Skip to main content

Advertisement

Log in

Differential Binding of Human ApoE Isoforms to Insulin Receptor is Associated with Aberrant Insulin Signaling in AD Brain Samples

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Apolipoprotein E4 (ApoE4) is the strongest genetic risk factor for sporadic Alzheimer’s disease (AD), where inheritance of this isoform predisposes development of AD in a gene dose-dependent manner. Although the mode of action of ApoE4 on AD onset and progression remains unknown, we have previously shown that ApoE4, and not ApoE3 expression, resulted in insulin signaling deficits in the presence of amyloid beta (Aβ). However, these reports were not conducted with clinical samples that more accurately reflect human disease. In this study, we investigated the effect of ApoE genotype on the insulin signaling pathway in control and AD human brain samples. We found that targets of the insulin signaling pathway were attenuated in AD cases, regardless of ApoE isoform. We also found a decrease in GluR1 subunit expression, and an increase NR2B subunit expression in AD cases, regardless of ApoE isoform. Lastly, we observed that more insulin receptor (IR) was immunoprecipitated in control cases, and more Aβ was immunoprecipitated with AD cases. But, when comparing among AD cases, we found that more IR was immunoprecipitated with ApoE3 than ApoE4, and more Aβ was immunoprecipitated with ApoE4 than ApoE3. Our results suggest that the difference in IR binding and effect on protein expression downstream of the IR may affect onset and progression of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bales, K. R., Liu, F., Wu, S., Lin, S., Koger, D., DeLong, C., et al. (2009). Human APOE isoform-dependent effects on brain beta-amyloid levels in PDAPP transgenic mice. Journal of Neuroscience, 29, 6771–6779.

    Article  CAS  PubMed  Google Scholar 

  • Bales, K. R., Verina, T., Cummins, D. J., Du, Y., Dodel, R. C., Saura, J., et al. (1999). Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences USA, 96, 15233–15238.

    Article  CAS  Google Scholar 

  • Beffert, U., & Poirier, J. (1998). ApoE associated with lipid has a reduced capacity to inhibit beta-amyloid fibril formation. NeuroReport, 9, 3321–3323.

    Article  CAS  PubMed  Google Scholar 

  • Bien-Ly, N., Andrews-Zwilling, Y., Xu, Q., Bernardo, A., Wang, C., & Huang, Y. (2011). C-terminal-truncated apolipoprotein (apo) E4 inefficiently clears amyloid-beta (Abeta) and acts in concert with Abeta to elicit neuronal and behavioral deficits in mice. Proceedings of the National Academy of Sciences USA, 108, 4236–4241.

    Article  CAS  Google Scholar 

  • Bien-Ly, N., Gillespie, A. K., Walker, D., Yoon, S. Y., & Huang, Y. (2012). Reducing human apolipoprotein E levels attenuates age-dependent Abeta accumulation in mutant human amyloid precursor protein transgenic mice. Journal of Neuroscience, 32, 4803–4811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bomfim, T. R., Forny-Germano, L., Sathler, L. B., Brito-Moreira, J., Houzel, J. C., Decker, H., et al. (2012). An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease—associated Abeta oligomers. The Journal of Clinical Investigation, 122, 1339–1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, E. S., Chan, C., Cole, G. M., & Wong, B. S. (2015). Differential interaction of Apolipoprotein-E isoforms with insulin receptors modulates brain insulin signaling in mutant human amyloid precursor protein transgenic mice. Scientific Reports, 5, 13842.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan, E. S., Shetty, M. S., Sajikumar, S., Chen, C., Soong, T. W., & Wong, B.-S. (2016). ApoE4 expression accelerates hippocampus-dependent cognitive deficits by enhancing Aβ impairment of insulin signaling in an Alzheimer’s disease mouse model. Scientific Reports, 6, 26119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chua, L. M., Lim, M. L., Chong, P. R., Hu, Z. P., Cheung, N. S., & Wong, B. S. (2012). Impaired neuronal insulin signaling precedes A beta(42) accumulation in female A beta PPsw/PS1 Delta E9 Mice. Journal of Alzheimer’s Disease, 29, 783–791.

    CAS  PubMed  Google Scholar 

  • Cole, G. M., & Frautschy, S. A. (2007). The role of insulin and neurotrophic factor signaling in brain aging and Alzheimer’s disease. Experimental Gerontology, 42, 10–21.

    Article  CAS  PubMed  Google Scholar 

  • Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261, 921–923.

    Article  CAS  PubMed  Google Scholar 

  • Correia, S. C., Santos, R. X., Perry, G., Zhu, X., Moreira, P. I., & Smith, M. A. (2011). Insulin-resistant brain state: The culprit in sporadic Alzheimer’s disease? Ageing Research Reviews, 10, 264–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craft, S., Asthana, S., Cook, D. G., Baker, L. D., Cherrier, M., Purganan, K., et al. (2003). Insulin dose-response effects on memory and plasma amyloid precursor protein in Alzheimer’s disease: Interactions with apolipoprotein E genotype. Psychoneuroendocrinology, 28, 809–822.

    Article  CAS  PubMed  Google Scholar 

  • Craft, S., Baker, L. D., Montine, T. J., Minoshima, S., Watson, G. S., Claxton, A., et al. (2012). Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: A pilot clinical trial. Archives of Neurology, 69, 29–38.

    Article  PubMed  Google Scholar 

  • Craft, S., & Watson, G. S. (2004). Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurology, 3, 169–178.

    Article  CAS  PubMed  Google Scholar 

  • Cramer, P. E., Cirrito, J. R., Wesson, D. W., Lee, C. Y., Karlo, J. C., Zinn, A. E., et al. (2012). ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models. Science, 335, 1503–1506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Felice, F. G., Vieira, M. N., Bomfim, T. R., Decker, H., Velasco, P. T., Lambert, M. P., et al. (2009). Protection of synapses against Alzheimer’s-linked toxins: Insulin signaling prevents the pathogenic binding of Abeta oligomers. Proceedings of the National Academy of Sciences USA, 106, 1971–1976.

    Article  Google Scholar 

  • de la Monte, S. M. (2009). Insulin resistance and Alzheimer’s disease. BMB Reports, 42, 475–481.

    Article  PubMed  PubMed Central  Google Scholar 

  • Decker, H., Lo, K. Y., Unger, S. M., Ferreira, S. T., & Silverman, M. A. (2010). Amyloid-beta peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3beta in primary cultured hippocampal neurons. Journal of Neuroscience, 30, 9166–9171.

    Article  CAS  PubMed  Google Scholar 

  • Frolich, L., Blum-Degen, D., Bernstein, H. G., Engelsberger, S., Humrich, J., Laufer, S., et al. (1998). Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. Journal of Neural Transmission, 105, 423–438.

    Article  CAS  PubMed  Google Scholar 

  • Garai, K., Verghese, P. B., Baban, B., Holtzman, D. M., & Frieden, C. (2014). The binding of apolipoprotein E to oligomers and fibrils of amyloid-beta alters the kinetics of amyloid aggregation. Biochemistry, 53, 6323–6331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gual, P., Le Marchand-Brustel, Y., & Tanti, J. F. (2005). Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie, 87, 99–109.

    Article  CAS  PubMed  Google Scholar 

  • Hardingham, G. E., & Bading, H. (2003). The Yin and Yang of NMDA receptor signalling. Trends in Neurosciences, 26, 81–89.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, Y., Shi, S. H., Esteban, J. A., Piccini, A., Poncer, J. C., & Malinow, R. (2000). Driving AMPA receptors into synapses by LTP and CaMKII: Requirement for GluR1 and PDZ domain interaction. Science, 287, 2262–2267.

    Article  CAS  PubMed  Google Scholar 

  • Hemmings, B. A., & Restuccia, D. F. (2012). PI3K-PKB/Akt pathway. Cold Spring Harbor Perspectives in Biology, 4, a011189.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holscher, C. (2014). First clinical data of the neuroprotective effects of nasal insulin application in patients with Alzheimer’s disease. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 10, S33–S37.

    Article  Google Scholar 

  • Hoyer, S. (2002). The aging brain. Changes in the neuronal insulin/insulin receptor signal transduction cascade trigger late-onset sporadic Alzheimer disease (SAD). A mini-review. Journal Of Neural Transmission, 109, 991–1002.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y., & Mucke, L. (2012). Alzheimer mechanisms and therapeutic strategies. Cell, 148, 1204–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huynh, T.-P. V., Liao, F., Francis, C. M., Robinson, G. O., Serrano, J. R., Jiang, H., et al. (2017). Age-dependent effects of apoE reduction using antisense oligonucleotides in a model of β-amyloidosis. Neuron, 96(1013–1023), e1014.

    Google Scholar 

  • Lacor, P. N., Buniel, M. C., Furlow, P. W., Clemente, A. S., Velasco, P. T., Wood, M., et al. (2007). Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. Journal of Neuroscience, 27, 796–807.

    Article  CAS  PubMed  Google Scholar 

  • LaDu, M. J., Falduto, M. T., Manelli, A. M., Reardon, C. A., Getz, G. S., & Frail, D. E. (1994). Isoform-specific binding of apolipoprotein E to beta-amyloid. Journal of Biological Chemistry, 269, 23403–23406.

    CAS  PubMed  Google Scholar 

  • Lee, C. C., Kuo, Y. M., Huang, C. C., & Hsu, K. S. (2009). Insulin rescues amyloid beta-induced impairment of hippocampal long-term potentiation. Neurobiology of Aging, 30, 377–387.

    Article  CAS  PubMed  Google Scholar 

  • Li, M., Zhang, D. Q., Wang, X. Z., & Xu, T. J. (2011). NR2B-containing NMDA receptors promote neural progenitor cell proliferation through CaMKIV/CREB pathway. Biochemical and Biophysical Research Communications, 411, 667–672.

    Article  CAS  PubMed  Google Scholar 

  • Liu, C.-C., Zhao, N., Fu, Y., Wang, N., Linares, C., Tsai, C.-W., et al. (2017). ApoE4 accelerates early seeding of amyloid pathology. Neuron, 96(1024–1032), e1023.

    Google Scholar 

  • Liu, Z., Zhao, W., Xu, T., Pei, D., & Peng, Y. (2010). Alterations of NMDA receptor subunits NR1, NR2A and NR2B mRNA expression and their relationship to apoptosis following transient forebrain ischemia. Brain Research, 1361, 133–139.

    Article  CAS  PubMed  Google Scholar 

  • Mahley, R. W., & Huang, Y. (2012). Apolipoprotein e sets the stage: Response to injury triggers neuropathology. Neuron, 76, 871–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malinow, R., & Malenka, R. C. (2002). AMPA receptor trafficking and synaptic plasticity. Annual Review of Neuroscience, 25, 103–126.

    Article  CAS  PubMed  Google Scholar 

  • Manning, B. D., & Cantley, L. C. (2007). AKT/PKB signaling: Navigating downstream. Cell, 129, 1261–1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers, M. G., Jr., Grammer, T. C., Wang, L. M., Sun, X. J., Pierce, J. H., Blenis, J., et al. (1994). Insulin receptor substrate-1 mediates phosphatidylinositol 3′-kinase and p70S6k signaling during insulin, insulin-like growth factor-1, and interleukin-4 stimulation. Journal of Biological Chemistry, 269, 28783–28789.

    CAS  PubMed  Google Scholar 

  • Nistico, R., Cavallucci, V., Piccinin, S., Macri, S., Pignatelli, M., Mehdawy, B., et al. (2012). Insulin receptor beta-subunit haploinsufficiency impairs hippocampal late-phase LTP and recognition memory. Neuromolecular Medicine, 14, 262–269.

    Article  CAS  PubMed  Google Scholar 

  • Ong, Q. R., Chan, E. S., Lim, M. L., Cole, G. M., & Wong, B. S. (2014). Reduced phosphorylation of brain insulin receptor substrate and Akt proteins in apolipoprotein-E4 targeted replacement mice. Sci Rep, 4, 3754.

    Article  PubMed  PubMed Central  Google Scholar 

  • Palop, J. J., & Mucke, L. (2010). Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: From synapses toward neural networks. Nature Neuroscience, 13, 812–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roselli, F., Tirard, M., Lu, J., Hutzler, P., Lamberti, P., Livrea, P., et al. (2005). Soluble beta-amyloid1-40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. Journal of Neuroscience, 25, 11061–11070.

    Article  CAS  PubMed  Google Scholar 

  • Sanan, D. A., Weisgraber, K. H., Russell, S. J., Mahley, R. W., Huang, D., Saunders, A., et al. (1994). Apolipoprotein E associates with beta amyloid peptide of Alzheimer’s disease to form novel monofibrils. Isoform apoE4 associates more efficiently than apoE3. The Journal of Clinical Investigation, 94, 860–869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selkoe, D. J. (2011). Alzheimer’s disease. Cold Spring Harbor Perspectives in Biology, 3, 7.

    Article  Google Scholar 

  • Tai, L. M., Bilousova, T., Jungbauer, L., Roeske, S. K., Youmans, K. L., Yu, C., et al. (2013). Levels of soluble apolipoprotein E/amyloid-beta (Abeta) complex are reduced and oligomeric Abeta increased with APOE4 and Alzheimer disease in a transgenic mouse model and human samples. Journal of Biological Chemistry, 288, 5914–5926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tai, L. M., Koster, K. P., Luo, J., Lee, S. H., Wang, Y. T., Collins, N. C., et al. (2014). Amyloid-beta pathology and APOE genotype modulate retinoid X receptor agonist activity in vivo. Journal of Biological Chemistry, 289, 30538–30555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talbot, K., Wang, H. Y., Kazi, H., Han, L. Y., Bakshi, K. P., Stucky, A., et al. (2012). Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. Journal of Clinical Investigation, 122, 1316–1338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Townsend, M., Mehta, T., & Selkoe, D. J. (2007). Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway. Journal of Biological Chemistry, 282, 33305–33312.

    Article  CAS  PubMed  Google Scholar 

  • Verdier, Y., Zarandi, M., & Penke, B. (2004). Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer’s disease. Journal of Peptide Science, 10, 229–248.

    Article  CAS  PubMed  Google Scholar 

  • Verghese, P. B., Castellano, J. M., & Holtzman, D. M. (2011). Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurology, 10, 241–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, L., Helmerhorst, E., Taddei, K., Plewright, B., Van Bronswijk, W., & Martins, R. (2002). Alzheimer’s beta-amyloid peptides compete for insulin binding to the insulin receptor. The Journal of Neuroscience, 22, RC221.

    PubMed  Google Scholar 

  • Zhao, W. Q., & Alkon, D. L. (2001). Role of insulin and insulin receptor in learning and memory. Molecular and Cellular Endocrinology, 177, 125–134.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, W. Q., De Felice, F. G., Fernandez, S., Chen, H., Lambert, M. P., Quon, M. J., et al. (2008). Amyloid beta oligomers induce impairment of neuronal insulin receptors. The FASEB Journal, 22, 246–260.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, N., Liu, C.-C., Van Ingelgom, A. J., Martens, Y. A., Linares, C., Knight, J. A., et al. (2017). Apolipoprotein E4 impairs neuronal insulin signaling by trapping insulin receptor in the endosomes. Neuron, 96(115–129), e115.

    Article  Google Scholar 

  • Zhao, L., Teter, B., Morihara, T., Lim, G. P., Ambegaokar, S. S., Ubeda, O. J., et al. (2004). Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: Implications for Alzheimer’s disease intervention. Journal of Neuroscience, 24, 11120–11126.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. Edward Koo and Eliezer Masliah from the Alzheimer Disease Research Center (ADRC) at the University of California San Diego (UCSD) for providing the human brain samples. This work was supported by grants to BSW from the National University Health System (NUHSRO/2011/005/STB/B2B-01) and to TWS from the National Medical Research Council (NMRC/CBRG/0090/2015). ESC was supported by graduate scholarships from Singapore Ministry of Education. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

E.S.C. performed the experiments. E.S.C. and B.S.W. conceived and designed the experiments, and analyzed the data. E.S.C, S.T.W., C.C. and B.S.W. wrote the paper.

Corresponding author

Correspondence to Boon-Seng Wong.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Ethical Approval

The human postmortem frontal cortex samples were provided by the Alzheimer Disease Research Center (ADRC) at the University of California San Diego (UCSD). Patient consent had been administered at UCSD ADRC. The samples were provided in a coded fashion. Research has been conducted according to the principles expressed in the Declaration of Helsinki. Analysis of the de-identified samples was performed with research approval by the National University of Singapore (NUS) Institutional Review Board.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, E.S., Chen, C., Soong, T.W. et al. Differential Binding of Human ApoE Isoforms to Insulin Receptor is Associated with Aberrant Insulin Signaling in AD Brain Samples. Neuromol Med 20, 124–132 (2018). https://doi.org/10.1007/s12017-018-8480-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-018-8480-3

Keywords

Navigation