NeuroMolecular Medicine

, Volume 17, Issue 3, pp 326–332 | Cite as

Lower Cerebrospinal Fluid Concentration of Brain-Derived Neurotrophic Factor Predicts Progression from Mild Cognitive Impairment to Alzheimer’s Disease

  • Orestes Vicente Forlenza
  • Breno Satler Diniz
  • Antonio Lucio Teixeira
  • Marcia Radanovic
  • Leda Leme Talib
  • Natalia Pessoa Rocha
  • Wagner Farid Gattaz
Original Paper


There is little information on the dynamics of BDNF in the CSF in the continuum between healthy aging, MCI and AD. We included 128 older adults (77 with amnestic MCI, 26 with AD and 25 healthy controls). CSF BDNF level was measured by ELISA assay, and AD biomarkers (Aβ42, T-Tau and P-Tau181) were measured using a Luminex xMAP assay. CSF BDNF levels were significantly reduced in AD subjects compared to MCI and healthy controls (p = 0.009). Logistic regression models showed that lower CSF BDNF levels (p = 0.008), lower CSF Aβ42 (p = 0.005) and lower MMSE scores (p = 0.007) are significantly associated with progression from MCI to AD. The present study adds strong evidence of the involvement of BDNF in the pathophysiology of neurodegenerative changes in AD. Interventions aiming to restore central neurotrophic support may represent future therapeutic targets to prevent or delay the progression from MCI to AD.


Alzheimer’s disease Mild cognitive impairment Brain-derived neurotrophic factor Cerebrospinal fluid Biomarkers Pathophysiology 



This work was funded by Grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; Grant No. 472138/2013-8; No. 466623/2014-3), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, 02/12633-7), Associação Beneficente Alzira Denise Hertzog da Silva (ABADHS). The sponsors and funders did not have any influence on the design and conduct of the study; collection, management, analysis and interpretation of the data; and preparation, review or approval of the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors do not have any conflict of interest concerning the information disclosed in this manuscript.

Supplementary material

12017_2015_8361_MOESM1_ESM.docx (66 kb)
Supplementary material 1 (DOCX 66 kb)


  1. Alvarez, X. A., Cacabelos, R., Sampedro, C., Aleixandre, M., Linares, C., Granizo, E., et al. (2011). Efficacy and safety of Cerebrolysin in moderate to moderately severe Alzheimer’s disease: Results of a randomized, double-blind, controlled trial investigating three dosages of Cerebrolysin. European Journal of Neurology, 18, 59–68.CrossRefPubMedGoogle Scholar
  2. Angelucci, F., Spalletta, G., di Iulio, F., Ciaramella, A., Salani, F., Colantoni, L., et al. (2010). Alzheimer’s disease (AD) and mild cognitive impairment (MCI) patients are characterized by increased BDNF serum levels. Current Alzheimer Research, 7, 15–20.CrossRefPubMedGoogle Scholar
  3. Blasko, I., Lederer, W., Oberbauer, H., Walch, T., Kemmler, G., Hinterhuber, H., et al. (2006). Measurement of thirteen biological markers in CSF of patients with Alzheimer’s disease and other dementias. Dementia and Geriatric Cognitive Disorders, 21, 9–15.CrossRefPubMedGoogle Scholar
  4. Brunoni, A. R., Lopes, M., & Fregni, F. (2008). A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: Implications for the role of neuroplasticity in depression. International Journal of Neuropsychopharmacology, 11, 1169–1180.CrossRefPubMedGoogle Scholar
  5. Christensen, R., Marcussen, A. B., Wortwein, G., Knudsen, G. M., & Aznar, S. (2008). A beta(1–42) injection causes memory impairment, lowered cortical and serum BDNF levels, and decreased hippocampal 5-HT(2A) levels. Experimental Neurology, 210, 164–171.CrossRefPubMedGoogle Scholar
  6. Clément, F., & Belleville, S. (2010). Compensation and disease severity on the memory-related activations in mild cognitive impairment. Biological Psychiatry, 68, 894–902. doi: 10.1016/j.biopsych.2010.02.004.CrossRefPubMedGoogle Scholar
  7. Covaceuszach, S., Capsoni, S., Ugolini, G., Spirito, F., Vignone, D., & Cattaneo, A. (2009). Development of a non invasive NGF-based therapy for Alzheimer’s disease. Current Alzheimer Research, 6, 158–170.CrossRefPubMedGoogle Scholar
  8. de Sousa, R. T., van de Bilt, M. T., Diniz, B. S., Ladeira, R. B., Portela, L. V., Souza, D. O., et al. (2011). Lithium increases plasma brain-derived neurotrophic factor in acute bipolar mania: A preliminary 4-week study. Neuroscience Letters, 494, 54–56.CrossRefPubMedGoogle Scholar
  9. Diniz, B. S., & Teixeira, A. L. (2011). Brain-derived neurotrophic factor and Alzheimer’s disease: Physiopathology and beyond. NeuroMolecular Medicine, 13, 217–222.CrossRefPubMedGoogle Scholar
  10. Diniz, B. S., Reynolds, C. F., I. I. I., Begley, A., Dew, M. A., Anderson, S. J., Lotrich, F., et al. (2014a). Brain-derived neurotrophic factor levels in late-life depression and comorbid mild cognitive impairment: A longitudinal study. Journal of Psychiatric Research, 49, 96–101.PubMedCentralCrossRefPubMedGoogle Scholar
  11. Diniz, B. S., Sibille, E., Ding, Y., Tseng, G., Aizenstein, H. J., Lotrich, F., et al. (2015). Plasma biosignature and brain pathology related to persistent cognitive impairment in late-life depression. Molecular Psychiatry, 20, 594–601. doi: 10.1038/mp.2014.76.CrossRefPubMedGoogle Scholar
  12. Diniz, B. S., Teixeira, A. L., Machado-Vieira, R., Talib, L. L., Radanovic, M., Gattaz, W. F., et al. (2014b). Reduced cerebrospinal fluid levels of brain-derived neurotrophic factor is associated with cognitive impairment in late-life major depression. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 69, 845–851.CrossRefGoogle Scholar
  13. Diniz, B. S., Teixeira, A. L., Talib, L. L., Mendonca, V. A., Gattaz, W. F., & Forlenza, O. V. (2010). Serum brain-derived neurotrophic factor level is reduced in antidepressant-free patients with late-life depression. World Journal of Biological Psychiatry, 11, 550–555.CrossRefPubMedGoogle Scholar
  14. Douillard-Guilloux, G., Guilloux, J. P., Lewis, D. A., & Sibille, E. (2013). Anticipated brain molecular aging in major depression. American Journal of Geriatric Psychiatry, 21, 450–460.CrossRefPubMedGoogle Scholar
  15. Faria, M. C., Gonçalves, G. S., Rocha, N. P., Moraes, E. N., Bicalho, M. A., Cintra, M. T. G., et al. (2014). Increased plasma levels of BDNF and inflammatory markers in Alzheimer’s disease. Journal of Psychiatric Research, 53, 166–172.CrossRefPubMedGoogle Scholar
  16. Forlenza, O. V., Diniz, B. S., Radanovic, M., Santos, F. S., Talib, L. L., & Gattaz, W. F. (2011). Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: Randomised controlled trial. British Journal of Psychiatry, 198, 351–356.CrossRefPubMedGoogle Scholar
  17. Forlenza, O. V., Diniz, B. S., Talib, L. L., Radanovic, M., Yassuda, M. S., Ojopi, E. B., et al. (2010a). Clinical and biological predictors of Alzheimer’s disease in patients with amnestic mild cognitive impairment. Revista Brasileira de Psiquiatria, 32, 216–222.CrossRefPubMedGoogle Scholar
  18. Forlenza, O. V., Diniz, B. S., Teixeira, A. L., Ojopi, E. B., Talib, L. L., Mendonca, V. A., et al. (2010b). Effect of brain-derived neurotrophic factor Val66Met polymorphism and serum levels on the progression of mild cognitive impairment. World Journal of Biological Psychiatry, 11, 774–780.CrossRefPubMedGoogle Scholar
  19. Huijbers, W., Mormino, E. C., Schultz, A. P., Wigman, S., Ward, A. M., Larvie, M., et al. (2015). Amyloid-β deposition in mild cognitive impairment is associated with increased hippocampal activity, atrophy and clinical progression. Brain, 138, 1023–1035. doi: 10.1093/brain/awv007.CrossRefPubMedGoogle Scholar
  20. Laske, C., Stransky, E., Leyhe, T., Eschweiler, G. W., Maetzler, W., Wittorf, A., et al. (2007). BDNF serum and CSF concentrations in Alzheimer’s disease, normal pressure hydrocephalus and healthy controls. Journal of Psychiatric Research, 41, 387–394.CrossRefPubMedGoogle Scholar
  21. Li, G., Peskind, E. R., Millard, S. P., Chi, P., Sokal, I., Yu, C. E., et al. (2009). Cerebrospinal fluid concentration of brain-derived neurotrophic factor and cognitive function in non-demented subjects. PLoS ONE, 4, e5424.PubMedCentralCrossRefPubMedGoogle Scholar
  22. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology, 34, 939–944.CrossRefPubMedGoogle Scholar
  23. Miller, S. L., Fenstermacher, E., Bates, J., Blacker, D., Sperling, R. A., & Dickerson, B. C. (2008). Hippocampal activation in adults with mild cognitive impairment predicts subsequent cognitive decline. Journal of Neurology, Neurosurgery and Psychiatry, 79, 630–635.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Nagahara, A. H., Merrill, D. A., Coppola, G., Tsukada, S., Schroeder, B. E., Shaked, G. M., et al. (2009). Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nature Medicine, 15, 331–337.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Peng, S., Wuu, J., Mufson, E. J., & Fahnestock, M. (2005). Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. Journal of Neurochemistry, 93, 1412–1421.CrossRefPubMedGoogle Scholar
  26. Petersen, R. C., Doody, R., Kurz, A., Mohs, R. C., Morris, J. C., Rabins, P. V., et al. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58, 1985–1992.CrossRefPubMedGoogle Scholar
  27. Phillips, H. S., Hains, J. M., Armanini, M., Laramee, G. R., Johnson, S. A., & Winslow, J. W. (1991). BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron, 7, 695–702.CrossRefPubMedGoogle Scholar
  28. Rockenstein, E., Ubhi, K., Pham, E., Michael, S., Doppler, E., Novak, P., et al. (2011). Beneficial effects of a neurotrophic peptidergic mixture persist for a prolonged period following treatment interruption in a transgenic model of Alzheimer’s disease. Journal of Neuroscience Research, 89, 1812–1821.PubMedCentralCrossRefPubMedGoogle Scholar
  29. Shimada, H., Makizako, H., Doi, T., Yoshida, D., Tsutsumimoto, K., Anan, Y., et al. (2014). A large, cross-sectional observational study of serum BDNF, cognitive function, and mild cognitive impairment in the elderly. Frontiers in Aging Neuroscience, 6, 69.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Sibille, E. (2013). Molecular aging of the brain, neuroplasticity, and vulnerability to depression and other brain-related disorders. Dialogues in Clinical Neuroscience, 15, 53–65.PubMedCentralPubMedGoogle Scholar
  31. Teixeira, A. L., Barbosa, I. G., Diniz, B. S., & Kummer, A. (2010). Circulating levels of brain-derived neurotrophic factor: Correlation with mood, cognition and motor function. Biomarkers in Medicine, 4, 871–887.CrossRefPubMedGoogle Scholar
  32. Weinstein, G., Beiser, A. S., Choi, S. H., Preis, S. R., Chen, T. C., Vorgas, D., et al. (2014). Serum brain-derived neurotrophic factor and the risk for dementia: The Framingham heart study. JAMA Neurolology, 71, 55–61.CrossRefGoogle Scholar
  33. Yu, H., Zhang, Z., Shi, Y., Bai, F., Xie, C., Qian, Y., et al. (2008). Association study of the decreased serum BDNF concentrations in amnestic mild cognitive impairment and the Val66Met polymorphism in Chinese Han. Journal of Clinical Psychiatry, 69, 1104–1111.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Orestes Vicente Forlenza
    • 1
  • Breno Satler Diniz
    • 1
    • 2
    • 3
  • Antonio Lucio Teixeira
    • 4
  • Marcia Radanovic
    • 1
  • Leda Leme Talib
    • 1
  • Natalia Pessoa Rocha
    • 4
  • Wagner Farid Gattaz
    • 1
  1. 1.Laboratory of Neuroscience – LIM 27, Department and Institute of Psychiatry, Faculty of MedicineUniversity of Sao PauloSão PauloBrazil
  2. 2.Department of Mental Health, Faculty of MedicineFederal University of Minas GeraisBelo HorizonteBrazil
  3. 3.National Institute of Science and Technology – Molecular Medicine (INCT-MM), Faculty of MedicineFederal University of Minas GeraisBelo HorizonteBrazil
  4. 4.Interdisciplinary Laboratory of Medical Investigation, Faculty of MedicineFederal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations