accelerated generation of oligodendrocyte progenitor cells from human induced pluripotent stem cells by forced expression of Sox10 and Olig2. Science China Life Sciences, 59(11), 1131–1138.  https://doi.org/10.1007/s11427-016-0165-3.Google Scholar
  26. Liu, G., Li, Z. G., & Gao, J. S. (2017). Hypothermia in neonatal hypoxic-ischemic encephalopathy (HIE). European Review for Medical and Pharmacological Sciences, 21(4 Suppl), 50–53.Google Scholar
  27. Lu, J., Lian, G., Zhou, H., Esposito, G., Steardo, L., Delli-Bovi, L. C., et al. (2012). OLIG2 over-expression impairs proliferation of human Down syndrome neural progenitors. Human Molecular Genetics, 21(10), 2330–2340.  https://doi.org/10.1093/hmg/dds052.Google Scholar
  28. Martinez-Biarge, M., Diez-Sebastian, J., Wusthoff, C. J., Mercuri, E., & Cowan, F. M. (2013). Antepartum and intrapartum factors preceding neonatal hypoxic-ischemic encephalopathy. Pediatrics, 132(4), e952–e959.  https://doi.org/10.1542/peds.2013-0511.Google Scholar
  29. McIntyre, S., Taitz, D., Keogh, J., Goldsmith, S., Badawi, N., & Blair, E. (2013). A systematic review of risk factors for cerebral palsy in children born at term in developed countries. Developmental Medicine & Child Neurology, 55(6), 499–508.  https://doi.org/10.1111/dmcn.12017.Google Scholar
  30. Meberg, A., & Broch, H. (2004). Etiology of cerebral palsy. Journal of Perinatal Medicine, 32(5), 434–439.  https://doi.org/10.1515/JPM.2004.143.Google Scholar
  31. Mei, F., Wang, H., Liu, S., Niu, J., Wang, L., He, Y., et al. (2013). Stage-specific deletion of Olig2 conveys opposing functions on differentiation and maturation of oligodendrocytes. Journal of Neuroscience, 33(19), 8454–8462.  https://doi.org/10.1523/JNEUROSCI.2453-12.2013.Google Scholar
  32. Mie, M., Kaneko, M., Henmi, F., & Kobatake, E. (2012). Induction of motor neuron differentiation by transduction of Olig2 protein. Biochemical and Biophysical Research Communications, 427(3), 531–536.  https://doi.org/10.1016/j.bbrc.2012.09.090.Google Scholar
  33. Mitkus, S. N., Hyde, T. M., Vakkalanka, R., Kolachana, B., Weinberger, D. R., Kleinman, J. E., et al. (2008). Expression of oligodendrocyte-associated genes in dorsolateral prefrontal cortex of patients with schizophrenia. Schizophrenia Research, 98(1–3), 129–138.  https://doi.org/10.1016/j.schres.2007.09.032.Google Scholar
  34. Murabayashi, M., Minato, M., Okuhata, Y., Makimoto, M., Hosono, S., Masaoka, N., et al. (2008). Kinetics of serum S100B in newborns with intracranial lesions. Pediatrics International, 50(1), 17–22.  https://doi.org/10.1111/j.1442-200X.2007.02506.x.Google Scholar
  35. Northington, F. J., Chavez-Valdez, R., & Martin, L. J. (2011). Neuronal cell death in neonatal hypoxia-ischemia. Annals of Neurology, 69(5), 743–758.  https://doi.org/10.1002/ana.22419.Google Scholar
  36. Ono, K., Takebayashi, H., & Ikenaka, K. (2009). Olig2 transcription factor in the developing and injured forebrain; cell lineage and glial development. Molecules and Cells, 27(4), 397–401.  https://doi.org/10.1007/s10059-009-0067-2.Google Scholar
  37. Park, D., Shin, K., Choi, E. K., Choi, Y., Jang, J. Y., Kim, J., et al. (2015). Protective effects of N-acetyl-L-cysteine in human oligodendrocyte progenitor cells and restoration of motor function in neonatal rats with hypoxic-ischemic encephalopathy. Evidence-Based Complementary and Alternative Medicine, 2015, 764251.  https://doi.org/10.1155/2015/764251.Google Scholar
  38. Pharoah, P. O., Cooke, T., Rosenbloom, L., & Cooke, R. W. (1987). Effects of birth weight, gestational age, and maternal obstetric history on birth prevalence of cerebral palsy. Archives of Disease in Childhood, 62(10), 1035–1040.Google Scholar
  39. Prata, D. P., Kanaan, R. A., Barker, G. J., Shergill, S., Woolley, J., Georgieva, L., et al. (2013). Risk variant of oligodendrocyte lineage transcription factor 2 is associated with reduced white matter integrity. Human Brain Mapping, 34(9), 2025–2031.  https://doi.org/10.1002/hbm.22045.Google Scholar
  40. Rajatileka, S., Odd, D., Robinson, M. T., Spittle, A. C., Dwomoh, L., Williams, M., et al. (2018). Variants of the EAAT2 glutamate transporter Gene promoter are associated with cerebral palsy in preterm infants. Molecular Neurobiology, 55(3), 2013–2024.  https://doi.org/10.1007/s12035-017-0462-1.Google Scholar
  41. Rocha-Ferreira, E., & Hristova, M. (2016). Plasticity in the neonatal brain following hypoxic-ischaemic injury. Neural Plasticity 2016, 4901014.  https://doi.org/10.1155/2016/4901014.Google Scholar
  42. Rumajogee, P., Bregman, T., Miller, S. P., Yager, J. Y., & Fehlings, M. G. (2016). Rodent hypoxia-ischemia models for cerebral palsy research: A systematic review. Frontiers in Neurology, 7, 57.  https://doi.org/10.3389/fneur.2016.00057.Google Scholar
  43. Sagner, A., Gaber, Z. B., Delile, J., Kong, J. H., Rousso, D. L., Pearson, C. A., et al. (2018). Olig2 and Hes regulatory dynamics during motor neuron differentiation revealed by single cell transcriptomics. PLoS Biology, 16(2), e2003127.  https://doi.org/10.1371/journal.pbio.2003127.Google Scholar
  44. Segovia, K. N., McClure, M., Moravec, M., Luo, N. L., Wan, Y., Gong, X., et al. (2008). Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury. Annals of Neurology, 63(4), 520–530.  https://doi.org/10.1002/ana.21359.Google Scholar
  45. Sellier, E., Surman, G., Himmelmann, K., Andersen, G., Colver, A., Krageloh-Mann, I., et al. (2010). Trends in prevalence of cerebral palsy in children born with a birthweight of 2,500 g or over in Europe from 1980 to 1998. European Journal of Epidemiology, 25(9), 635–642.  https://doi.org/10.1007/s10654-010-9474-0.Google Scholar
  46. Shah, G. S., Singh, R., & Das, B. K. (2005). Outcome of newborns with birth asphyxia. Journal of the Nepal Medical Association, 44(158), 44–46.Google Scholar
  47. Shankaran, S. (2012). Hypoxic-ischemic encephalopathy and novel strategies for neuroprotection. Clinics in Perinatology, 39(4), 919–929.  https://doi.org/10.1016/j.clp.2012.09.008.Google Scholar
  48. Shea, S. E. (2012). Intellectual disability (mental retardation). Pediatrics in Review, 33(3), 110–121.  https://doi.org/10.1542/pir.33-3-110. quiz 120 – 111.Google Scholar
  49. Sibai, B. M., & Stella, C. L. (2009). Diagnosis and management of atypical preeclampsia-eclampsia. American Journal of Obstetrics and Gynecology.  https://doi.org/10.1016/j.ajog.2008.07.048.Google Scholar
  50. Silbereis, J. C., Huang, E. J., Back, S. A., & Rowitch, D. H. (2010). Towards improved animal models of neonatal white matter injury associated with cerebral palsy. Disease Models & Mechanisms, 3(11–12), 678–688.  https://doi.org/10.1242/dmm.002915.Google Scholar
  51. Soraisham, A. S., Trevenen, C., Wood, S., Singhal, N., & Sauve, R. (2013). Histological chorioamnionitis and neurodevelopmental outcome in preterm infants. Journal of Perinatology, 33(1), 70–75.  https://doi.org/10.1038/jp.2012.49.Google Scholar
  52. Stewart, S. E., Platko, J., Fagerness, J., Birns, J., Jenike, E., Smoller, J. W., et al. (2007). A genetic family-based association study of Olig2 in obsessive-compulsive disorder. Archives of General Psychiatry, 64(2), 209–214.  https://doi.org/10.1001/archpsyc.64.2.209.Google Scholar
  53. Strunk, T., Inder, T., Wang, X., Burgner, D., Mallard, C., & Levy, O. (2014). Infection-induced inflammation and cerebral injury in preterm infants. The Lancet Infectious Diseases, 14(8), 751–762.  https://doi.org/10.1016/S1473-3099(14)70710-8.Google Scholar
  54. Sun, Y., Meijer, D. H., Alberta, J. A., Mehta, S., Kane, M. F., Tien, A. C., et al. (2011). Phosphorylation state of Olig2 regulates proliferation of neural progenitors. Neuron, 69(5), 906–917.  https://doi.org/10.1016/j.neuron.2011.02.005.Google Scholar
  55. Tau, G. Z., & Peterson, B. S. (2010). Normal development of brain circuits. Neuropsychopharmacology, 35(1), 147–168.  https://doi.org/10.1038/npp.2009.115.Google Scholar
  56. Thornton, C., Leaw, B., Mallard, C., Nair, S., Jinnai, M., & Hagberg, H. (2017). Cell death in the developing brain after hypoxia-ischemia. Frontiers in Cellular Neuroscience, 11, 248.  https://doi.org/10.3389/fncel.2017.00248.Google Scholar
  57. Tsigelny, I. F., Kouznetsova, V. L., Lian, N., & Kesari, S. (2016). Molecular mechanisms of Olig2 transcription factor in brain cancer. Oncotarget.  https://doi.org/10.18632/oncotarget.10628.Google Scholar
  58. van Eyk, C. L., Corbett, M. A., & Maclennan, A. H. (2018). The emerging genetic landscape of cerebral palsy. Handbook of Clinical Neurology, 147, 331–342.  https://doi.org/10.1016/B978-0-444-63233-3.00022-1.Google Scholar
  59. Villamor, E., Tedroff, K., Peterson, M., Johansson, S., Neovius, M., Petersson, G., & Cnattingius, S. (2017). Association between maternal body mass index in early pregnancy and incidence of cerebral palsy. JAMA, 317(9), 925–936.  https://doi.org/10.1001/jama.2017.0945.Google Scholar
  60. Watzlawik, J. O., Kahoud, R. J., O’Toole, R. J., White, K. A., Ogden, A. R., Painter, M. M., et al. (2015). Abbreviated exposure to hypoxia is sufficient to induce CNS dysmyelination, modulate spinal motor neuron composition, and impair motor development in neonatal mice. PLoS ONE, 10(5), e0128007.  https://doi.org/10.1371/journal.pone.0128007.Google Scholar
  61. Wegener, A., Deboux, C., Bachelin, C., Frah, M., Kerninon, C., Seilhean, D., et al. (2015). Gain of Olig2 function in oligodendrocyte progenitors promotes remyelination. Brain, 138(Pt 1), 120–135.  https://doi.org/10.1093/brain/awu375.Google Scholar
  62. Wimalasundera, N., & Stevenson, V. L. (2016). Cerebral palsy. Practical Neurology, 16(3), 184–194.  https://doi.org/10.1136/practneurol-2015-001184.Google Scholar
  63. Xie, C., Ginet, V., Sun, Y., Koike, M., Zhou, K., Li, T., et al. (2016). Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy, 12(2), 410–423.  https://doi.org/10.1080/15548627.2015.1132134.Google Scholar
  64. Xing, X., & Guo, W. (2013). Obstetrics and gynecology (8th ed.). Beijing: People’s Medical Publishing House.Google Scholar
  65. Xu, J., Xia, L., Shang, Q., Du, J., Zhu, D., Wang, Y., et al. (2017). A variant of the autophagy-related 5 gene is associated with child cerebral palsy. Frontiers in Cellular Neuroscience, 11, 407.  https://doi.org/10.3389/fncel.2017.00407.Google Scholar
  66. Zhang, F., Liu, C., Qian, L., Hou, H., & Guo, Z. (2016). Diffusion tensor imaging of white matter injury caused by prematurity-induced hypoxic-ischemic brain damage. Medical Science Monitor, 22, 2167–2174.Google Scholar
  67. Zhu, C., Kang, W., Xu, F., Cheng, X., Zhang, Z., Jia, L., et al. (2009). Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy. Pediatrics, 124(2), e218–e226.  https://doi.org/10.1542/peds.2008-3553.Google Scholar
  68. Zuo, H., Wood, W. M., Sherafat, A., Hill, R. A., Lu, Q. R., & Nishiyama, A. (2018). Age-dependent decline in fate switch from NG2 cells to astrocytes after Olig2 deletion. Journal of Neuroscience, 38(9), 2359–2371.  https://doi.org/10.1523/JNEUROSCI.0712-17.2018.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Biomedical Science and Children’s HospitalFudan UniversityShanghaiChina
  2. 2.Henan Key Laboratory of Child Brain Injury, Department of PediatricsThe 3rd Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
  3. 3.Nursing SchoolSias International UniversityZhengzhouChina
  4. 4.Shanghai Center for Women and Children’s HealthShanghaiChina
  5. 5.Child Rehabilitation CenterThe 3rd Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
  6. 6.Department of PediatricsChildren’s Hospital of Zhengzhou University and Henan Children’s HospitalZhengzhouChina
  7. 7.Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
  8. 8.Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghaiChina
  9. 9.Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
  10. 10.Henan Key Laboratory of Child Brain InjuryZhengzhou UniversityZhengzhouChina

Personalised recommendations