NeuroMolecular Medicine

, Volume 19, Issue 2–3, pp 241–255 | Cite as

Mimicking Parkinson’s Disease in a Dish: Merits and Pitfalls of the Most Commonly used Dopaminergic In Vitro Models

  • Fernanda Martins LopesEmail author
  • Ivi Juliana Bristot
  • Leonardo Lisbôa da Motta
  • Richard B. Parsons
  • Fabio KlamtEmail author
Review Paper


Parkinson’s disease (PD) is the second most common neurodegenerative disorder and has both unknown etiology and non-curative therapeutic options. Patients begin to present the classic motor symptoms of PD—tremor at rest, bradykinesia and rigidity—once 50–70% of the dopaminergic neurons of the nigrostriatal pathway have degenerated. As a consequence of this, it is difficult to investigate the early-stage events of disease pathogenesis. In vitro experimental models are used extensively in PD research because they present a controlled environment that enables the direct investigation of the early molecular mechanisms that are potentially involved with dopaminergic degeneration, as well as for the screening of potential therapeutic drugs. However, the establishment of PD in vitro models is a controversial issue for neuroscience research not only because it is challenging to mimic, in isolated cell systems, the physiological neuronal environment, but also the pathophysiological conditions experienced by human dopaminergic cells in vivo during the progression of the disease. Since no previous work has attempted to systematically review the literature regarding the establishment of an optimal in vitro model, and/or the features presented by available models used in the PD field, this review aims to summarize the merits and limitations of the most widely used dopaminergic in vitro models in PD research, which may help the PD researcher to choose the most appropriate model for studies directed at the elucidation of the early-stage molecular events underlying PD onset and progression.


Experimental models Cell lines Primary culture Organotypic culture Induced pluripotent stem cells Neurodegeneration 



Brazilian funds CNPq/MS/SCTIE/DECIT—Pesquisas Sobre Doenças Neurodegenerativas [#466989/2014-8], MCT/CNPq INCT-TM [#573671/2008-7] and Rapid Response Innovation Award/MJFF [#1326-2014] provided the financial support without interference in the ongoing work. FK received a fellowship from MCT/CNPq [#306439/2014-0]. FML received a fellowship from Programa de Doutorado Sanduíche no Exterior—PDSE/CAPES [#14581/2013-2].

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interests.


  1. Abad, F., Maroto, R., López, M. G., et al. (1995). Pharmacological protection against the cytotoxicity induced by 6-hydroxydopamine and H2O2 in chromaffin cells. European Journal of Pharmacology, 293, 55–64.PubMedCrossRefGoogle Scholar
  2. Agholme, L., Lindström, T., Kågedal, K., et al. (2010). An in vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons. Journal of Alzheimer’s Disease, 20, 1069–1082. doi: 10.3233/JAD-2010-091363.PubMedCrossRefGoogle Scholar
  3. Bal-Price, A. K., Hogberg, H. T., Buzanska, L., & Coecke, S. (2010). Relevance of in vitro neurotoxicity testing for regulatory requirements: Challenges to be considered. Neurotoxicology and Teratology, 32, 36–41. doi: 10.1016/ Scholar
  4. Bayir, H., Kapralov, A. A., Jiang, J., et al. (2009). Peroxidase mechanism of lipid-dependent cross-linking of synuclein with cytochrome c: Protection against apoptosis versus delayed oxidative stress in parkinson disease. Journal of Biological Chemistry, 284, 15951–15969. doi: 10.1074/jbc.M900418200.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Beal, M. F. (2010). Parkinson’s disease: A model dilemma. Nature, 466, S8–S10. doi: 10.1038/466S8a.PubMedCrossRefGoogle Scholar
  6. Bernstein, A. I., Garrison, S. P., Zambetti, G. P., & O’Malley, K. L. (2011). 6-OHDA generated ROS induces DNA damage and p53- and PUMA-dependent cell death. Molecular Neurodegeneration, 6, 2. doi: 10.1186/1750-1326-6-2.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bichler, Z., Lim, H. C., Zeng, L., & Tan, E. K. (2013). Non-motor and motor features in LRRK2 transgenic mice. PLoS ONE, 8, e70249. doi: 10.1371/journal.pone.0070249.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Biedler, J. L., Roffler-Tarlov, S., Schachner, M., & Freedman, L. S. (1978). Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Research, 38, 3751–3757.PubMedGoogle Scholar
  9. Bolam, J. P., & Pissadaki, E. K. (2012). Living on the edge with too many mouths to feed: Why dopamine neurons die. Movement Disorders, 27, 1478–1483. doi: 10.1002/mds.25135.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bonifati, V., Rizzu, P., van Baren, M. J., et al. (2003). Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science, 299, 256–259. doi: 10.1126/science.1077209.PubMedCrossRefGoogle Scholar
  11. Braak, H., Del, Tredici K., Rüb, U., et al. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24, 197–211. doi: 10.1016/S0197-4580(02)00065-9.PubMedCrossRefGoogle Scholar
  12. Brichta, L., Greengard, P., & Flajolet, M. (2013). Advances in the pharmacological treatment of Parkinson’s disease: Targeting neurotransmitter systems. Trends in Neurosciences, 36, 543–554. doi: 10.1016/j.tins.2013.06.003.PubMedCrossRefGoogle Scholar
  13. Burré, J., Sharma, M., Tsetsenis, T., et al. (2010). Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science, 329, 1663–1667. doi: 10.1126/science.1195227.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cavaliere, F., Vicente, E. S., & Matute, C. (2010). An organotypic culture model to study nigro-striatal degeneration. Journal of Neuroscience Methods, 188, 205–212. doi: 10.1016/j.jneumeth.2010.02.008.PubMedCrossRefGoogle Scholar
  15. Chambers, S. M., Fasano, C. A., Papapetrou, E. P., et al. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 27, 275–280. doi: 10.1038/nbt.1529.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chang-Liu, C. M., & Woloschak, G. E. (1997). Effect of passage number on cellular response to DNA-damaging agents: Cell survival and gene expression. Cancer Letters, 113, 77–86.PubMedCrossRefGoogle Scholar
  17. Cheung, Y.-T., Lau, W. K.-W., Yu, M.-S., et al. (2009). Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology, 30, 127–135. doi: 10.1016/j.neuro.2008.11.001.PubMedCrossRefGoogle Scholar
  18. Constantinescu, R., Constantinescu, A. T., Reichmann, H., & Janetzky, B. (2007). Neuronal differentiation and long-term culture of the human neuroblastoma line SH-SY5Y. Journal of Neural Transmission. Supplementum, 72, 17–28.CrossRefGoogle Scholar
  19. Cooper, O., Hargus, G., Deleidi, M., et al. (2010). Differentiation of human ES and Parkinson’s disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid. Molecular and Cellular Neuroscience, 45, 258–266. doi: 10.1016/j.mcn.2010.06.017.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Corrigan, F. M., Wienburg, C. L., Shore, R. F., et al. (2000). Organochlorine insecticides in substantia nigra in Parkinson’s disease. Journal of Toxicology and Environmental Health Part A, 59, 229–234.PubMedCrossRefGoogle Scholar
  21. Cossette, M., Lévesque, D., & Parent, A. (2005). Neurochemical characterization of dopaminergic neurons in human striatum. Parkinsonism and Related Disorders, 11, 277–286. doi: 10.1016/j.parkreldis.2005.02.008.PubMedCrossRefGoogle Scholar
  22. Daubner, S. C., Le, T., & Wang, S. (2011). Tyrosine hydroxylase and regulation of dopamine synthesis. Archives of Biochemistry and Biophysics, 508, 1–12. doi: 10.1016/ Scholar
  23. Dauer, W., & Przedborski, S. (2003). Parkinson’s disease: Mechanisms and models. Neuron, 39, 889–909.PubMedCrossRefGoogle Scholar
  24. Daviaud, N., Garbayo, E., Lautram, N., et al. (2014). Modeling nigrostriatal degeneration in organotypic cultures, a new ex vivo model of Parkinson’s disease. Neuroscience, 256, 10–22. doi: 10.1016/j.neuroscience.2013.10.021.PubMedCrossRefGoogle Scholar
  25. Daviaud, N., Garbayo, E., Schiller, P. C., Perez-Pinzon, M., & Montero-Menei, C. N. (2013). Organotypic cultures as tools for optimizing central nervous system cell therapies. Experimental Neurology, 248, 429–440. doi: 10.1016/j.expneurol.2013.07.012.PubMedCrossRefGoogle Scholar
  26. Davis, G. C., Williams, A. C., Markey, S. P., et al. (1979). Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Research, 1, 249–254.PubMedCrossRefGoogle Scholar
  27. Dawson, T. M., Ko, H. S., & Dawson, V. L. (2010). Genetic animal models of Parkinson’s disease. Neuron, 66, 646–661. doi: 10.1016/j.neuron.2010.04.034.PubMedPubMedCentralCrossRefGoogle Scholar
  28. de Lau, L. M. L., Schipper, C. M. A., Hofman, A., et al. (2005). Prognosis of Parkinson disease: risk of dementia and mortality: The Rotterdam study. Archives of Neurology, 62, 1265–1269. doi: 10.1001/archneur.62.8.1265.PubMedCrossRefGoogle Scholar
  29. Ding, Y. M., Jaumotte, J. D., Signore, A. P., & Zigmond, M. J. (2004). Effects of 6-hydroxydopamine q. Journal of Neurochemistry, 89, 776–787. doi: 10.1111/j.1471-4159.2004.02415.x.PubMedCrossRefGoogle Scholar
  30. Encinas, M., Iglesias, M., Liu, Y., et al. (2000). Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. Journal of Neurochemistry, 75, 991–1003.PubMedCrossRefGoogle Scholar
  31. Falkenburger, B. H., & Schulz, J. B. (2006). Limitations of cellular models in Parkinson’s disease research. Journal of Neural Transmission. Supplementum, 70, 261–268.CrossRefGoogle Scholar
  32. Ferreira, M., & Massano, J. (2016). An updated review of Parkinson’s disease genetics and clinicopathological correlations. Acta Neurologica Scandinavica. doi: 10.1111/ane.12616.PubMedGoogle Scholar
  33. Filograna, R., Civiero, L., Ferrari, V., et al. (2015). Analysis of the catecholaminergic phenotype in human SH-SY5Y and BE(2)-M17 neuroblastoma cell lines upon differentiation. PLoS ONE, 10, e0136769. doi: 10.1371/journal.pone.0136769.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Freshney, I. (2001). Application of cell cultures to toxicology. Cell Biology and Toxicology, 17, 213–230.PubMedCrossRefGoogle Scholar
  35. Gaven, F., Marin, P., & Claeysen, S. (2014). Primary culture of mouse dopaminergic neurons. Journal of Visualized Experiments. doi: 10.3791/51751.PubMedPubMedCentralGoogle Scholar
  36. Gibb, W. R. (1991). Neuropathology of the substantia nigra. European Neurology, 31(Suppl 1), 48–59.PubMedGoogle Scholar
  37. Gibb, W. R. (1992). Neuropathology of Parkinson’s disease and related syndromes. Neurologic Clinics, 10, 361–376.PubMedGoogle Scholar
  38. Gilany, K., Van Elzen, R., Mous, K., et al. (2008). The proteome of the human neuroblastoma cell line SH-SY5Y: An enlarged proteome. Biochimica et Biophysica Acta, 1784, 983–985. doi: 10.1016/j.bbapap.2008.03.003.PubMedCrossRefGoogle Scholar
  39. Glinka, Y., Gassen, M., & Youdim, M. B. (1997). Mechanism of 6-hydroxydopamine neurotoxicity. Journal of Neural Transmission. Supplementum, 50, 55–66.PubMedCrossRefGoogle Scholar
  40. Glinka, Y., Tipton, K. F., & Youdim, M. B. (1996). Nature of inhibition of mitochondrial respiratory complex I by 6-Hydroxydopamine. Journal of Neurochemistry, 66, 2004–2010.PubMedCrossRefGoogle Scholar
  41. Gomez-Lazaro, M., Galindo, M. F., Concannon, C. G., et al. (2008). 6-Hydroxydopamine activates the mitochondrial apoptosis pathway through p38 MAPK-mediated, p53-independent activation of Bax and PUMA. Journal of Neurochemistry, 104, 1599–1612. doi: 10.1111/j.1471-4159.2007.05115.x.PubMedCrossRefGoogle Scholar
  42. Halterman, M. W., Giuliano, R., Dejesus, C., & Schor, N. F. (2009). In-tube transfection improves the efficiency of gene transfer in primary neuronal cultures. Journal of Neuroscience Methods, 177, 348–354. doi: 10.1016/j.jneumeth.2008.10.023.PubMedCrossRefGoogle Scholar
  43. Han, B. S., Hong, H.-S., Choi, W.-S., et al. (2003). Caspase-dependent and -independent cell death pathways in primary cultures of mesencephalic dopaminergic neurons after neurotoxin treatment. Journal of Neuroscience, 23, 5069–5078.PubMedGoogle Scholar
  44. Hartfield, E. M., Yamasaki-Mann, M., Ribeiro Fernandes, H. J., et al. (2014). Physiological characterisation of human iPS-derived dopaminergic neurons. PLoS ONE, 9, e87388. doi: 10.1371/journal.pone.0087388.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Herrup, K., & Yang, Y. (2007). Cell cycle regulation in the postmitotic neuron: Oxymoron or new biology? Nature Reviews Neuroscience, 8, 368–378. doi: 10.1038/nrn2124.PubMedCrossRefGoogle Scholar
  46. Howman-Giles, R., Shaw, P. J., Uren, R. F., & Chung, D. K. V. (2007). Neuroblastoma and other neuroendocrine tumors. Seminars in Nuclear Medicine, 37, 286–302. doi: 10.1053/j.semnuclmed.2007.02.009.PubMedCrossRefGoogle Scholar
  47. Humpel, C. (2015). Organotypic brain slice cultures: A review. Neuroscience, 305, 86–98. doi: 10.1016/j.neuroscience.2015.07.086.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Iglesias-González, J., Sánchez-Iglesias, S., Méndez-Álvarez, E., et al. (2012). Differential toxicity of 6-hydroxydopamine in SH-SY5Y human neuroblastoma cells and rat brain mitochondria: protective role of catalase and superoxide dismutase. Neurochemical Research, 37, 2150–2160. doi: 10.1007/s11064-012-0838-6.PubMedCrossRefGoogle Scholar
  49. Imaizumi, Y., & Okano, H. (2014). Modeling human neurological disorders with induced pluripotent stem cells. Journal of Neurochemistry, 129, 388–399. doi: 10.1111/jnc.12625.PubMedCrossRefGoogle Scholar
  50. Izumi, Y., Sawada, H., Sakka, N., et al. (2005). p-quinone mediates 6-hydroxydopamine-induced dopaminergic neuronal death and ferrous iron accelerates the conversion of p-quinone into melanin extracellularly. Journal of Neuroscience Research, 79, 849–860. doi: 10.1002/jnr.20382.PubMedCrossRefGoogle Scholar
  51. Jagmag, S. A., Tripathi, N., Shukla, S. D., et al. (2015). Evaluation of models of Parkinson’s disease. Frontiers in Neuroscience, 9, 503. doi: 10.3389/fnins.2015.00503.PubMedGoogle Scholar
  52. Jankovic, J., & Poewe, W. (2012). Therapies in Parkinson’s disease. Current Opinion in Neurology, 25, 433–447. doi: 10.1097/WCO.0b013e3283542fc2.PubMedCrossRefGoogle Scholar
  53. Javitch, J. A., & Snyder, S. H. (1984). Uptake of MPP(+) by dopamine neurons explains selectivity of parkinsonism-inducing neurotoxin, MPTP. European Journal of Pharmacology, 106, 455–456.PubMedCrossRefGoogle Scholar
  54. Jiang, H., Ren, Y., Yuen, E. Y., et al. (2012). Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells. Nature Communications, 3, 668. doi: 10.1038/ncomms1669.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Jo, J., Xiao, Y., Sun, A. X., et al. (2016). Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell, 19, 248–257. doi: 10.1016/j.stem.2016.07.005.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kamp, F., Exner, N., Lutz, A. K., et al. (2010). Inhibition of mitochondrial fusion by α-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO Journal, 29, 3571–3589. doi: 10.1038/emboj.2010.223.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kandel, E., Schwartz, J., Jessell, T., et al. (2013). Principles of neural science. McGraw-Hill Education.Google Scholar
  58. Kanthasamy, A. G., Anantharam, V., Zhang, D., et al. (2006). A novel peptide inhibitor targeted to caspase-3 cleavage site of a proapoptotic kinase protein kinase C delta (PKCdelta) protects against dopaminergic neuronal degeneration in Parkinson’s disease models. Free Radical Biology and Medicine, 41, 1578–1589. doi: 10.1016/j.freeradbiomed.2006.08.016.PubMedCrossRefGoogle Scholar
  59. Karunakaran, S., Saeed, U., Mishra, M., et al. (2008). Selective activation of p38 mitogen-activated protein kinase in dopaminergic neurons of substantia nigra leads to nuclear translocation of p53 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. Journal of Neuroscience, 28, 12500–12509. doi: 10.1523/JNEUROSCI.4511-08.2008.PubMedCrossRefGoogle Scholar
  60. Kearns, S. M., Scheffler, B., Goetz, A. K., et al. (2006). A method for a more complete in vitro Parkinson’s model: Slice culture bioassay for modeling maintenance and repair of the nigrostriatal circuit. Journal of Neuroscience Methods, 157, 1–9. doi: 10.3201/eid1204.050756.PubMedCrossRefGoogle Scholar
  61. Kriks, S., Shim, J.-W., Piao, J., et al. (2011). Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature. doi: 10.1038/nature10648.PubMedPubMedCentralGoogle Scholar
  62. Lancaster, M. A., & Knoblich, J. A. (2014a). Organogenesis in a dish: Modeling development and disease using organoid technologies. Science, 345(80), 1247125. doi: 10.1126/science.1247125.PubMedCrossRefGoogle Scholar
  63. Lancaster, M. A., & Knoblich, J. A. (2014b). Generation of cerebral organoids from human pluripotent stem cells. Nature Protocols, 9, 2329–2340. doi: 10.1038/nprot.2014.158.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lancaster, M., Renner, M., Martin, C.-A., et al. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501, 373–379. doi: 10.1038/nature12517.PubMedCrossRefGoogle Scholar
  65. Lane, E., & Dunnett, S. (2008). Animal models of Parkinson’s disease and L-dopa induced dyskinesia: How close are we to the clinic? Psychopharmacology (Berl), 199, 303–312. doi: 10.1007/s00213-007-0931-8.CrossRefGoogle Scholar
  66. Langston, J. W., & Ballard, P. A. (1983). Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. New England Journal of Medicine, 309, 310.PubMedGoogle Scholar
  67. Larsen, T. R., Söderling, A.-S., Caidahl, K., et al. (2008). Nitration of soluble proteins in organotypic culture models of Parkinson’s disease. Neurochemistry International, 52, 487–494. doi: 10.1016/j.neuint.2007.08.008.PubMedCrossRefGoogle Scholar
  68. Laverty, R., Sharman, D. F., & Vogt, M. (1965). Action of 2, 4, 5-trihydroxyphenylethylamine on the storage and release of noradrenaline. British Journal of Pharmacology and Chemotherapy, 24, 549–560. doi: 10.1111/j.1476-5381.1965.tb01745.x.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lin, C.-Y., & Tsai, C.-W. (2016). Carnosic acid attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells by inducing autophagy through an enhanced interaction of Parkin and Beclin1. Molecular Neurobiology. doi: 10.1007/s12035-016-9873-7.Google Scholar
  70. Lodish, H., Berk, A., Zipursky. S. L., et al. (2000). Neurotransmitters, synapses, and impulse transmission. In Molecular cell biology (4th ed.). New York: W. H. Freeman.Google Scholar
  71. Lopes, F. M., da Motta, L. L., De Bastiani, M. A., et al. (2017). RA differentiation enhances dopaminergic features, changes redox parameters, and increases dopamine transporter dependency in 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Neurotoxicity Research. doi: 10.1007/s12640-016-9699-0.Google Scholar
  72. Lopes, F. M., Schröder, R., da Frota, M. L. C., et al. (2010). Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies. Brain Research, 1337, 85–94. doi: 10.1016/j.brainres.2010.03.102.PubMedCrossRefGoogle Scholar
  73. Lotharius, J., Falsig, J., van Beek, J., et al. (2005). Progressive degeneration of human mesencephalic neuron-derived cells triggered by dopamine-dependent oxidative stress is dependent on the mixed-lineage kinase pathway. Journal of Neuroscience, 25, 6329–6342. doi: 10.1523/JNEUROSCI.1746-05.2005.PubMedCrossRefGoogle Scholar
  74. Luchtman, D. W., & Song, C. (2010). Why SH-SY5Y cells should be differentiated. Neurotoxicology, 31, 164–165. doi: 10.1016/j.neuro.2009.10.015.PubMedCrossRefGoogle Scholar
  75. Luthman, J., Fredriksson, A., Sundström, E., et al. (1989). Selective lesion of central dopamine or noradrenaline neuron systems in the neonatal rat: motor behavior and monoamine alterations at adult stage. Behavioural Brain Research, 33, 267–277.PubMedCrossRefGoogle Scholar
  76. Maqsood, M. I., Matin, M. M., Bahrami, A. R., & Ghasroldasht, M. M. (2013). Immortality of cell lines: Challenges and advantages of establishment. Cell Biology International, 37, 1038–1045. doi: 10.1002/cbin.10137.PubMedCrossRefGoogle Scholar
  77. Marder, K., Tang, M. X., Mejia, H., et al. (1996). Risk of Parkinson’s disease among first-degree relatives: A community-based study. Neurology, 47, 155–160.PubMedCrossRefGoogle Scholar
  78. Martella, G., Madeo, G., Maltese, M., et al. (2016). Exposure to low-dose rotenone precipitates synaptic plasticity alterations in PINK1 heterozygous knockout mice. Neurobiology of Diseases, 91, 21–36. doi: 10.1016/j.nbd.2015.12.020.CrossRefGoogle Scholar
  79. Matsuda, W., Furuta, T., Nakamura, K. C., et al. (2009). Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. Journal of Neuroscience, 29, 444–453. doi: 10.1523/JNEUROSCI.4029-08.2009.PubMedCrossRefGoogle Scholar
  80. Mizuno, Y., Sone, N., & Saitoh, T. (1987). Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenylpyridinium ion on activities of the enzymes in the electron transport system in mouse brain. Journal of Neurochemistry, 48, 1787–1793.PubMedCrossRefGoogle Scholar
  81. Nalls, M. A., Pankratz, N., Lill, C. M., et al. (2014). Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nature Genetics, 46, 989–993. doi: 10.1038/ng.3043.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Nicklas, W. J., Youngster, S. K., Kindt, M. V., & Heikkila, R. E. (1987). MPTP, MPP + and mitochondrial function. Life Sciences, 40, 721–729.PubMedCrossRefGoogle Scholar
  83. Nikolaus, S., Antke, C., Kley, K., et al. (2007). Investigating the dopaminergic synapse in vivo. I. Molecular imaging studies in humans. Reviews in the Neurosciences, 18, 439–472.PubMedGoogle Scholar
  84. Olanow, C. W., Kieburtz, K., & Schapira, A. H. V. (2008). Why have we failed to achieve neuroprotection in Parkinson’s disease? Annals of Neurology, 64(Suppl 2), S101–S110. doi: 10.1002/ana.21461.PubMedGoogle Scholar
  85. Olanow, C. W., Kieburtz, K., & Schapira, A. H. V. (2009). Why have we failed to achieve neuroprotection in Parkinson’s disease? Annals of Neurology, 64, S101–S110. doi: 10.1002/ana.21461.CrossRefGoogle Scholar
  86. Orenstein, S. J., Kuo, S.-H., Tasset, I., et al. (2013). Interplay of LRRK2 with chaperone-mediated autophagy. Nature Neuroscience, 16, 394–406. doi: 10.1038/nn.3350.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Påhlman, S., Ruusala, A. I., Abrahamsson, L., et al. (1984). Retinoic acid-induced differentiation of cultured human neuroblastoma cells: A comparison with phorbolester-induced differentiation. Cell Differentiation, 14, 135–144.PubMedCrossRefGoogle Scholar
  88. Parker, W. D., Parks, J. K., & Swerdlow, R. H. (2008). Complex I deficiency in Parkinson’s disease frontal cortex. Brain Research, 1189, 215–218. doi: 10.1016/j.brainres.2007.10.061.PubMedCrossRefGoogle Scholar
  89. Pišlar, A. H., Zidar, N., Kikelj, D., & Kos, J. (2014). Cathepsin X promotes 6-hydroxydopamine-induced apoptosis of PC12 and SH-SY5Y cells. Neuropharmacology, 82, 121–131. doi: 10.1016/j.neuropharm.2013.07.040.PubMedCrossRefGoogle Scholar
  90. Plenz, D., & Kitai, S. T. (1996). Organotypic cortex-striatum-mesencephalon cultures: the nigrostriatal pathway. Neuroscience Letters, 209, 177–180.PubMedCrossRefGoogle Scholar
  91. Polymeropoulos, M. H., Lavedan, C., Leroy, E., et al. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 276, 2045–2047.PubMedCrossRefGoogle Scholar
  92. Potashkin, J. A., Blume, S. R., & Runkle, N. K. (2010). Limitations of animal models of Parkinson’s disease. Parkinsons Disease, 2011, 658083. doi: 10.4061/2011/658083.Google Scholar
  93. Presgraves, S. P., Ahmed, T., Borwege, S., & Joyce, J. N. (2004). Terminally differentiated SH-SY5Y cells provide a model system for studying neuroprotective effects of dopamine agonists. Neurotoxicity Research, 5, 579–598.PubMedCrossRefGoogle Scholar
  94. Price, K. S., Farley, I. J., & Hornykiewicz, O. (1978). Neurochemistry of Parkinson’s disease: Relation between striatal and limbic dopamine. Advances in Biochemical Psychopharmacology, 19, 293–300.PubMedGoogle Scholar
  95. Przedborski, S., Jackson-Lewis, V., Naini, A. B., et al. (2001). The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): A technical review of its utility and safety. Journal of Neurochemistry, 76, 1265–1274.PubMedCrossRefGoogle Scholar
  96. Pu, J., Jiang, H., Zhang, B., & Feng, J. (2012). Redefining Parkinson’s disease research using induced pluripotent stem cells. Current Neurology and Neuroscience Reports, 12, 392–398. doi: 10.1007/s11910-012-0288-1.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Radio, N. M., & Mundy, W. R. (2008). Developmental neurotoxicity testing in vitro: Models for assessing chemical effects on neurite outgrowth. Neurotoxicology, 29, 361–376. doi: 10.1016/j.neuro.2008.02.011.PubMedCrossRefGoogle Scholar
  98. Ramamoorthy, S., Shippenberg, T. S., & Jayanthi, L. D. (2011). Regulation of monoamine transporters: Role of transporter phosphorylation. Pharmacology & Therapeutics, 129, 220–238. doi: 10.1016/j.pharmthera.2010.09.009.CrossRefGoogle Scholar
  99. Richardson, J. R., Shalat, S. L., Buckley, B., et al. (2009). Elevated serum pesticide levels and risk of Parkinson disease. Archives of Neurology, 66, 870–875. doi: 10.1001/archneurol.2009.89.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Rodriguez-Pallares, J., Parga, J. A., Muñoz, A., et al. (2007). Mechanism of 6-hydroxydopamine neurotoxicity: The role of NADPH oxidase and microglial activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons. Journal of Neurochemistry, 103, 145–156. doi: 10.1111/j.1471-4159.2007.04699.x.PubMedGoogle Scholar
  101. Ryan, S. D., Dolatabadi, N., Chan, S. F., et al. (2013). Isogenic human iPSC Parkinson’s model shows nitrosative stress-induced dysfunction in MEF2-PGC1α transcription. Cell, 155, 1351–1364. doi: 10.1016/j.cell.2013.11.009.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Saito, Y., Nishio, K., Ogawa, Y., et al. (2007). Molecular mechanisms of 6-hydroxydopamine-induced cytotoxicity in PC12 cells: Involvement of hydrogen peroxide-dependent and -independent action. Free Radical Biology and Medicine, 42, 675–685. doi: 10.1016/j.freeradbiomed.2006.12.004.PubMedCrossRefGoogle Scholar
  103. Sánchez-Danés, A., Richaud-Patin, Y., Carballo-Carbajal, I., et al. (2012). Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Molecular Medicine, 4, 380–395. doi: 10.1002/emmm.201200215.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Saporito, M. S., Thomas, B. A., & Scott, R. W. (2000). MPTP activates c-Jun NH(2)-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo. Journal of Neurochemistry, 75, 1200–1208.PubMedCrossRefGoogle Scholar
  105. Sauerbier, A., Jenner, P., Todorova, A., & Chaudhuri, K. R. (2015). Non motor subtypes and Parkinson’s disease. Parkinsonism & Related Disorders. doi: 10.1016/j.parkreldis.2015.09.027.Google Scholar
  106. Schapira, A. H., Mann, V. M., Cooper, J. M., et al. (1990). Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. Journal of Neurochemistry, 55, 2142–2145.PubMedCrossRefGoogle Scholar
  107. Schildknecht, S., Karreman, C., Pöltl, D., et al. (2013). Generation of genetically-modified human differentiated cells for toxicological tests and the study of neurodegenerative diseases. Altex, 30, 427–444.PubMedCrossRefGoogle Scholar
  108. Schildknecht, S., Pöltl, D., Nagel, D. M., et al. (2009). Requirement of a dopaminergic neuronal phenotype for toxicity of low concentrations of 1-methyl-4-phenylpyridinium to human cells. Toxicology and Applied Pharmacology, 241, 23–35. doi: 10.1016/j.taap.2009.07.027.PubMedCrossRefGoogle Scholar
  109. Schlachetzki, J. C. M., Saliba, S. W., & de Oliveira, A. C. P. (2013). Studying neurodegenerative diseases in culture models. Rev Bras Psiquiatr (São Paulo, Brazil 1999), 35(Suppl 2), S92–S100. doi: 10.1590/1516-4446-2013-1159.CrossRefGoogle Scholar
  110. Scholz, D., Pöltl, D., Genewsky, A., et al. (2011). Rapid, complete and large-scale generation of post-mitotic neurons from the human LUHMES cell line. Journal of Neurochemistry, 119, 957–971. doi: 10.1111/j.1471-4159.2011.07255.x.PubMedCrossRefGoogle Scholar
  111. Schönhofen, P., de Medeiros, L. M., Bristot, I. J., et al. (2015). Cannabidiol exposure during neuronal differentiation sensitizes cells against redox-active neurotoxins. Molecular Neurobiology, 52, 26–37. doi: 10.1007/s12035-014-8843-1.PubMedCrossRefGoogle Scholar
  112. Schüle, B., Pera, R. A. R., & Langston, J. W. (2009). Can cellular models revolutionize drug discovery in Parkinson’s disease? Biochimica et Biophysica Acta, 1792, 1043–1051. doi: 10.1016/j.bbadis.2009.08.014.PubMedCrossRefGoogle Scholar
  113. Scott, W. K., Staijich, J. M., Yamaoka, L. H., et al. (1997). Genetic complexity and Parkinson’s disease. Deane Laboratory Parkinson Disease Research Group. Science, 277, 387–389.PubMedCrossRefGoogle Scholar
  114. Segura-Aguilar, J., & Kostrzewa, R. M. (2015). Neurotoxin mechanisms and processes relevant to Parkinson’s disease: An update. Neurotoxicity Research, 27, 328–354. doi: 10.1007/s12640-015-9519-y.PubMedCrossRefGoogle Scholar
  115. Seibler, P., Graziotto, J., Jeong, H., et al. (2011). Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. Journal of Neuroscience, 31, 5970–5976. doi: 10.1523/JNEUROSCI.4441-10.2011.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Shay, J. W., Wright, W. E., & Werbin, H. (1991). Defining the molecular mechanisms of human cell immortalization. Biochimica et Biophysica Acta, 1072, 1–7.PubMedGoogle Scholar
  117. Shimura, H., Hattori, N., Kubo, S. I., et al. (2000). Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genetics, 25, 302–305. doi: 10.1038/77060.PubMedCrossRefGoogle Scholar
  118. Soto-Otero, R., Méndez-Alvarez, E., Hermida-Ameijeiras, A., et al. (2000). Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: Potential implication in relation to the pathogenesis of Parkinson’s disease. Journal of Neurochemistry, 74, 1605–1612.PubMedCrossRefGoogle Scholar
  119. Spatola, M., & Wider, C. (2014). Genetics of Parkinson’s disease: the yield. Parkinsonism & Related Disorders, 20(Suppl 1), S35–S38. doi: 10.1016/S1353-8020(13)70011-7.CrossRefGoogle Scholar
  120. Spillantini, M. G., Schmidt, M. L., Lee, V. M., et al. (1997). [alpha]-Synuclein in Lewy bodies. Nature, 388, 839–840.PubMedCrossRefGoogle Scholar
  121. Stahl, K., Skare, Ø., & Torp, R. (2009). Organotypic cultures as a model of Parkinson s disease. A twist to an old model. ScientificWorldJournal, 9, 811–821. doi: 10.1100/tsw.2009.68.PubMedCrossRefGoogle Scholar
  122. Stępkowski, T. M., Wasyk, I., Grzelak, A., & Kruszewski, M. (2015). 6-OHDA-induced changes in Parkinson’s disease-related gene expression are not affected by the overexpression of PGAM5 in in vitro differentiated embryonic mesencephalic cells. Cellular and Molecular Neurobiology, 35, 1137–1147. doi: 10.1007/s10571-015-0207-5.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Stoppini, L., Buchs, P. A., & Muller, D. (1991). A simple method for organotypic cultures of nervous tissue. Journal of Neuroscience Methods, 37, 173–182.PubMedCrossRefGoogle Scholar
  124. Storch, A., Kaftan, A., Burkhardt, K., & Schwarz, J. (2000). 6-Hydroxydopamine toxicity towards human SH-SY5Y dopaminergic neuroblastoma cells: Independent of mitochondrial energy metabolism. Journal of Neural Transmission, 107, 281–293.PubMedCrossRefGoogle Scholar
  125. Stuchbury, G., & Münch, G. (2010). Optimizing the generation of stable neuronal cell lines via pre-transfection restriction enzyme digestion of plasmid DNA. Cytotechnology, 62, 189–194. doi: 10.1007/s10616-010-9273-1.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Studer, L. (2001). Culture of substantia nigra neurons. Current Protocols in Neuroscience Chapter 3: Unit 3.3. doi: 10.1002/0471142301.ns0303s00.Google Scholar
  127. Su, Y.-C., & Qi, X. (2013). Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation. Human Molecular Genetics, 22, 4545–4561. doi: 10.1093/hmg/ddt301.PubMedCrossRefGoogle Scholar
  128. Takahashi, K., Okita, K., Nakagawa, M., & Yamanaka, S. (2007). Induction of pluripotent stem cells from fibroblast cultures. Nature Protocols, 2, 3081–3089. doi: 10.1038/nprot.2007.418.PubMedCrossRefGoogle Scholar
  129. Tanner, C. M., Kamel, F., Ross, G. W., et al. (2011). Rotenone, paraquat, and Parkinson’s disease. Environmental Health Perspectives, 119, 866–872. doi: 10.1289/ehp.1002839.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Thomas, M. G., Saldanha, M., Mistry, R. J., et al. (2013). Nicotinamide N-methyltransferase expression in SH-SY5Y neuroblastoma and N27 mesencephalic neurones induces changes in cell morphology via ephrin-B2 and Akt signalling. Cell Death and Disease, 4, e669. doi: 10.1038/cddis.2013.200.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Tieng, V., Stoppini, L., Villy, S., et al. (2014). Engineering of midbrain organoids containing long-lived dopaminergic neurons. Stem Cells and Development, 23, 1535–1547. doi: 10.1089/scd.2013.0442.PubMedCrossRefGoogle Scholar
  132. Tönges, L., Frank, T., Tatenhorst, L., et al. (2012). Inhibition of rho kinase enhances survival of dopaminergic neurons and attenuates axonal loss in a mouse model of Parkinson’s disease. Brain, 135, 3355–3370. doi: 10.1093/brain/aws254.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Valente, E. M., Abou-Sleiman, P. M., Caputo, V., et al. (2004). Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science, 304, 1158–1160. doi: 10.1126/science.1096284.PubMedCrossRefGoogle Scholar
  134. Van Kampen, J. M., McGeer, E. G., & Stoessl, A. J. (2000). Dopamine transporter function assessed by antisense knockdown in the rat: protection from dopamine neurotoxicity. Synapse, 37, 171–178. doi: 10.1002/1098-2396(20000901)37:3<171:AID-SYN1>3.0.CO;2-R.PubMedCrossRefGoogle Scholar
  135. Vernon, A. C., Crum, W. R., Johansson, S. M., & Modo, M. (2011). Evolution of extra-nigral damage predicts behavioural deficits in a rat proteasome inhibitor model of Parkinson’s disease. PLoS ONE, 6, e17269. doi: 10.1371/journal.pone.0017269.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Vila, M., Jackson-Lewis, V., Vukosavic, S., et al. (2001). Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States, 98, 2837–2842. doi: 10.1073/pnas.051633998.CrossRefGoogle Scholar
  137. Wei, L., Ding, L., Mo, M.-S., et al. (2015). Wnt3a protects SH-SY5Y cells against 6-hydroxydopamine toxicity by restoration of mitochondria function. Translational Neurodegeneration, 4, 11. doi: 10.1186/s40035-015-0033-1.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Weinert, M., Selvakumar, T., Tierney, T. S., & Alavian, K. N. (2015). Isolation, culture and long-term maintenance of primary mesencephalic dopaminergic neurons from embryonic rodent brains. Journal of Visualized Experiments. doi: 10.3791/52475.PubMedPubMedCentralGoogle Scholar
  139. Weisskopf, M. G., Knekt, P., O’Reilly, E. J., et al. (2010). Persistent organochlorine pesticides in serum and risk of Parkinson disease. Neurology, 74, 1055–1061. doi: 10.1212/WNL.0b013e3181d76a93.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Xicoy, H., Wieringa, B., & Martens, G. J. M. (2017). The SH-SY5Y cell line in Parkinson’s disease research: A systematic review. Molecular Neurodegeneration, 12, 10. doi: 10.1186/s13024-017-0149-0.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Yu, J., Vodyanik, M. A., Smuga-Otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–1920. doi: 10.1126/science.1151526.PubMedCrossRefGoogle Scholar
  142. Zhang, X.-M., Yin, M., & Zhang, M.-H. (2014). Cell-based assays for Parkinson’s disease using differentiated human LUHMES cells. Acta Pharmacologica Sinica, 35, 945–956. doi: 10.1038/aps.2014.36.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Zhou, Z. D., Lan, Y. H., Tan, E. K., & Lim, T. M. (2010). Iron species-mediated dopamine oxidation, proteasome inhibition, and dopaminergic cell demise: implications for iron-related dopaminergic neuron degeneration. Free Radical Biology and Medicine, 49, 1856–1871. doi: 10.1016/j.freeradbiomed.2010.09.010.PubMedCrossRefGoogle Scholar
  144. Zimprich, A., Benet-Pagès, A., Struhal, W., et al. (2011). A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. American Journal of Human Genetics, 89, 168–175. doi: 10.1016/j.ajhg.2011.06.008.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Zimprich, A., Biskup, S., Leitner, P., et al. (2004). Mutations in LRRK2 cause autosomal-dominant Parkinsonism with pleomorphic pathology. Neuron, 44, 601–607. doi: 10.1016/j.neuron.2004.11.005.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Fernanda Martins Lopes
    • 1
    • 2
    Email author
  • Ivi Juliana Bristot
    • 1
  • Leonardo Lisbôa da Motta
    • 1
  • Richard B. Parsons
    • 2
  • Fabio Klamt
    • 1
    Email author
  1. 1.Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Institute of Pharmaceutical ScienceKing’s College LondonLondonUK

Personalised recommendations