Advertisement

NeuroMolecular Medicine

, Volume 18, Issue 3, pp 453–464 | Cite as

Role of dietary phenols in mitigating microglia-mediated neuroinflammation

  • Parakalan Rangarajan
  • Aparna Karthikeyan
  • S. T. Dheen
Review Paper

Abstract

Chronic neuroinflammation is a pathological feature of a number of central nervous system (CNS) diseases and is mediated by sustained activation of microglial cells, the innate immune cells of the CNS. Studies have mainly focused on identifying the molecular and epigenetic mechanisms of microglial activation. This is crucial in designing therapeutic strategies for neuropathologies in which prolonged microglial activation is known to exacerbate disease condition. In recent years, increasing evidence show that naturally occurring compounds present in regular diet could function as “nutraceuticals,” arresting microglial activation, and thus conferring neuroprotection. This review summarizes our understanding of the role of dietary phenolic nutraceuticals in mitigating microglia-mediated neuroinflammation. Studies show that these natural phenols inhibit key signaling pathways in activated microglia such as the NFκB, MAPK and JAK-STAT that trigger microglia-mediated inflammation in various neuropathological conditions such as injury, infection, stroke, autism and neurodegenerative diseases, i.e., Alzheimer’s disease and Parkinson’s disease. The anti-inflammatory and antioxidant effect exerted by these natural phenols have shown considerable success in improving disease condition in animal models of neuropathologies, and thus seem to be suitable candidates for developing therapeutic strategies.

Keywords

Microglia CNS Luteolin Quercetin Resveratrol Curcumin Neuroinflammation 

Notes

Compliance with ethical standards

Conflict of interest

The authors confirm that this article content has no conflict of interest.

References

  1. Ahmad, A., Khan, M. M., Hoda, M. N., Raza, S. S., Khan, M. B., Javed, H., et al. (2011). Quercetin protects against oxidative stress associated damages in a rat model of transient focal cerebral ischemia and reperfusion. Neurochemical Research, 36(8), 1360–1371.PubMedCrossRefGoogle Scholar
  2. Albright, A. V., & González-Scarano, F. (2004). Microarray analysis of activated mixed glial (microglia) and monocyte-derived macrophage gene expression. Journal of Neuroimmunology, 157(1), 27–38.PubMedCrossRefGoogle Scholar
  3. Amri, A., Chaumeil, J. C., Sfar, S., & Charrueau, C. (2012). Administration of resveratrol: what formulation solutions to bioavailability limitations? Journal of Controlled Release, 158(2), 182–193.PubMedCrossRefGoogle Scholar
  4. Bagli, E., Stefaniotou, M., Morbidelli, L., Ziche, M., Psillas, K., Murphy, C., et al. (2004). Luteolin inhibits vascular endothelial growth factor-induced angiogenesis; inhibition of endothelial cell survival and proliferation by targeting phosphatidylinositol 3′-kinase activity. Cancer Research, 64(21), 7936–7946.PubMedCrossRefGoogle Scholar
  5. Bambini-Junior, V., Zanatta, G., Nunes, G. D. F., de Melo, G. M., Michels, M., Fontes-Dutra, M., et al. (2014). Resveratrol prevents social deficits in animal model of autism induced by valproic acid. Neuroscience Letters, 583, 176–181.PubMedCrossRefGoogle Scholar
  6. Bhandari, R., & Kuhad, A. (2015). Neuropsychopharmacotherapeutic efficacy of curcumin in experimental paradigm of autism spectrum disorders. Life Sciences, 141, 156–169.PubMedCrossRefGoogle Scholar
  7. Bisht, K., Wagner, K.-H., & Bulmer, A. C. (2010). Curcumin, resveratrol and flavonoids as anti-inflammatory, cyto-and DNA-protective dietary compounds. Toxicology, 278(1), 88–100.PubMedCrossRefGoogle Scholar
  8. Bournival, J., Plouffe, M., Renaud, J., Provencher, C., & Martinoli, M.-G. (2012). Quercetin and Sesamin Protect Dopaminergic Cells from MPP < sup > . Oxidative medicine and cellular longevity, 2012.Google Scholar
  9. Burton, M. D., Rytych, J. L., Amin, R., & Johnson, R. W. (2015). Dietary luteolin reduces pro-inflammatory microglia in the brain of senescent mice. Rejuvenation Research(ja).Google Scholar
  10. Busch, C., Burkard, M., Leischner, C., Lauer, U. M., Frank, J., & Venturelli, S. (2015). Epigenetic activities of flavonoids in the prevention and treatment of cancer. Clinical epigenetics, 7(1), 1.CrossRefGoogle Scholar
  11. Butovsky, O., Ziv, Y., Schwartz, A., Landa, G., Talpalar, A. E., Pluchino, S., et al. (2006). Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Molecular and Cellular Neuroscience, 31(1), 149–160.PubMedCrossRefGoogle Scholar
  12. Capiralla, H., Vingtdeux, V., Zhao, H., Sankowski, R., Al-Abed, Y., Davies, P., et al. (2012). Resveratrol mitigates lipopolysaccharide-and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. Journal of Neurochemistry, 120(3), 461–472.PubMedCrossRefGoogle Scholar
  13. Chakraborty, J., Singh, R., Dutta, D., Naskar, A., Rajamma, U., & Mohanakumar, K. P. (2014). Quercetin Improves Behavioral Deficiencies, Restores Astrocytes and Microglia, and Reduces Serotonin Metabolism in 3-Nitropropionic Acid-Induced Rat Model of Huntington’s Disease. CNS Neuroscience & Therapeutics, 20(1), 10–19.CrossRefGoogle Scholar
  14. Chan, A., Seguin, R., Magnus, T., Papadimitriou, C., Toyka, K. V., Antel, J. P., et al. (2003). Phagocytosis of apoptotic inflammatory cells by microglia and its therapeutic implications: termination of CNS autoimmune inflammation and modulation by interferon-beta. Glia, 43(3), 231–242.PubMedCrossRefGoogle Scholar
  15. Chang, C. Y., Choi, D.-K., Lee, D. K., Hong, Y. J., & Park, E. J. (2013). Resveratrol confers protection against rotenone-induced neurotoxicity by modulating myeloperoxidase levels in glial cells. PLoS ONE, 8(4), e60654.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chen, J.-C., Ho, F.-M., Chao, P.-D. L., Chen, C.-P., Jeng, K.-C. G., Hsu, H.-B., et al. (2005). Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IκB kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. European Journal of Pharmacology, 521(1), 9–20.PubMedCrossRefGoogle Scholar
  17. Cheng, A.-C., Huang, T.-C., Lai, C.-S., & Pan, M.-H. (2005). Induction of apoptosis by luteolin through cleavage of Bcl-2 family in human leukemia HL-60 cells. European Journal of Pharmacology, 509(1), 1–10.PubMedCrossRefGoogle Scholar
  18. Cheng, K. K., Yeung, C. F., Ho, S. W., Chow, S. F., Chow, A. H., & Baum, L. (2013). Highly stabilized curcumin nanoparticles tested in an in vitro blood–brain barrier model and in Alzheimer’s disease Tg2576 mice. The AAPS journal, 15(2), 324–336.PubMedCrossRefGoogle Scholar
  19. Cherry, J. D., Olschowka, J. A., & O’Banion, M. K. (2014). Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation, 11(1), 98.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Choi, D. K., Koppula, S., & Suk, K. (2011). Inhibitors of microglial neurotoxicity: focus on natural products. Molecules, 16(2), 1021–1043.PubMedCrossRefGoogle Scholar
  21. Chun-Fu, W., Jing-Yu, Y., Fang, W., & Xiao-Xiao, W. (2013). Resveratrol: botanical origin, pharmacological activity and applications. Chinese Journal of Natural Medicines, 11(1), 1–15.Google Scholar
  22. Chung, S. Y., & Han, S. H. (2003). Melatonin attenuates kainic acid-induced hippocampal neurodegeneration and oxidative stress through microglial inhibition. Journal of Pineal Research, 34(2), 95–102.PubMedCrossRefGoogle Scholar
  23. Cianciulli, A., Dragone, T., Calvello, R., Porro, C., Trotta, T., Lofrumento, D. D., et al. (2015). IL-10 plays a pivotal role in anti-inflammatory effects of resveratrol in activated microglia cells. International Immunopharmacology, 24(2), 369–376.PubMedCrossRefGoogle Scholar
  24. Clark, D., Tuor, U. I., Thompson, R., Institoris, A., Kulynych, A., Zhang, X., et al. (2012). Protection against recurrent stroke with resveratrol: endothelial protection. PLoS ONE, 7(10), e47792.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Crain, J. M., Nikodemova, M., & Watters, J. J. (2013). Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice. Journal of Neuroscience Research, 91(9), 1143–1151.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cullheim, S., & Thams, S. (2007). The microglial networks of the brain and their role in neuronal network plasticity after lesion. Brain Research Reviews, 55(1), 89–96.PubMedCrossRefGoogle Scholar
  27. Dhawan, S., Kapil, R., & Singh, B. (2011). Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. Journal of Pharmacy and Pharmacology, 63(3), 342–351.PubMedCrossRefGoogle Scholar
  28. Dheen, S. T., Jun, Y., Yan, Z., Tay, S. S., & Ang Ling, E. (2005). Retinoic acid inhibits expression of TNF-α and iNOS in activated rat microglia. Glia, 50(1), 21–31.PubMedCrossRefGoogle Scholar
  29. Dirscherl, K., Karlstetter, M., Ebert, S., Kraus, D., Hlawatsch, J., Walczak, Y., et al. (2010). Luteolin triggers global changes in the microglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype. J Neuroinflammation, 7(3), 1742–2094.Google Scholar
  30. Dohare, P., Garg, P., Jain, V., Nath, C., & Ray, M. (2008). Dose dependence and therapeutic window for the neuroprotective effects of curcumin in thromboembolic model of rat. Behavioural Brain Research, 193(2), 289–297.PubMedCrossRefGoogle Scholar
  31. Dohi, K., Ohtaki, H., Nakamachi, T., Yofu, S., Satoh, K., Miyamoto, K., et al. (2010). Gp91phox (NOX2) in classically activated microglia exacerbates traumatic brain injury. J Neuroinflammation, 7(1), 41.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dragone, T., Cianciulli, A., Calvello, R., Porro, C., Trotta, T., & Panaro, M. A. (2014). Resveratrol counteracts lipopolysaccharide-mediated microglial inflammation by modulating a SOCS-1 dependent signaling pathway. Toxicology in Vitro, 28(6), 1126–1135.PubMedCrossRefGoogle Scholar
  33. Frémont, L. (2000). Biological effects of resveratrol. Life Sciences, 66(8), 663–673.PubMedCrossRefGoogle Scholar
  34. Garcia-Alloza, M., Borrelli, L., Rozkalne, A., Hyman, B., & Bacskai, B. (2007). Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. Journal of Neurochemistry, 102(4), 1095–1104.PubMedCrossRefGoogle Scholar
  35. Gómez-Nicola, D., Fransen, N. L., Suzzi, S., & Perry, V. H. (2013). Regulation of microglial proliferation during chronic neurodegeneration. The Journal of Neuroscience, 33(6), 2481–2493.PubMedCrossRefGoogle Scholar
  36. Graeber, M. B., Scheithauer, B. W., & Kreutzberg, G. W. (2002). Microglia in brain tumors. Glia, 40(2), 252–259.PubMedCrossRefGoogle Scholar
  37. Guardia, T., Rotelli, A. E., Juarez, A. O., & Pelzer, L. E. (2001). Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Il farmaco, 56(9), 683–687.PubMedCrossRefGoogle Scholar
  38. Gupta, S. C., Patchva, S., & Aggarwal, B. B. (2013). Therapeutic roles of curcumin: lessons learned from clinical trials. The AAPS journal, 15(1), 195–218.PubMedCrossRefGoogle Scholar
  39. Gupta, S. C., Prasad, S., Kim, J. H., Patchva, S., Webb, L. J., Priyadarsini, I. K., et al. (2011). Multitargeting by curcumin as revealed by molecular interaction studies. Natural product reports, 28(12), 1937–1955.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hanisch, U. K. (2002). Microglia as a source and target of cytokines. Glia, 40(2), 140–155.PubMedCrossRefGoogle Scholar
  41. Hanisch, U.-K., & Kettenmann, H. (2007). Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature Neuroscience, 10(11), 1387–1394.PubMedCrossRefGoogle Scholar
  42. He, L.-F., Chen, H.-J., Qian, L.-H., Chen, G.-Y., & Buzby, J. S. (2010). Curcumin protects pre-oligodendrocytes from activated microglia in vitro and in vivo. Brain Research, 1339, 60–69.PubMedCrossRefGoogle Scholar
  43. Hickman, S. E., Kingery, N. D., Ohsumi, T. K., Borowsky, M. L., Wang, L.-C., Means, T. K., et al. (2013). The microglial sensome revealed by direct RNA sequencing. Nature Neuroscience, 16(12), 1896–1905.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Ho, L., Ferruzzi, M. G., Janle, E. M., Wang, J., Gong, B., Chen, T.-Y., et al. (2013). Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronide as a novel intervention for Alzheimer’s disease. The FASEB Journal, 27(2), 769–781.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Huo, Y., Rangarajan, P., Ling, E.-A., & Dheen, S. T. (2011). Dexamethasone inhibits the Nox-dependent ROS production via suppression of MKP-1-dependent MAPK pathways in activated microglia. BMC neuroscience, 12(1), 49.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ishisaka, A., Ichikawa, S., Sakakibara, H., Piskula, M. K., Nakamura, T., Kato, Y., et al. (2011). Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats. Free Radical Biology and Medicine, 51(7), 1329–1336.PubMedCrossRefGoogle Scholar
  47. Jang, S., Dilger, R. N., & Johnson, R. W. (2010). Luteolin inhibits microglia and alters hippocampal-dependent spatial working memory in aged mice. The Journal of nutrition, 140(10), 1892–1898.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Jang, S., Kelley, K. W., & Johnson, R. W. (2008). Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proceedings of the National Academy of Sciences, 105(21), 7534–7539.CrossRefGoogle Scholar
  49. Jasiński, M., Jasińska, L., & Ogrodowczyk, M. (2013). Resveratrol in prostate diseases-a short review. Central European journal of 0075rology, 66(2)Google Scholar
  50. Jin, C.-Y., Lee, J.-D., Park, C., Choi, Y-h, & Kim, G.-Y. (2007). Curcumin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-stimulated BV2 microglia. Acta Pharmacologica Sinica, 28(10), 1645–1651.PubMedCrossRefGoogle Scholar
  51. Jin, F., Wu, Q., Lu, Y.-F., Gong, Q.-H., & Shi, J.-S. (2008). Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in rats. European Journal of Pharmacology, 600(1), 78–82.PubMedCrossRefGoogle Scholar
  52. Joseph, J. A., Fisher, D. R., Cheng, V., Rimando, A. M., & Shukitt-Hale, B. (2008). Cellular and behavioral effects of stilbene resveratrol analogues: implications for reducing the deleterious effects of aging. Journal of Agricultural and Food Chemistry, 56(22), 10544–10551.PubMedCrossRefGoogle Scholar
  53. Jung, K. K., Lee, H. S., Cho, J. Y., Shin, W. C., Rhee, M. H., Kim, T. G., et al. (2006). Inhibitory effect of curcumin on nitric oxide production from lipopolysaccharide-activated primary microglia. Life Sciences, 79(21), 2022–2031.PubMedCrossRefGoogle Scholar
  54. Kao, T.-K., Ou, Y.-C., Lin, S.-Y., Pan, H.-C., Song, P.-J., Raung, S.-L., et al. (2011). Luteolin inhibits cytokine expression in endotoxin/cytokine-stimulated microglia. The Journal of nutritional biochemistry, 22(7), 612–624.PubMedCrossRefGoogle Scholar
  55. Kao, T.-K., Ou, Y.-C., Raung, S.-L., Lai, C.-Y., Liao, S.-L., & Chen, C.-J. (2010). Inhibition of nitric oxide production by quercetin in endotoxin/cytokine-stimulated microglia. Life Sciences, 86(9), 315–321.PubMedCrossRefGoogle Scholar
  56. Karlstetter, M., Lippe, E., Walczak, Y., Moehle, C., Aslanidis, A., Mirza, M., et al. (2011). Curcumin is a potent modulator of microglial gene expression and migration. J Neuroinflammation, 8, 125.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Karuppagounder, S. S., Pinto, J. T., Xu, H., Chen, H.-L., Beal, M. F., & Gibson, G. E. (2009). Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochemistry International, 54(2), 111–118.PubMedCrossRefGoogle Scholar
  58. Kaushal, V., & Schlichter, L. C. (2008). Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. The Journal of Neuroscience, 28(9), 2221–2230.PubMedCrossRefGoogle Scholar
  59. Kelso, M. L., Scheff, N. N., Scheff, S. W., & Pauly, J. R. (2011). Melatonin and minocycline for combinatorial therapy to improve functional and histopathological deficits following traumatic brain injury. Neuroscience Letters, 488(1), 60–64.PubMedCrossRefGoogle Scholar
  60. Kettenmann, H., Kirchhoff, F., & Verkhratsky, A. (2013). Microglia: new roles for the synaptic stripper. Neuron, 77(1), 10–18.PubMedCrossRefGoogle Scholar
  61. Kim, H. J., Lee, W., & Yun, J. M. (2014). Luteolin Inhibits Hyperglycemia-Induced Proinflammatory Cytokine Production and Its Epigenetic Mechanism in Human Monocytes. Phytotherapy Research, 28(9), 1383–1391.PubMedCrossRefGoogle Scholar
  62. Kim, H. Y., Park, E. J., Joe, E.-H., & Jou, I. (2003). Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. The Journal of Immunology, 171(11), 6072–6079.PubMedCrossRefGoogle Scholar
  63. Koedel, U., & Pfister, H. W. (1999). Oxidative stress in bacterial meningitis. Brain Pathology, 9(1), 57–67.PubMedCrossRefGoogle Scholar
  64. Kumar, A., Alvarez-Croda, D.-M., Stoica, B. A., Faden, A. I., & Loane, D. J. (2015). Microglial/macrophage polarization dynamics following traumatic brain injury. Journal of neurotrauma.Google Scholar
  65. Labinskyy, N., Csiszar, A., Veress, G., Stef, G., Pacher, P., Oroszi, G., et al. (2006). Vascular dysfunction in aging: potential effects of resveratrol, an anti-inflammatory phytoestrogen. Current Medicinal Chemistry, 13(9), 989.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lalancette-Hébert, M., Gowing, G., Simard, A., Weng, Y. C., & Kriz, J. (2007). Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. The Journal of Neuroscience, 27(10), 2596–2605.PubMedCrossRefGoogle Scholar
  67. Lee, K.-H., Park, E., Lee, H.-J., Kim, M.-O., Cha, Y.-J., Kim, J.-M., et al. (2011). Effects of daily quercetin-rich supplementation on cardiometabolic risks in male smokers. Nutrition research and practice, 5(1), 28–33.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Li, W., & Graeber, M. B. (2012). The molecular profile of microglia under the influence of glioma. Neuro-oncology, nos116.Google Scholar
  69. Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. A., & Cole, G. M. (2001). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. The Journal of Neuroscience, 21(21), 8370–8377.PubMedGoogle Scholar
  70. Lin, L.-F., Chiu, S.-P., Wu, M.-J., Chen, P.-Y., & Yen, J.-H. (2012). Luteolin induces microRNA-132 expression and modulates neurite outgrowth in PC12 cells. PLoS ONE, 7(8), e43304.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Liu, Z.-J., Liu, W., Liu, L., Xiao, C., Wang, Y., & Jiao, J.-S. (2013). Curcumin protects neuron against cerebral ischemia-induced inflammation through improving PPAR-gamma function. Evidence-Based Complementary and Alternative Medicine, 2013.Google Scholar
  72. Lopez-Lazaro, M. (2009). Distribution and biological activities of the flavonoid luteolin. Mini reviews in medicinal chemistry, 9(1), 31–59.PubMedCrossRefGoogle Scholar
  73. Lorenz, P., Roychowdhury, S., Engelmann, M., Wolf, G., & Horn, T. F. (2003). Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: effect on nitrosative and oxidative stress derived from microglial cells. Nitric Oxide, 9(2), 64–76.PubMedCrossRefGoogle Scholar
  74. Maheshwari, R. K., Singh, A. K., Gaddipati, J., & Srimal, R. C. (2006). Multiple biological activities of curcumin: a short review. Life Sciences, 78(18), 2081–2087.PubMedCrossRefGoogle Scholar
  75. Majumdar, A., Cruz, D., Asamoah, N., Buxbaum, A., Sohar, I., Lobel, P., et al. (2007). Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Molecular Biology of the Cell, 18(4), 1490–1496.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Mokni, M., Elkahoui, S., Limam, F., Amri, M., & Aouani, E. (2007). Effect of resveratrol on antioxidant enzyme activities in the brain of healthy rat. Neurochemical Research, 32(6), 981–987.PubMedCrossRefGoogle Scholar
  77. Moran, L., Duke, D., Turkheimer, F., Banati, R., & Graeber, M. (2004). Towards a transcriptome definition of microglial cells. Neurogenetics, 5(2), 95–108.PubMedCrossRefGoogle Scholar
  78. Murakami, A., Ashida, H., & Terao, J. (2008). Multitargeted cancer prevention by quercetin. Cancer Letters, 269(2), 315–325.PubMedCrossRefGoogle Scholar
  79. Muthian, G., & Bright, J. J. (2004). Quercetin, a flavonoid phytoestrogen, ameliorates experimental allergic encephalomyelitis by blocking IL-12 signaling through JAK-STAT pathway in T lymphocyte. Journal of Clinical Immunology, 24(5), 542–552.PubMedCrossRefGoogle Scholar
  80. Nayak, D., Huo, Y., Kwang, W., Pushparaj, P., Kumar, S., Ling, E.-A., et al. (2010). Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience, 166(1), 132–144.PubMedCrossRefGoogle Scholar
  81. Nazari, Q. A., Takada-Takatori, Y., Hashimoto, T., Imaizumi, A., Izumi, Y., Akaike, A., et al. (2014). Potential protective effect of highly bioavailable curcumin on an oxidative stress model induced by microinjection of sodium nitroprusside in mice brain. Food & function, 5(5), 984–989.CrossRefGoogle Scholar
  82. Nichols, J. A., & Katiyar, S. K. (2010). Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Archives of Dermatological Research, 302(2), 71–83.PubMedCrossRefGoogle Scholar
  83. Parakalan, R., Jiang, B., Nimmi, B., Janani, M., Jayapal, M., Lu, J., et al. (2012). Transcriptome analysis of amoeboid and ramified microglia isolated from the corpus callosum of rat brain. BMC neuroscience, 13(1), 1.CrossRefGoogle Scholar
  84. Park, E., Kim, D. K., & Chun, H. S. (2012). Resveratrol inhibits lipopolysaccharide-induced phagocytotic activity in BV2 cells. Journal of the Korean Society for Applied Biological Chemistry, 55(6), 803–807.CrossRefGoogle Scholar
  85. Perry, M. C., Demeule, M., Regina, A., Moumdjian, R., & Beliveau, R. (2010a). Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts. Molecular Nutrition & Food Research, 54(8), 1192–1201.Google Scholar
  86. Perry, V. H., Nicoll, J. A., & Holmes, C. (2010b). Microglia in neurodegenerative disease. Nature Reviews Neurology, 6(4), 193–201.PubMedCrossRefGoogle Scholar
  87. Persidsky, Y., & Gendelman, H. E. (2003). Mononuclear phagocyte immunity and the neuropathogenesis of HIV-1 infection. Journal of Leukocyte Biology, 74(5), 691–701.PubMedCrossRefGoogle Scholar
  88. Piantadosi, C. A., Withers, C. M., Bartz, R. R., MacGarvey, N. C., Fu, P., Sweeney, T. E., et al. (2011). Heme oxygenase-1 couples activation of mitochondrial biogenesis to anti-inflammatory cytokine expression. Journal of Biological Chemistry, 286(18), 16374–16385.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Ramlackhansingh, A. F., Brooks, D. J., Greenwood, R. J., Bose, S. K., Turkheimer, F. E., Kinnunen, K. M., et al. (2011). Inflammation after trauma: microglial activation and traumatic brain injury. Annals of neurology, 70(3), 374–383.PubMedCrossRefGoogle Scholar
  90. Rangarajan, P., Eng-Ang, L., & Thameem Dheen, S. (2013). Potential drugs targeting microglia: current knowledge and future prospects. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 12(6), 799-806.Google Scholar
  91. Rayan, N., Baby, N., Pitchai, D., Indraswari, F., Ling, E., Lu, J., et al. (2010). Costunolide inhibits proinflammatory cytokines and iNOS in activated murine BV2 microglia. Frontiers in bioscience (Elite edition), 3, 1079–1091.Google Scholar
  92. Reichard, J. F., Motz, G. T., & Puga, A. (2007). Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1. Nucleic Acids Research, 35(21), 7074–7086.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Rezai-Zadeh, K., Ehrhart, J., Bai, Y., Sanberg, P. R., Bickford, P., Tan, J., et al. (2008). Apigenin and luteolin modulate microglial activation via inhibition of STAT1-induced CD40 expression. J Neuroinflammation, 5, 41.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Rinwa, P., & Kumar, A. (2013). Quercetin suppress microglial neuroinflammatory response and induce antidepressent-like effect in olfactory bulbectomized rats. Neuroscience, 255, 86–98.PubMedCrossRefGoogle Scholar
  95. Sabogal-Guáqueta, A. M., Muñoz-Manco, J. I., Ramírez-Pineda, J. R., Lamprea-Rodriguez, M., Osorio, E., & Cardona-Gómez, G. P. (2015). The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology, 93, 134–145.PubMedCrossRefGoogle Scholar
  96. Saijo, K., & Glass, C. K. (2011). Microglial cell origin and phenotypes in health and disease. Nature Reviews Immunology, 11(11), 775–787.PubMedCrossRefGoogle Scholar
  97. Samini, F., Samarghandian, S., Borji, A., & Mohammadi, G. (2013). Curcumin pretreatment attenuates brain lesion size and improves neurological function following traumatic brain injury in the rat. Pharmacology, Biochemistry and Behavior, 110, 238–244.PubMedCrossRefGoogle Scholar
  98. Satoh, J.-I., Asahina, N., Kitano, S., & Kino, Y. (2014). A comprehensive profile of ChIP-Seq-Based PU. 1/Spi1 target genes in microglia. Gene regulation and systems biology, 8, 127.Google Scholar
  99. Sawmiller, D., Li, S., Shahaduzzaman, M., Smith, A. J., Obregon, D., Giunta, B., et al. (2014). Luteolin reduces Alzheimer’s disease pathologies induced by traumatic brain injury. International Journal of Molecular Sciences, 15(1), 895–904.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Schmitt, E., Hoehn, P., Huels, C., Goedert, S., Palm, N., Rüde, E., et al. (1994). T helper type 1 development of naive CD4 + T cells requires the coordinate action of interleukin-12 and interferon-γ and is inhibited by transforming growth factor-β. European Journal of Immunology, 24(4), 793–798.PubMedCrossRefGoogle Scholar
  101. Schraufstätter, E., & Bernt, H. (1949). Antibacterial action of curcumin and related compounds. Nature, 164, 456–457.PubMedCrossRefGoogle Scholar
  102. Sönmez, Ü., Sönmez, A., Erbil, G., Tekmen, I., & Baykara, B. (2007). Neuroprotective effects of resveratrol against traumatic brain injury in immature rats. Neuroscience Letters, 420(2), 133–137.PubMedCrossRefGoogle Scholar
  103. Soriano, F. X., Léveillé, F., Papadia, S., Higgins, L. G., Varley, J., Baxter, P., et al. (2008). Induction of sulfiredoxin expression and reduction of peroxiredoxin hyperoxidation by the neuroprotective Nrf2 activator 3H–1, 2-dithiole-3-thione. Journal of Neurochemistry, 107(2), 533–543.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Stence, N., Waite, M., & Dailey, M. E. (2001). Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia, 33(3), 256–266.PubMedCrossRefGoogle Scholar
  105. Streit, W. J. (2006). Microglial senescence: does the brain’s immune system have an expiration date? Trends in Neurosciences, 29(9), 506–510.PubMedCrossRefGoogle Scholar
  106. Sun, G. Y., Chen, Z., Jasmer, K. J., Chuang, D. Y., Gu, Z., Hannink, M., et al. (2015). Quercetin attenuates inflammatory responses in BV-2 microglial cells: role of MAPKs on the Nrf2 pathway and induction of heme oxygenase-1. PLoS ONE, 10(10), e0141509.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Sun, D., Zhuang, X., Xiang, X., Liu, Y., Zhang, S., Liu, C., et al. (2010). A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Molecular Therapy, 18(9), 1606–1614.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Suzuki, K., Sugihara, G., Ouchi, Y., Nakamura, K., Futatsubashi, M., Takebayashi, K., et al. (2013). Microglial activation in young adults with autism spectrum disorder. JAMA psychiatry, 70(1), 49–58.PubMedCrossRefGoogle Scholar
  109. Takano, T. (2015). Role of microglia in autism: recent advances. Developmental Neuroscience, 37(3), 195–202.PubMedCrossRefGoogle Scholar
  110. Taliou, A., Zintzaras, E., Lykouras, L., & Francis, K. (2013). An open-label pilot study of a formulation containing the anti-inflammatory flavonoid luteolin and its effects on behavior in children with autism spectrum disorders. Clinical Therapeutics, 35(5), 592–602.PubMedCrossRefGoogle Scholar
  111. Taylor, R. A., & Sansing, L. H. (2013). Microglial responses after ischemic stroke and intracerebral hemorrhage. Clinical and Developmental Immunology, 2013.Google Scholar
  112. Tchantchou, F., Lacor, P. N., Cao, Z., Lao, L., Hou, Y., Cui, C., et al. (2009). Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons. Journal of Alzheimer’s Disease, 18(4), 787–798.PubMedGoogle Scholar
  113. Teiten, M. H., Dicato, M., & Diederich, M. (2013). Curcumin as a regulator of epigenetic events. Molecular Nutrition & Food Research, 57(9), 1619–1629.CrossRefGoogle Scholar
  114. Thameem Dheen, S., Kaur, C., & Ling, E.-A. (2007). Microglial activation and its implications in the brain diseases. Current Medicinal Chemistry, 14(11), 1189–1197.PubMedCrossRefGoogle Scholar
  115. Thored, P., Heldmann, U., Gomes-Leal, W., Gisler, R., Darsalia, V., Taneera, J., et al. (2009). Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia, 57(8), 835–849.PubMedCrossRefGoogle Scholar
  116. Tsilioni, I., Taliou, A., & FrancisK, Theoharides T. (2015). Children with autism spectrum disorders, who improved with a luteolin-containing dietary formulation, show reduced serum levels of TNF and IL-6. Translational Psychiatry, 5(9), e647.PubMedCrossRefGoogle Scholar
  117. Venturelli, S., Berger, A., Böcker, A., Busch, C., Weiland, T., Noor, S., et al. (2013). Resveratrol as a pan-HDAC inhibitor alters the acetylation status of histone proteins in human-derived hepatoblastoma cells. PLoS ONE, 8(8), e73097.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Vidak, M., Rozman, D., & Komel, R. (2015). Effects of Flavonoids from Food and Dietary Supplements on Glial and Glioblastoma Multiforme Cells. Molecules, 20(10), 19406–19432.PubMedCrossRefGoogle Scholar
  119. Walker, D. G., & Lue, L.-F. (2015). Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimer’s Research & Therapy, 7(1), 1–9.CrossRefGoogle Scholar
  120. Wang, G., Zhang, J., Hu, X., Zhang, L., Mao, L., Jiang, X., et al. (2013). Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 33(12), 1864–1874.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Wilkinson, B. L., & Landreth, G. E. (2006). The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer’s disease. J Neuroinflammation, 3(1), 30.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Wu, A., Ying, Z., & Gomez-Pinilla, F. (2006). Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Experimental Neurology, 197(2), 309–317.PubMedCrossRefGoogle Scholar
  123. Xu, J., & Drew, P. D. (2006). 9-Cis-retinoic acid suppresses inflammatory responses of microglia and astrocytes. Journal of Neuroimmunology, 171(1), 135–144.PubMedCrossRefGoogle Scholar
  124. Youdim, K. A., Qaiser, M. Z., Begley, D. J., Rice-Evans, C. A., & Abbott, N. J. (2004). Flavonoid permeability across an in situ model of the blood–brain barrier. Free Radical Biology and Medicine, 36(5), 592–604.PubMedCrossRefGoogle Scholar
  125. Zhang, Y., Yi, B., Ma, J., Zhang, L., Zhang, H., Yang, Y., et al. (2015). Quercetin promotes neuronal and behavioral recovery by suppressing inflammatory response and apoptosis in a rat model of intracerebral hemorrhage. Neurochemical Research, 40(1), 195–203.PubMedCrossRefGoogle Scholar
  126. Zhao, J., Yu, S., Zheng, W., Feng, G., Luo, G., Wang, L., et al. (2010). Curcumin improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats. Neurochemical Research, 35(3), 374–379.PubMedCrossRefGoogle Scholar
  127. Zhu, L.-H., Bi, W., Qi, R.-B., Wang, H.-D., & Lu, D.-X. (2011). Luteolin inhibits microglial inflammation and improves neuron survival against inflammation. International Journal of Neuroscience, 121(6), 329–336.PubMedCrossRefGoogle Scholar
  128. Zhu, H., Bian, C., Yuan, J., Chu, W., Xiang, X., Chen, F., et al. (2014). Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury. J Neuroinflammation, 11(59), 1186.Google Scholar
  129. Zou, L., Liu, W., Liu, C., Xiao, H., & McClements, D. J. (2015). Utilizing food matrix effects to enhance nutraceutical bioavailability: increase of curcumin bioaccessibility using excipient emulsions. Journal of Agricultural and Food Chemistry, 63(7), 2052–2062.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Anatomy, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore

Personalised recommendations