Advertisement

NeuroMolecular Medicine

, Volume 18, Issue 1, pp 146–153 | Cite as

Changes in Dopamine Signalling Do Not Underlie Aberrant Hippocampal Plasticity in a Mouse Model of Huntington’s Disease

  • Glenn M. DalléracEmail author
  • Damian M. Cummings
  • Mark C. Hirst
  • Austen J. Milnerwood
  • Kerry P. S. J. MurphyEmail author
Original Paper

Abstract

Altered dopamine receptor labelling has been demonstrated in presymptomatic and symptomatic Huntington’s disease (HD) gene carriers, indicating that alterations in dopaminergic signalling are an early event in HD. We have previously described early alterations in synaptic transmission and plasticity in both the cortex and hippocampus of the R6/1 mouse model of Huntington’s disease. Deficits in cortical synaptic plasticity were associated with altered dopaminergic signalling and could be reversed by D1- or D2-like dopamine receptor activation. In light of these findings we here investigated whether defects in dopamine signalling could also contribute to the marked alteration in hippocampal synaptic function. To this end we performed dopamine receptor labelling and pharmacology in the R6/1 hippocampus and report a marked, age-dependent elevation of hippocampal D1 and D2 receptor labelling in R6/1 hippocampal subfields. Yet, pharmacological inhibition or activation of D1- or D2-like receptors did not modify the aberrant synaptic plasticity observed in R6/1 mice. These findings demonstrate that global perturbations to dopamine receptor expression do occur in HD transgenic mice, similarly in HD gene carriers and patients. However, the direction of change and the lack of effect of dopaminergic pharmacological agents on synaptic function demonstrate that the perturbations are heterogeneous and region-specific, a finding that may explain the mixed results of dopamine therapy in HD.

Keywords

Synaptic plasticity LTD Electrophysiology R6/1 Neurodegeneration Polyglutamine Huntingtin 

Notes

Acknowledgments

We would like to thank Mr. Steve Walters, Mrs. Dawn Sadler, Mrs. Karen Evans, and Dr. Verina Waights at the Open University for their excellent technical assistance and Drs Tony Hannan and Anton van Dellen of Oxford University for their help in establishing our R6/1 colony. We would also like to thank Professor Michael Levine and Mr Ehud Gruen for providing D2 knock-out mouse brains. This work was funded by the Open University Research Development Committee and the Royal Society.

Compliance with Ethical Standards

Conflict of interest

None.

References

  1. Amenta, F., Mignini, F., Ricci, A., Sabbatini, M., Tomassoni, D., & Tayebati, S. K. (2001). Age-related changes of dopamine receptors in the rat hippocampus: A light microscope autoradiography study. Mechanisms of Ageing and Development, 122(16), 2071–2083.CrossRefPubMedGoogle Scholar
  2. André, V. M., Cepeda, C., & Levine, M. S. (2010). Dopamine and glutamate in Huntington’s disease: A balancing act. CNS Neuroscience & Therapeutics, 16(3), 163–178.CrossRefGoogle Scholar
  3. Andrews, T. C., Weeks, R. A., Turjanski, N., Gunn, R. N., Watkins, L. H., Sahakian, B., et al. (1999). Huntington’s disease progression: PET and clinical observations. Brain, 122(12), 2353–2363.CrossRefPubMedGoogle Scholar
  4. Antonini, A., Leenders, K. L., & Eidelberg, D. (1998). [11C]Raclopride-PET studies of the Huntington’s disease rate of progression: Relevance of the trinucleotide repeat length. Annals of Neurology, 43(2), 253–255.CrossRefPubMedGoogle Scholar
  5. Ariano, M. A., Aronin, N., Difiglia, M., Tagle, D. A., Sibley, D. R., Leavitt, B. R., et al. (2002). Striatal neurochemical changes in transgenic models of Huntington’s disease. Journal of Neuroscience Research, 68(6), 716–729.CrossRefPubMedGoogle Scholar
  6. Bolivar, V. J., Manley, K., & Messer, A. (2004). Early exploratory behavior abnormalities in R6/1 Huntington’s disease transgenic mice. Brain Research, 1005(1–2), 29–35.CrossRefPubMedGoogle Scholar
  7. Brito, V., Giralt, A., Enriquez-Barreto, L., Puigdellívol, M., Suelves, N., Zamora-Moratalla, A., et al. (2014). Neurotrophin receptor p75(NTR) mediates Huntington’s disease-associated synaptic and memory dysfunction. The Journal of Clinical Investigation, 124(10), 4411–4428.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Cepeda, C., Murphy, K. P. S., Parent, M., & Levine, M. S. (2014). The role of dopamine in Huntington’s disease. Progress in Brain Research, 211, 235–254.PubMedCentralCrossRefPubMedGoogle Scholar
  9. Chritin, M., Savasta, M., Mennicken, F., Bal, A., Abrous, D. N., Le Moal, M., et al. (1992). Intrastriatal dopamine-rich implants reverse the increase of dopamine D2 receptor mRNA levels caused by lesion of the nigrostriatal pathway: A quantitative in situ hybridization study. The European Journal of Neuroscience, 4(7), 663–672.CrossRefPubMedGoogle Scholar
  10. Colgin, L. L., Moser, E. I., & Moser, M.-B. (2008). Understanding memory through hippocampal remapping. Trends in Neurosciences, 31(9), 469–477.CrossRefPubMedGoogle Scholar
  11. Cummings, D. M., Milnerwood, A. J., Dallérac, G. M., Waights, V., Brown, J. Y., Vatsavayai, S. C., et al. (2006). Aberrant cortical synaptic plasticity and dopaminergic dysfunction in a mouse model of Huntington’s disease. Human Molecular Genetics, 15(19), 2856–2868.CrossRefPubMedGoogle Scholar
  12. Dallerac, G., Chever, O., & Rouach, N. (2013). How do astrocytes shape synaptic transmission? Insights from electrophysiology. Frontiers in Cellular Neuroscience, 7, 159.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Dallérac, G. M., Levasseur, G., Vatsavayai, S. C., Milnerwood, A. J., Cummings, D. M., Kraev, I., et al. (2015). Dysfunctional dopaminergic neurones in mouse models of Huntington’s disease: a role for SK3 channels. Neuro-Degenerative Diseases, 15(2), 93–108.CrossRefPubMedGoogle Scholar
  14. Dallérac, G. M., Vatsavayai, S. C., Cummings, D. M., Milnerwood, A. J., Peddie, C. J., Evans, K. A., et al. (2011). Impaired long-term potentiation in the prefrontal cortex of Huntington’s disease mouse models: rescue by D(1) dopamine receptor activation. Neurodegenerative Diseases, 8(4), 230–239.CrossRefPubMedGoogle Scholar
  15. Ginovart, N., Lundin, A., Farde, L., Halldin, C., Bäckman, L., Swahn, C. G., et al. (1997). PET study of the pre- and post-synaptic dopaminergic markers for the neurodegenerative process in Huntington’s disease. Brain, 120(3), 503–514.CrossRefPubMedGoogle Scholar
  16. Glass, M., Dragunow, M., & Faull, R. L. M. L. (2000). The pattern of neurodegeneration in Huntington’s disease: A comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience, 97(3), 505–519.CrossRefPubMedGoogle Scholar
  17. González-Burgos, I., & Feria-Velasco, A. (2008). Serotonin/dopamine interaction in memory formation. Progress in Brain Research, 172, 603–623.CrossRefPubMedGoogle Scholar
  18. Hansen, N., & Manahan-Vaughan, D. (2014). Dopamine D1/D5 receptors mediate informational saliency that promotes persistent hippocampal long-term plasticity. Cerebral Cortex (New York, N.Y.: 1991), 24(4), 845–858.PubMedCentralGoogle Scholar
  19. Harper, P. (1996). Huntington’s disease. In W. B. Saunders (Ed.), Major problems of neurology (2nd ed.). Philadelphia, PA: WB Saunders.Google Scholar
  20. Heng, M. Y., Tallaksen-Greene, S. J., Detloff, P. J., & Albin, R. L. (2007). Longitudinal evaluation of the Hdh(CAG)150 knock-in murine model of Huntington’s disease. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(34), 8989–8998.CrossRefGoogle Scholar
  21. Hodgson, J. G. G., Agopyan, N., Gutekunst, C.-A. A., Leavitt, B. R., LePiane, F., Singaraja, R., et al. (1999). A YAC mouse model for Huntington’s disease with full-length mutant Huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron, 23(1), 181–192.CrossRefPubMedGoogle Scholar
  22. Huang, Y.-Y. Y., Simpson, E., Kellendonk, C., & Kandel, E. R. (2004). Genetic evidence for the bidirectional modulation of synaptic plasticity in the prefrontal cortex by D1 receptors. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 3236–3241.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Jay, T. M. (2003). Dopamine: A potential substrate for synaptic plasticity and memory mechanisms. Progress in Neurobiology, 69(6), 375–390.CrossRefPubMedGoogle Scholar
  24. Johnson, M. A., Rajan, V., Miller, C. E., & Wightman, R. M. (2006). Dopamine release is severely compromised in the R6/2 mouse model of Huntington’s disease. Journal of Neurochemistry, 97(3), 737–746.CrossRefPubMedGoogle Scholar
  25. Kelly, M. A., Rubinstein, M., Asa, S. L., Zhang, G., Saez, C., Bunzow, J. R., et al. (1997). Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice. Neuron, 19(1), 103–113.CrossRefPubMedGoogle Scholar
  26. Koob, G. F., Stinus, L., & Le Moal, M. (1981). Hyperactivity and hypoactivity produced by lesions to the mesolimbic dopamine system. Behavioural Brain Research, 3(3), 341–359.CrossRefPubMedGoogle Scholar
  27. Korchounov, A., Meyer, M. F., & Krasnianski, M. (2010). Postsynaptic nigrostriatal dopamine receptors and their role in movement regulation. Journal of Neural Transmission (Vienna, Austria: 1996), 117(12), 1359–1369.CrossRefGoogle Scholar
  28. Kung, V. W. S., Hassam, R., Morton, A. J., & Jones, S. (2007). Dopamine-dependent long term potentiation in the dorsal striatum is reduced in the R6/2 mouse model of Huntington’s disease. Neuroscience, 146(4), 1571–1580.CrossRefPubMedGoogle Scholar
  29. LaHoste, G. J., & Marshall, J. F. (1989). Non-additivity of D2 receptor proliferation induced by dopamine denervation and chronic selective antagonist administration: Evidence from quantitative autoradiography indicates a single mechanism of action. Brain Research, 502(2), 223–232.CrossRefPubMedGoogle Scholar
  30. Li, L., Murphy, T. H., Hayden, M. R., & Raymond, L. A. (2004). Enhanced striatal NR2B-containing N-methyl-D-aspartate receptor-mediated synaptic currents in a mouse model of Huntington disease. Journal of Neurophysiology, 92(5), 2738–2746.CrossRefPubMedGoogle Scholar
  31. Lynch, G., Kramar, E. A., Rex, C. S., Jia, Y., Chappas, D., Gall, C. M., & Simmons, D. A. (2007). Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington’s disease. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(16), 4424–4434.CrossRefGoogle Scholar
  32. Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., Hetherington, C., et al. (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 87(3), 493–506.CrossRefPubMedGoogle Scholar
  33. Milner, A. J., Cummings, D. M., Spencer, J. P., & Murphy, K. P. S. J. (2004). Bi-directional plasticity and age-dependent long-term depression at mouse CA3-CA1 hippocampal synapses. Neuroscience Letters, 367(1), 1–5.CrossRefPubMedGoogle Scholar
  34. Milnerwood, A. J., Cummings, D. M., Dallerac, G. M., Brown, J. Y., Vatsavayai, S. C., Hirst, M. C., et al. (2006). Early development of aberrant synaptic plasticity in a mouse model of Huntington’s disease. Human Molecular Genetics, 15(10), 1690–1703.CrossRefPubMedGoogle Scholar
  35. Mochel, F., Durant, B., Durr, A., & Schiffmann, R. (2011). Altered dopamine and serotonin metabolism in motorically asymptomatic R6/2 mice. PLoS ONE, 6(3), e18336.PubMedCentralCrossRefPubMedGoogle Scholar
  36. Murphy, K. P. S. J., Carter, R. J., Lione, L. A., Mangiarini, L., Mahal, A., Bates, G. P., et al. (2000). Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington’s disease mutation. Journal of Neuroscience, 20(13), 5115–5123.PubMedGoogle Scholar
  37. Ortiz, A. N., Kurth, B. J., Osterhaus, G. L., & Johnson, Ma. (2011). Impaired dopamine release and uptake in R6/1 Huntington’s disease model mice. Neuroscience Letters, 492(1), 11–14.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Plotkin, J. L., Day, M., Peterson, J. D., Xie, Z., Kress, G. J., Rafalovich, I., et al. (2014). Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington’s disease. Neuron, 83(1), 178–188.PubMedCentralCrossRefPubMedGoogle Scholar
  39. Savasta, M., Mennicken, F., Chritin, M., Abrous, D. N., Feuerstein, C., Le Moal, M., & Herman, J. P. (1992). Intrastriatal dopamine-rich implants reverse the changes in dopamine D2 receptor densities caused by 6-hydroxydopamine lesion of the nigrostriatal pathway in rats: an autoradiographic study. Neuroscience, 46(3), 729–738.CrossRefPubMedGoogle Scholar
  40. Shohamy, D., & Adcock, R. A. (2010). Dopamine and adaptive memory. Trends in Cognitive Sciences, 14(10), 464–472.CrossRefPubMedGoogle Scholar
  41. Simmons, D. A., Rex, C. S., Palmer, L., Pandyarajan, V., Fedulov, V., Gall, C. M., & Lynch, G. (2009). Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington’s disease knockin mice. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 4906–4911.PubMedCentralCrossRefPubMedGoogle Scholar
  42. Smith, Y., & Villalba, R. (2008). Striatal and extrastriatal dopamine in the basal ganglia: an overview of its anatomical organization in normal and Parkinsonian brains. Movement Disorders: Official Journal of the Movement Disorder Society, 23(Suppl 3), S534–S547.CrossRefGoogle Scholar
  43. Tong, X., Ao, Y., Faas, G. C., Nwaobi, S. E., Xu, J., Haustein, M. D., et al. (2014). Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nature Neuroscience, 17(5), 694–703.PubMedCentralCrossRefPubMedGoogle Scholar
  44. Usdin, M. T., Shelbourne, P. F., Myers, R. M., & Madison, D. V. (1999). Impaired synaptic plasticity in mice carrying the Huntington’s disease mutation. Human Molecular Genetics, 8(5), 839–846.CrossRefPubMedGoogle Scholar
  45. van der Borght, K., & Brundin, P. (2007). Reduced expression of PSA-NCAM in the hippocampus and piriform cortex of the R6/1 and R6/2 mouse models of Huntington’s disease. Experimental Neurology, 204(1), 473–478.CrossRefPubMedGoogle Scholar
  46. Van Vugt, J., & Roos, R. (1999). Huntington’s disease: Options for controlling symptoms. CNS Drugs, 11(2), 105–123.CrossRefGoogle Scholar
  47. Weeks, R. (1997). Cortical control of movement in Huntington’s disease. A PET activation study. Brain, 120(9), 1569–1578.CrossRefPubMedGoogle Scholar
  48. Zeron, M. M., Hansson, O., Chen, N., Wellington, C. L., Leavitt, B. R., Brundin, P., et al. (2002). Increased sensitivity to N-methyl-D-aspartate in a mouse model of Huntington’ s disease. Neuron, 33, 849–860.CrossRefPubMedGoogle Scholar
  49. Zuccato, C., Tartari, M., Crotti, A., Goffredo, D., Valenza, M., Conti, L., et al. (2003). Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nature Genetics, 35(1), 76–83.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Glenn M. Dallérac
    • 1
    • 4
    Email author
  • Damian M. Cummings
    • 1
    • 3
  • Mark C. Hirst
    • 1
  • Austen J. Milnerwood
    • 1
    • 2
  • Kerry P. S. J. Murphy
    • 1
    Email author
  1. 1.Huntington’s Disease Research Forum, Department of Life, Health and Chemical SciencesThe Open UniversityMilton KeynesUK
  2. 2.Department of Neurology & Centre for Applied Neurogenetics, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverCanada
  3. 3.University College London, Neuroscience, Physiology and PharmacologyLondonUK
  4. 4.CIRB, CNRS UMR 7241, INSERM U1050Collège de FranceParisFrance

Personalised recommendations