Advertisement

Central Orexin A Affects Reproductive Axis by Modulation of Hypothalamic Kisspeptin/Neurokinin B/Dynorphin Secreting Neurons in the Male Wistar Rats

  • Abdolkarim Hosseini
  • Homayoun Khazali
Original Paper
  • 8 Downloads

Abstract

It is an established fact that orexin plays an important role in regulating the reproductive axis and the secretions of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH). However, its precise cellular and molecular mechanisms are not fully recognized. Accordingly, the aim of the present study is to find out whether the central injection of orexin A (OXA) and its antagonists, SB-334867 (as orexin receptor antagonist 1; OX1RA) and JNJ-10397049 (as orexin receptor antagonist 2; OX2RA), either alone or in combination, can leave any impact on the reproductive axis (either hormonal or behavioral) in the male Wistar rats. Furthermore, in order to see whether OXA signals can be relayed through the pathway of kisspeptin/neurokinin B/dynorphin (known as KNDy neurons, a neural network which works upstream of GnRH neurons) or not, the relative gene expression of these neuropeptides were measured. Overall, the data from radioimmunoassay revealed that OXA significantly decreases the mean serum level of LH and testosterone and, in a similar vein, its antagonists neutralize this impact. Moreover, data from real-time quantitative PCR indicated that OXA has significantly reduced the hypothalamic expression of Gnrh. In this line, the gene expressions of Kisspeptin and Neurokinin b decreased. However, OXA antagonists neutralize this impact. Also, the expression of Dynorphin gene was upregulated by the following application of the OXA. The results of this study are related to the impact of orexin on the reproductive axis. It is recommended that KNDy neurons as the interneural pathway relay the information of orexin to the GnRH neurons.

Keywords

Orexin Kisspeptin Gonadotropin-releasing hormone Luteinizing hormone KNDy neurons 

Notes

Acknowledgements

Hereby the authors confirm that there is no conflict of interests in the present research. This research is supported financially by grant from Shahid Beheshti University.

References

  1. Agmo, A., Paredes, R., & Fernandez, H. (1987). Differential effects of GABA transaminase inhibitors on sexual behavior, locomotor activity, and motor execution in the male rat. Pharmacology Biochemistry and Behavior, 28(1), 47–52.CrossRefGoogle Scholar
  2. Amstalden, M., Coolen, L. M., Hemmerle, A. M., Billings, H. J., Connors, J. M., Goodman, R. L., et al. (2010). Neurokinin 3 receptor immunoreactivity in the septal region, preoptic area and hypothalamus of the female sheep: Colocalisation in neurokinin B cells of the arcuate nucleus but not in gonadotrophin-releasing hormone neurones. Journal of Neuroendocrinology, 22(1), 1–12.  https://doi.org/10.1111/j.1365-2826.2009.01930.x.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anderson, R. I., Moorman, D. E., & Becker, H. C. (2018). Contribution of dynorphin and orexin neuropeptide systems to the motivational effects of alcohol. Handbook of Experimental Pharmacology.  https://doi.org/10.1007/164_2018_100.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bai, Y. J., Li, Y. H., Zheng, X. G., Han, J., Yang, X. Y., & Sui, N. (2009). Orexin A attenuates unconditioned sexual motivation in male rats. Pharmacology Biochemistry and Behavior, 91(4), 581–589.  https://doi.org/10.1016/j.pbb.2008.09.018.CrossRefGoogle Scholar
  5. Baimel, C., Lau, B. K., Qiao, M., & Borgland, S. L. (2017). Projection-target-defined effects of orexin and dynorphin on VTA dopamine neurons. Cell Report, 18(6), 1346–1355.  https://doi.org/10.1016/j.celrep.2017.01.030.CrossRefGoogle Scholar
  6. Barb, C. R., & Matteri, R. L. (2005). Orexin-B modulates luteinizing hormone and growth hormone secretion from porcine pituitary cells in culture. Domestic Animal Endocrinology, 28(3), 331–337.  https://doi.org/10.1016/j.domaniend.2004.09.005.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Campbell, R. E., Grove, K. L., & Smith, M. S. (2003). Gonadotropin-releasing hormone neurons coexpress orexin 1 receptor immunoreactivity and receive direct contacts by orexin fibers. Endocrinology, 144(4), 1542–1548.  https://doi.org/10.1210/en.2002-220958.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cataldi, N. I., Lux-Lantos, V. A., & Libertun, C. (2012). Effects of orexins A and B on expression of orexin receptors and progesterone release in luteal and granulosa ovarian cells. Regulatory Peptides, 178(1–3), 56–63.  https://doi.org/10.1016/j.regpep.2012.06.008.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Czerwinska, J., Chojnowska, K., Kaminski, T., Bogacka, I., Smolinska, N., & Kaminska, B. (2017). Orexin receptor expression in the hypothalamic–pituitary–adrenal and hypothalamic–pituitary–gonadal axes of free-living European beavers (Castor fiber L.) in different periods of the reproductive cycle. General and Comparative Endocrinology, 240, 103–113.  https://doi.org/10.1016/j.ygcen.2016.09.013.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Furuta, M., Funabashi, T., & Kimura, F. (2002). Suppressive action of orexin A on pulsatile luteinizing hormone secretion is potentiated by a low dose of estrogen in ovariectomized rats. Neuroendocrinology, 75(3), 151–157.  https://doi.org/10.1159/000048232.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gaskins, G. T., & Moenter, S. M. (2012). Orexin a suppresses gonadotropin-releasing hormone (GnRH) neuron activity in the mouse. Endocrinology, 153(8), 3850–3860.  https://doi.org/10.1210/en.2012-1300.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Goodman, R. L., Coolen, L. M., & Lehman, M. N. (2014). A role for neurokinin B in pulsatile GnRH secretion in the ewe. Neuroendocrinology, 99(1), 18–32.  https://doi.org/10.1159/000355285.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Goodman, R. L., Lehman, M. N., Smith, J. T., Coolen, L. M., de Oliveira, C. V., Jafarzadehshirazi, M. R., et al. (2007). Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B. Endocrinology, 148(12), 5752–5760.  https://doi.org/10.1210/en.2007-0961.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gulia, K. K., Mallick, H. N., & Kumar, V. M. (2003). Orexin A (hypocretin-1) application at the medial preoptic area potentiates male sexual behavior in rats. Neuroscience, 116(4), 921–923.CrossRefGoogle Scholar
  15. Herbison, A. E., de Tassigny, X., Doran, J., & Colledge, W. H. (2010). Distribution and postnatal development of Gpr54 gene expression in mouse brain and gonadotropin-releasing hormone neurons. Endocrinology, 151(1), 312–321.  https://doi.org/10.1210/en.2009-0552.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hunt, N. J., Waters, K. A., & Machaalani, R. (2017). Promotion of the unfolding protein response in orexin/dynorphin neurons in sudden infant death syndrome (SIDS): Elevated pPERK and ATF4 expression. Molecular Neurobiology, 54(9), 7171–7185.  https://doi.org/10.1007/s12035-016-0234-3.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Inutsuka, A., & Yamanaka, A. (2013). The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Frontiers in Endocrinology (Lausanne), 4, 18.  https://doi.org/10.3389/fendo.2013.00018.CrossRefGoogle Scholar
  18. Irahara, M., Tamura, T., Matuzaki, T., Saito, S., Yasui, T., Yamano, S., et al. (2001). Orexin-A suppresses the pulsatile secretion of luteinizing hormone via beta-endorphin. Biochemical and Biophysical Research Communications, 281(1), 232–236.  https://doi.org/10.1006/bbrc.2001.4328.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Iwasa, T., Matsuzaki, T., Kiyokawa, M., Shimizu, F., Minakuchi, M., Kuwahara, A., et al. (2007). The type 2 corticotrophin-releasing hormone receptor mediates orexin A-induced luteinising hormone suppression in ovariectomised rats. Journal of Neuroendocrinology, 19(9), 732–738.  https://doi.org/10.1111/j.1365-2826.2007.01583.x.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kohsaka, A., Watanobe, H., Kakizaki, Y., Suda, T., & Schioth, H. B. (2001). A significant participation of orexin-A, a potent orexigenic peptide, in the preovulatory luteinizing hormone and prolactin surges in the rat. Brain Research, 898(1), 166–170.CrossRefPubMedCentralGoogle Scholar
  21. Lehman, M. N., Coolen, L. M., & Goodman, R. L. (2010). Minireview: Kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: A central node in the control of gonadotropin-releasing hormone secretion. Endocrinology, 151(8), 3479–3489.  https://doi.org/10.1210/en.2010-0022.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lehman, M. N., Hileman, S. M., & Goodman, R. L. (2013). Neuroanatomy of the kisspeptin signaling system in mammals: Comparative and developmental aspects. Advances in Experimental Medicine and Biology, 784, 27–62.  https://doi.org/10.1007/978-1-4614-6199-9_3.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402–408.  https://doi.org/10.1006/meth.2001.1262.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Mikkelsen, J. D., & Simonneaux, V. (2009). The neuroanatomy of the kisspeptin system in the mammalian brain. Peptides, 30(1), 26–33.  https://doi.org/10.1016/j.peptides.2008.09.004.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Muschamp, J. W., Dominguez, J. M., Sato, S. M., Shen, R. Y., & Hull, E. M. (2007). A role for hypocretin (orexin) in male sexual behavior. Journal of Neuroscience, 27(11), 2837–2845.  https://doi.org/10.1523/jneurosci.4121-06.2007.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Navarro, V. M., Castellano, J. M., McConkey, S. M., Pineda, R., Ruiz-Pino, F., Pinilla, L., et al. (2011). Interactions between kisspeptin and neurokinin B in the control of GnRH secretion in the female rat. American Journal of Physiology-Endocrinology and Metabolism, 300(1), E202–E210.  https://doi.org/10.1152/ajpendo.00517.2010.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Nurmio, M., Tena-Sempere, M., & Toppari, J. (2010). Orexins and the regulation of the hypothalamic–pituitary–testicular axis. Acta Physiologica (Oxf), 198(3), 349–354.  https://doi.org/10.1111/j.1748-1716.2009.02006.x.CrossRefGoogle Scholar
  28. Paxinos, G., & Watson, C. (2014). Paxinos and Watson’s the rat brain in stereotaxic coordinates (7th edn.). London: Academic Press.Google Scholar
  29. Pillon, D., Caraty, A., Fabre-Nys, C., & Bruneau, G. (2003). Short-term effect of oestradiol on neurokinin B mRNA expression in the infundibular nucleus of ewes. Journal of Neuroendocrinology, 15(8), 749–753.CrossRefPubMedCentralGoogle Scholar
  30. Pinilla, L., Aguilar, E., Dieguez, C., Millar, R. P., & Tena-Sempere, M. (2012). Kisspeptins and reproduction: Physiological roles and regulatory mechanisms. Physiological Reviews, 92(3), 1235–1316.  https://doi.org/10.1152/physrev.00037.2010.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Pu, S., Jain, M. R., Kalra, P. S., & Kalra, S. P. (1998). Orexins, a novel family of hypothalamic neuropeptides, modulate pituitary luteinizing hormone secretion in an ovarian steroid-dependent manner. Regulatory Peptides, 78(1–3), 133–136.PubMedPubMedCentralGoogle Scholar
  32. Rance, N. E., Krajewski, S. J., Smith, M. A., Cholanian, M., & Dacks, P. A. (2010). Neurokinin B and the hypothalamic regulation of reproduction. Brain Research, 1364, 116–128.  https://doi.org/10.1016/j.brainres.2010.08.059.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Russell, S. H., Small, C. J., Dakin, C. L., Abbott, C. R., Morgan, D. G., Ghatei, M. A., et al. (2001). The central effects of orexin-A in the hypothalamic–pituitary–adrenal axis in vivo and in vitro in male rats. Journal of Neuroendocrinology, 13(6), 561–566.CrossRefPubMedCentralGoogle Scholar
  34. Sakurai, T. (2014). The role of orexin in motivated behaviours. Nature Reviews Neuroscience, 15(11), 719–731.  https://doi.org/10.1038/nrn3837.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Sasson, R., Dearth, R. K., White, R. S., Chappell, P. E., & Mellon, P. L. (2006). Orexin A induces GnRH gene expression and secretion from GT1-7 hypothalamic GnRH neurons. Neuroendocrinology, 84(6), 353–363.  https://doi.org/10.1159/000098333.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Seminara, S. B., Messager, S., Chatzidaki, E. E., Thresher, R. R., Acierno, J. S. Jr., Shagoury, J. K., et al. (2003). The GPR54 gene as a regulator of puberty. New England Journal of Medicine, 349(17), 1614–1627.  https://doi.org/10.1056/NEJMoa035322.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Small, C. J., Goubillon, M. L., Murray, J. F., Siddiqui, A., Grimshaw, S. E., Young, H., et al. (2003). Central orexin A has site-specific effects on luteinizing hormone release in female rats. Endocrinology, 144(7), 3225–3236.  https://doi.org/10.1210/en.2002-0041.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Su, J., Lei, Z., Zhang, W., Ning, H., & Ping, J. (2008). Distribution of orexin B and its relationship with GnRH in the pig hypothalamus. Research in Veterinary Science, 85(2), 315–323.  https://doi.org/10.1016/j.rvsc.2007.12.007.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Tamura, T., Irahara, M., Tezuka, M., Kiyokawa, M., & Aono, T. (1999). Orexins, orexigenic hypothalamic neuropeptides, suppress the pulsatile secretion of luteinizing hormone in ovariectomized female rats. Biochemical and Biophysical Research Communications, 264(3), 759–762.  https://doi.org/10.1006/bbrc.1999.1573.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran

Personalised recommendations