NeuroMolecular Medicine

, Volume 17, Issue 3, pp 270–284 | Cite as

Neuronal Network Oscillations in Neurodegenerative Diseases

  • Volker Nimmrich
  • Andreas Draguhn
  • Nikolai AxmacherEmail author
Original Paper


Cognitive and behavioral acts go along with highly coordinated spatiotemporal activity patterns in neuronal networks. Most of these patterns are synchronized by coherent membrane potential oscillations within and between local networks. By entraining multiple neurons into a common time regime, such network oscillations form a critical interface between cellular activity and large-scale systemic functions. Synaptic integrity is altered in neurodegenerative diseases, and it is likely that this goes along with characteristic changes of coordinated network activity. This notion is supported by EEG recordings from human patients and from different animal models of such disorders. However, our knowledge about the pathophysiology of network oscillations in neurodegenerative diseases is surprisingly incomplete, and increased research efforts are urgently needed. One complicating factor is the pronounced diversity of network oscillations between different brain regions and functional states. Pathological changes must, therefore, be analyzed separately in each condition and affected area. However, cumulative evidence from different diseases may result, in the future, in more unifying “oscillopathy” concepts of neurodegenerative diseases. In this review, we report present evidence for pathological changes of network oscillations in Alzheimer’s disease (AD), one of the most prominent and challenging neurodegenerative disorders. The heterogeneous findings from AD are contrasted to Parkinson’s disease, where motor-related changes in specific frequency bands do already fulfill criteria of a valid biomarker.


Oscillations Alzheimer’s dementia Biomarker Neurodegenerative diseases Parkinson’s disease EEG 



Volker Nimmrich is an employee of AbbVie, and this review was supported by AbbVie. AbbVie also participated in the approval of the review. Andreas Draguhn is faculty at the University of Heidelberg. Nikolai Axmacher is faculty at the University of Bochum and member of the DZNE, Bonn.

Conflict of interest

The authors declare no conflict of interest.


  1. Abramov, E., Dolev, I., Fogel, H., Ciccotosto, G. D., Ruff, E., & Slutsky, I. (2009). Amyloid-beta as a positive endogenous regulator of release probability at hippocampal synapses. Nature Neuroscience, 12, 1567–1576.PubMedGoogle Scholar
  2. Adaya-Villanueva, A., Ordaz, B., Balleza-Tapia, H., Márquez-Ramos, A., & Peña-Ortega, F. (2010). Beta-like hippocampal network activity is differentially affected by amyloid beta peptides. Peptides, 31, 1761–1766.PubMedGoogle Scholar
  3. Amatniek, J. C., Hauser, W. A., DelCastillo-Castaneda, C., Jacobs, D. M., Marder, K., Bell, K., et al. (2006). Incidence and predictors of seizures in patients with Alzheimer’s disease. Epilepsia, 47, 867–872.PubMedGoogle Scholar
  4. Babiloni, C., Binetti, G., Cassetta, E., Cerboneschi, D., Dal Forno, G., Del Percio, C., et al. (2004). Mapping distributed sources of cortical rhythms in mild Alzheimer’s disease. A multicentric EEG study. Neuroimage, 22, 57–67.PubMedGoogle Scholar
  5. Bähner, F., Weiss, E. K., Birke, G., Maier, N., Schmitz, D., Rudolph, U., et al. (2011). Cellular correlate of assembly formation in oscillating hippocampal networks in vitro. Proceedings of the National Academy of Sciences of the United States of America, 108, E607–E616.PubMedCentralPubMedGoogle Scholar
  6. Bakker, A., Krauss, G. L., Albert, M. S., Speck, C. L., Jones, L. R., Stark, C. E., et al. (2012). Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron, 74, 467–474.PubMedCentralPubMedGoogle Scholar
  7. Bartus, R. T., Dean, R. L, 3rd, Beer, B., & Lippa, A. S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science, 217, 408–414.PubMedGoogle Scholar
  8. Berger, H. (1929). Über das Elektroenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten, 87, 527–570.Google Scholar
  9. Besthorn, C., Zerfass, R., Geiger-Kabisch, C., Sattel, H., Daniel, S., Schreiter-Gasser, U., & Förstl, H. (1997). Discrimination of Alzheimer’s disease and normal aging by EEG data. Electroencephalography and Clinical Neurophysiology, 103, 241–248.PubMedGoogle Scholar
  10. Blatow, M., Rozov, A., Katona, I., Hormuzdi, S. G., Meyer, A. H., Whittington, M. A., et al. (2003). A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex. Neuron, 38, 805–817.PubMedGoogle Scholar
  11. Bokde, A. L., Ewers, M., & Hampel, H. (2009). Assessing neuronal networks: understanding Alzheimer’s disease. Progress in Neurobiology, 89, 125–133.PubMedGoogle Scholar
  12. Bosboom, J. L., Stoffers, D., Stam, C. J., Berendse, H. W., & Wolters, E Ch. (2009). Cholinergic modulation of MEG resting-state oscillatory activity in Parkinson’s disease related dementia. Clinical Neurophysiology, 120, 910–915.PubMedGoogle Scholar
  13. Bosboom, J. L., Stoffers, D., Stam, C. J., van Dijk, B. W., Verbunt, J., Berendse, H. W., & Wolters, E Ch. (2006). Resting state oscillatory brain dynamics in Parkinson’s disease: An MEG study. Clinical Neurophysiology, 117, 2521–2531.PubMedGoogle Scholar
  14. Böttger, D., Herrmann, C. S., & von Cramon, D. Y. (2002). Amplitude differences of evoked alpha and gamma oscillations in two different age groups. International Journal of Psychophysiology, 45, 245–251.PubMedGoogle Scholar
  15. Brown, P., & Williams, D. (2005). Basal ganglia local field potential activity: Character and functional significance in the human. Clinical Neurophysiology, 116, 2510–2519.PubMedGoogle Scholar
  16. Busche, M. A., Chen, X., Henning, H. A., Reichwald, J., Staufenbiel, M., Sakmann, B., & Konnerth, A. (2012). Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 109, 8740–8745.PubMedCentralPubMedGoogle Scholar
  17. Busche, M. A., Eichhoff, G., Adelsberger, H., Abramowski, D., Wiederhold, K. H., Haass, C., et al. (2008). Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science, 321, 1686–1689.PubMedGoogle Scholar
  18. Buzsáki, G. (2006). Rhythms of the brain. Oxford, New York: Oxford University Press.Google Scholar
  19. Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33, 325–340.PubMedGoogle Scholar
  20. Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304, 1926–1929.PubMedGoogle Scholar
  21. Buzsáki, G., & Gage, F. H. (1989). The cholinergic nucleus basalis: A key structure in neocortical arousal. EXS, 57, 159–171.PubMedGoogle Scholar
  22. Buzsáki, G., Horvath, Z., Urioste, R., Hetke, J., & Wise, K. (1992). High-frequency network oscillation in the hippocampus. Science, 256, 1025–1027.PubMedGoogle Scholar
  23. Bylsma, F. W., Peyser, C. E., Folstein, S. E., Folstein, M. F., Ross, C., & Brandt, J. (1994). EEG power spectra in Huntington’s disease: Clinical and neuropsychological correlates. Neuropsychologia, 32, 137–150.PubMedGoogle Scholar
  24. Cardin, J. A., Carlen, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., et al. (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 459, 663–667.PubMedCentralPubMedGoogle Scholar
  25. Caso, F., Cursi, M., Magnani, G., Fanelli, G., Falautano, M., Comim, G., et al. (2012). Quantitative EEG and LORETA: Valuable tools in discerning FTD from AD? Neurobiology of Aging, 33, 2343–2356.PubMedGoogle Scholar
  26. Cea-del Rio, C. A., Lawrence, J. J., Erdelyi, F., Szabo, G., & McBain, C. J. (2011). Cholinergic modulation amplifies the intrinsic oscillatory properties of CA1 hippocampal cholecystokinin-positive interneurons. Journal of Physiology, 589, 609–627.PubMedCentralPubMedGoogle Scholar
  27. Celone, K. A., Calhoun, V. D., Dickerson, B. C., Atri, A., Chua, E. F., Miller, S. L., et al. (2006). Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: An independent component analysis. Journal of Neuroscience, 26, 10222–10231.PubMedGoogle Scholar
  28. Chen, C. C., Lin, W. Y., Chan, H. L., Hsu, Y. T., Tu, P. H., Lee, S. T., et al. (2011). Stimulation of the subthalamic region at 20 Hz slows the development of grip force in Parkinson’s disease. Experimental Neurology, 231, 91–96.PubMedGoogle Scholar
  29. Chen, C. C., Litvak, V., Gilbertson, T., Kühn, A., Lu, C. S., Lee, S. T., et al. (2007). Excessive synchronization of basal ganglia neurons at 20 Hz slows movement in Parkinson’s disease. Experimental Neurology, 205, 214–221.PubMedGoogle Scholar
  30. Chiaramonti, R., Muscas, G. C., Paganini, M., Müller, T. J., Fallgatter, A. J., Versari, A., & Strik, W. K. (1997). Correlations of topographical EEG features with clinical severity in mild and moderate dementia of Alzheimer type. Neuropsychobiology, 36, 153–158.PubMedGoogle Scholar
  31. Claus, J. J., Strijers, R. L., Jonkman, E. J., Ongerboer de Visser, B. W., Jonker, C., Walstra, G. J., et al. (1999). The diagnostic value of electroencephalography in mild senile Alzheimer’s disease. Clinical Neurophysiology, 110, 825–832.PubMedGoogle Scholar
  32. Cloud, L. J., Rosenblatt, A., Margolis, R. L., Ross, C. A., Pillai, J. A., Corey-Bloom, J., et al. (2012). Seizures in juvenile Huntington’s disease: Frequency and characterization in a multicenter cohort. Movement Disorders, 27, 1797–1800.PubMedGoogle Scholar
  33. Cook, I. A., & Leuchter, A. F. (1996). Synaptic dysfunction in Alzheimer’s disease: Clinical assessment using quantitative EEG. Behavioural Brain Research, 78, 15–23.PubMedGoogle Scholar
  34. Cross, A. J. (1990). Serotonin in Alzheimer-type dementia and other dementing illnesses. Annals of the New York Academy of Sciences, 600, 405–415.PubMedGoogle Scholar
  35. Cummins, T. D., Broughton, M., & Finnigan, S. (2008). Theta oscillations are affected by amnestic mild cognitive impairment and cognitive load. International Journal of Psychophysiology, 70, 75–81.PubMedGoogle Scholar
  36. Curley, A. A., & Lewis, D. A. (2012). Cortical basket cell dysfunction in schizophrenia. Journal of Physiology, 590, 715–724.PubMedCentralPubMedGoogle Scholar
  37. De Felice, F. G., Velasco, P. T., Lambert, M. P., Viola, K., Fernandez, S. J., Ferreira, S. T., & Klein, W. L. (2007). Abeta oligomers induce neuronal oxidative stress through an NMDA receptor-dependent mechanism that is blocked by the Alzheimer’s drug memantine. Journal of Biological Chemistry, 282, 11590–11601.PubMedGoogle Scholar
  38. de Tommaso, M., De Carlo, F., Difruscolo, O., Massafra, R., Sciruicchio, V., & Bellotti, R. (2003). Detection of subclinical brain electrical activity changes in Huntington’s disease using artificial neural networks. Clinical Neurophysiology, 114, 1237–1245.PubMedGoogle Scholar
  39. Détári, L., Rasmusson, D. D., & Semba, K. (1999). The role of basal forebrain neurons in tonic and phasic activation of the cerebral cortex. Progress in Neurobiology, 58, 249–277.PubMedGoogle Scholar
  40. Di Lazzaro, V., Oliviero, A., Pilato, F., Saturno, E., Dileone, M., Marra, C., et al. (2004). Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 75, 555–559.PubMedGoogle Scholar
  41. Dougherty, J. J., Wu, J., & Nichols, R. A. (2003). Beta-amyloid regulation of presynaptic nicotinic receptors in rat hippocampus and neocortex. Journal of Neuroscience, 23, 6740–6747.PubMedGoogle Scholar
  42. Draguhn, A., Traub, R. D., Schmitz, D., & Jefferys, J. G. (1998). Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature, 394, 189–192.PubMedGoogle Scholar
  43. Dringenberg, H. C. (2000). Alzheimer’s disease: More than a ‘cholinergic disorder’—Evidence that cholinergic–monoaminergic interactions contribute to EEG slowing and dementia. Behavioural Brain Research, 115, 235–249.PubMedGoogle Scholar
  44. Driver, J. E., Racca, C., Cunningham, M. O., Towers, S. K., Davies, C. H., Whittington, M. A., & LeBeau, F. E. (2007). Impairment of hippocampal gamma-frequency oscillations in vitro in mice overexpressing human amyloid precursor protein (APP). European Journal of Neuroscience, 26, 1280–1288.PubMedGoogle Scholar
  45. Düzel, E., Penny, W. D., & Burgess, N. (2010). Brain oscillations and memory. Current Opinion in Neurobiology, 20, 143–149.PubMedGoogle Scholar
  46. Ego-Stengel, V., & Wilson, M. A. (2010). Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus, 20, 1–10.PubMedCentralPubMedGoogle Scholar
  47. Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews Neuroscience, 2, 704–716.PubMedGoogle Scholar
  48. Eusebio, A., Chen, C. C., Lu, C. S., Lee, S. T., Tsai, C. H., Limousin, P., et al. (2008). Effects of low-frequency stimulation of the subthalamic nucleus on movement in Parkinson’s disease. Experimental Neurology, 209, 125–130.PubMedCentralPubMedGoogle Scholar
  49. Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory processes. Nature Reviews Neuroscience, 12, 105–118.PubMedGoogle Scholar
  50. Fell, J., Klaver, P., Elger, C. E., & Fernández, G. (2002). The interaction of rhinal cortex and hippocampus in human declarative memory formation. Reviews in the Neurosciences, 13, 299–312.PubMedGoogle Scholar
  51. Fell, J., Staresina, B. P., Do Lam, A. T., Widman, G., Helmstaedter, C., Elger, C. E., & Axmacher, N. (2013). Memory modulation by weak synchronous deep brain stimulation: A pilot study. Brain Stimul, 6, 270–273.PubMedGoogle Scholar
  52. Filippini, N., MacIntosh, B. J., Hough, M. G., Goodwin, G. M., Frisoni, G. B., Smith, S. M., et al. (2009). Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proceedings of the National Academy of Sciences of the United States of America, 106, 7209–7214.PubMedCentralPubMedGoogle Scholar
  53. Foffani, G., Priori, A., Egidi, M., Rampini, P., Tamma, F., Caputo, E., et al. (2003). 300-Hz subthalamic oscillations in Parkinson’s disease. Brain, 126, 2153–2163.PubMedGoogle Scholar
  54. Frank, M. J. (2006). Hold your horses: A dynamic computational role for the subthalamic nucleus in decision making. Neural Networks, 19, 1120–1136.PubMedGoogle Scholar
  55. Freund, T. F., & Buzsáki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6, 347–470.PubMedGoogle Scholar
  56. Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9, 474–480.PubMedGoogle Scholar
  57. García-Cabrero, A. M., Guerrero-López, R., Giráldez, B. G., Llorens-Martín, M., Avila, J., Serratosa, J. M., & Sánchez, M. P. (2013). Hyperexcitability and epileptic seizures in a model of frontotemporal dementia. Neurobiology of Diseases, 58, 200–208.Google Scholar
  58. Girardeau, G., Benchenane, K., Wiener, S. I., Buzsáki, G., & Zugaro, M. B. (2009). Selective suppression of hippocampal ripples impairs spatial memory. Nature Neuroscience, 12, 1222–1223.PubMedGoogle Scholar
  59. Goutagny, R., & Krantic, S. (2013). Hippocampal oscillatory activity in Alzheimer’s disease: Toward the identification of early biomarkers? Aging and Disease, 4, 134–140.PubMedCentralPubMedGoogle Scholar
  60. Grady, C. L., McIntosh, A. R., Beig, S., Keightley, M. L., Burian, H., & Black, S. E. (2003). Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. Journal of Neuroscience, 23, 986–993.PubMedGoogle Scholar
  61. Gregory, R. (2008). Pedunculopontine nucleus stimulation for people with Parkinson’s disease? A clinical perspective. British Journal of Neurosurgery, 22(Suppl 1), S13–S15.PubMedGoogle Scholar
  62. Grillner, S. (2006). Biological pattern generation: The cellular and computational logic of networks in motion. Neuron, 52, 751–766.PubMedGoogle Scholar
  63. Gruber, T., Müller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. Journal of Cognitive Neuroscience, 14, 732–744.PubMedGoogle Scholar
  64. Gruber, T., Müller, M. M., Keil, A., & Elbert, T. (1999). Selective visual–spatial attention alters induced gamma band responses in the human EEG. Clinical Neurophysiology, 110, 2074–2085.PubMedGoogle Scholar
  65. Haier, R. J., Alkire, M. T., White, N. S., Uncapher, M. R., Head, E., Lott, I. T., & Cotman, C. W. (2003). Temporal cortex hypermetabolism in Down syndrome prior to the onset of dementia. Neurology, 61, 1673–1679.PubMedGoogle Scholar
  66. Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: Networks, models and treatments. Trends in Neurosciences, 30, 357–364.PubMedGoogle Scholar
  67. Hardy, J. A., & Higgins, G. A. (1992). Alzheimer’s disease: The amyloid cascade hypothesis. Science, 256, 184–185.PubMedGoogle Scholar
  68. Hatashita, S., & Yamasaki, H. (2013). Diagnosed mild cognitive impairment due to Alzheimer’s disease with PET biomarkers of beta amyloid and neuronal dysfunction. PLoS ONE, 8, e66877.PubMedCentralPubMedGoogle Scholar
  69. Hermann, D., Both, M., Ebert, U., Gross, G., Schoemaker, H., Draguhn, A., et al. (2009). Synaptic transmission is impaired prior to plaque formation in amyloid precursor protein-overexpressing mice without altering behaviorally-correlated sharp wave–ripple complexes. Neuroscience, 162, 1081–1090.PubMedGoogle Scholar
  70. Hermann, D., Mezler, M., Müller, M. K., Wicke, K., Gross, G., Draguhn, A., et al. (2013). Synthetic Aβ oligomers (Aβ(1-42) globulomer) modulate presynaptic calcium currents: Prevention of Aβ-induced synaptic deficits by calcium channel blockers. European Journal of Pharmacology, 702, 44–55.PubMedGoogle Scholar
  71. Herrmann, C. S., & Demiralp, T. (2005). Human EEG gamma oscillations in neuropsychiatric disorders. Clinical Neurophysiology, 116, 2719–2733.PubMedGoogle Scholar
  72. Igarashi, K. M., Lu, L., Colgin, L. L., Moser, M. B., & Moser, E. I. (2014). Coordination of entorhinal–hippocampal ensemble activity during associative learning. Nature, 510, 143–147.PubMedGoogle Scholar
  73. Jelic, V., Blomberg, M., Dierks, T., Basun, H., Shigeta, M., Julin, P., et al. (1998). EEG slowing and cerebrospinal fluid tau levels in patients with cognitive decline. Neuroreport, 9, 157–160.PubMedGoogle Scholar
  74. Jelic, V., Julin, P., Shigeta, M., Nordberg, A., Lannfelt, L., Winblad, B., & Wahlund, L. O. (1997). Apolipoprotein E epsilon4 allele decreases functional connectivity in Alzheimer’s disease as measured by EEG coherence. Journal of Neurology, Neurosurgery and Psychiatry, 63, 59–65.PubMedCentralPubMedGoogle Scholar
  75. Jensen, O., Kaiser, J., & Lachaux, J. P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30, 317–324.PubMedGoogle Scholar
  76. Jeong, J. (2004). EEG dynamics in patients with Alzheimer’s disease. Clinical Neurophysiology, 115, 1490–1505.PubMedGoogle Scholar
  77. Jyoti, A., Plano, A., Riedel, G., & Platt, B. (2010). EEG, activity, and sleep architecture in a transgenic AβPPswe/PSEN1A246E Alzheimer’s disease mouse. Journal of Alzheimer’s Disease, 22, 873–887.PubMedGoogle Scholar
  78. Kaiser, J., Ripper, B., Birbaumer, N., & Lutzenberger, W. (2003). Dynamics of gamma-band activity in human magnetoencephalogram during auditory pattern working memory. Neuroimage, 20, 816–827.PubMedGoogle Scholar
  79. Kamenetz, F., Tomita, T., Hsieh, H., Seabrook, G., Borchelt, D., Iwatsubo, T., et al. (2003). APP processing and synaptic function. Neuron, 37, 925–937.PubMedGoogle Scholar
  80. Kawaguchi, Y., & Kondo, S. (2002). Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. Journal of Neurocytology, 31, 277–287.PubMedGoogle Scholar
  81. Kelly, B. L., & Ferreira, A. (2006). Beta-Amyloid-induced dynamin 1 degradation is mediated by N-methyl-D-aspartate receptors in hippocampal neurons. Journal of Biological Chemistry, 281, 28079–28089.PubMedGoogle Scholar
  82. Kelly, B. L., & Ferreira, A. (2007). Beta-amyloid disrupted synaptic vesicle endocytosis in cultured hippocampal neurons. Neuroscience, 147, 60–70.PubMedCentralPubMedGoogle Scholar
  83. Klausberger, T. (2009). GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. European Journal of Neuroscience, 30, 947–957.PubMedGoogle Scholar
  84. Klausberger, T., & Somogyi, P. (2008). Neuronal diversity and temporal dynamics: The unity of hippocampal circuit operations. Science, 321, 53–57.PubMedCentralPubMedGoogle Scholar
  85. Kotzauer, N., & Katz, R. (2013). Regulatory innovation and drug development for early-stage Alzheimer‘s disease. New England Journal of Medicine, 368, 1169–1171.Google Scholar
  86. Kühn, A. A., Trottenberg, T., Kivi, A., Kupsch, A., Schneider, G. H., & Brown, P. (2005). The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson’s disease. Experimental Neurology, 194, 212–220.PubMedGoogle Scholar
  87. Kumar-Singh, S., Dewachter, I., Moechars, D., Lübke, U., De Jonghe, C., Ceuterick, C., et al. (2000). Behavioral disturbances without amyloid deposits in mice overexpressing human amyloid precursor protein with Flemish (A692G) or Dutch (E693Q) mutation. Neurobiology of Diseases, 7, 9–22.Google Scholar
  88. Lacor, P. N., Bruniel, M. C., Furlow, P. W., Sanz Clemente, A., Velasco, P. T., Wood, M., et al. (2007). Aß oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. Journal of Neuroscience, 27, 796–807.PubMedGoogle Scholar
  89. LaFerla, F. M. (2010). Pathways linking Abeta and tau pathologies. Biochemical Society Transactions, 38, 993–995.PubMedGoogle Scholar
  90. LaFerla, F. M., Tinkle, B. T., Bieberich, C. J., Haudenschild, C. C., & Jay, G. (1995). The Alzheimer’s A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nature Genetics, 9, 21–30.PubMedGoogle Scholar
  91. Lalonde, R., Dumont, M., Staufenbiel, M., & Strazielle, C. (2005). Neurobehavioral characterization of APP23 transgenic mice with the SHIRPA primary screen. Behavioural Brain Research, 157, 91–98.PubMedGoogle Scholar
  92. Larner, A. J. (2010). Epileptic seizures in AD patients. Neuromolecular Medicine, 12, 71–77.PubMedGoogle Scholar
  93. Lasztóczi, B., & Klausberger, T. (2014). Layer-specific GABAergic control of distinct gamma oscillations in the CA1 hippocampus. Neuron, 81, 1126–1139.PubMedGoogle Scholar
  94. Lee, H., Fell, J., & Axmacher, N. (2013). Electrical engram: How deep brain stimulation affects memory. Trends in Cognitive Sciences, 17, 574–584.PubMedGoogle Scholar
  95. Lewis, D. A., Curley, A. A., Glausier, J. R., & Volk, D. W. (2012). Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends in Neurosciences, 35, 57–67.PubMedCentralPubMedGoogle Scholar
  96. Lindau, M., Jelic, V., Johansson, S. E., Andersen, C., Wahlund, L. O., & Almkvist, O. (2003). Quantitative EEG abnormalities and cognitive dysfunctions in frontotemporal dementia and Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 15, 106–114.PubMedGoogle Scholar
  97. Locatelli, T., Cursi, M., Liberati, D., Franceschi, M., & Comi, G. (1998). EEG coherence in Alzheimer’s disease. Electroencephalography and Clinical Neurophysiology, 106, 229–237.PubMedGoogle Scholar
  98. López-Azcárate, J., Tainta, M., Rodríguez-Oroz, M. C., Valencia, M., González, R., Guridi, J., et al. (2010). Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson’s disease. Journal of Neuroscience, 30, 6667–6677.PubMedGoogle Scholar
  99. Lozano, A. M., & Lipsman, N. (2013). Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron, 77, 406–424.PubMedGoogle Scholar
  100. Lustig, C., Snyder, A. Z., Bhakta, M., O’Brien, K. C., McAvoy, M., Raichle, M. E., et al. (2003). Functional deactivations: Change with age and dementia of the Alzheimer type. Proceedings of the National Academy of Sciences of the United States of America, 100, 14504–14509.PubMedCentralPubMedGoogle Scholar
  101. Mann, E. O., & Paulsen, O. (2007). Role of GABAergic inhibition in hippocampal network oscillations. Trends in Neurosciences, 30, 343–349.PubMedGoogle Scholar
  102. Mendez, M., & Lim, G. (2003). Seizures in elderly patients with dementia: Epidemiology and management. Drugs and Aging, 20, 791–803.PubMedGoogle Scholar
  103. Metherate, R., Cox, C. L., & Ashe, J. H. (1992). Cellular bases of neocortical activation: Modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine. Journal of Neuroscience, 12, 4701–4711.PubMedGoogle Scholar
  104. Mezler, M., Barghorn, S., Schoemaker, H., Gross, G., & Nimmrich, V. (2012). A β-amyloid oligomer directly modulates P/Q-type calcium currents in Xenopus oocytes. British Journal of Pharmacology, 165, 1572–1583.PubMedCentralPubMedGoogle Scholar
  105. Miller, S. L., Celone, K., DePeau, K., Diamond, E., Dickerson, B. C., Rentz, D., et al. (2008). Age-related memory impairment associated with loss of parietal deactivation but preserved hippocampal activation. Proceedings of the National Academy of Sciences of the United States of America, 105, 2181–2186.PubMedCentralPubMedGoogle Scholar
  106. Minkeviciene, R., Rheims, S., Dobszay, M. B., Zilberter, M., Hartikainen, J., Fülöp, L., et al. (2009). Amyloid beta-induced neuronal hyperexcitability triggers progressive epilepsy. Journal of Neuroscience, 29, 3453–3462.PubMedGoogle Scholar
  107. Moechars, D., Lorent, K., & Van Leuven, F. (1999). Premature death in transgenic mice that overexpress a mutant amyloid precursor protein is preceded by severe neurodegeneration and apoptosis. Neuroscience, 91, 819–830.PubMedGoogle Scholar
  108. Mondadori, C. R., Buchmann, A., Mustovic, H., Schmidt, C. F., Boesiger, P., Nitsch, R. M., et al. (2006). Enhanced brain activity may precede the diagnosis of Alzheimer’s disease by 30 years. Brain, 129, 2908–2922.PubMedGoogle Scholar
  109. Montez, T., Poil, S. S., Jones, B. F., Manshanden, I., Verbunt, J. P., van Dijk, B. W., et al. (2009). Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 106, 1614–1619.PubMedCentralPubMedGoogle Scholar
  110. Montplaisir, J., Petit, D., Gauthier, S., Gaudreau, H., & Décary, A. (1998). Sleep disturbances and eeg slowing in Alzheimer’s disease. Sleep Research Online, 1, 147–151.PubMedGoogle Scholar
  111. Moraes Wdos, S., Poyares, D. R., Guilleminault, C., Ramos, L. R., Bertolucci, P. H., & Tufik, S. (2006). The effect of donepezil on sleep and REM sleep EEG in patients with Alzheimer disease: A double-blind placebo-controlled study. Sleep, 29, 199–205.PubMedGoogle Scholar
  112. Neary, D., Snowden, J. S., Gustafson, L., Passant, U., Stuss, D., Black, S., et al. (1998). Frontotemporal lobar degeneration. A consensus on clinical diagnostic criteria. Neurology, 51, 1546–1554.PubMedGoogle Scholar
  113. Nimmrich, V., & Ebert, U. (2009). Is Alzheimer’s disease a result of presynaptic failure? Synaptic dysfunctions induced by oligomeric beta-amyloid. Reviews in the Neurosciences, 20, 1–12.PubMedGoogle Scholar
  114. Nimmrich, V., Grimm, C., Draguhn, A., Barghorn, S., Lehmann, A., Schoemaker, H., et al. (2008). Amyloid ß oligomers (Aß 1-42 globulomer) suppress spontaneous synaptic activity by inhibition of P/Q calcium currents. Journal of Neuroscience, 28, 788–797.PubMedGoogle Scholar
  115. Nimmrich, V., Maier, N., Schmitz, D., & Draguhn, A. (2005). Induced sharp wave–ripple complexes in the absence of synaptic inhibition in mouse hippocampal slices. Journal of Physiology, 563, 663–670.PubMedCentralPubMedGoogle Scholar
  116. Nishida, K., Yoshimura, M., Isotani, T., Yoshida, T., Kitaura, Y., Saito, A., et al. (2011). Differences in quantitative EEG between frontotemporal dementia and Alzheimer’s disease as revealed by LORETA. Clinical Neurophysiology, 122, 1718–1725.PubMedGoogle Scholar
  117. Osipova, D., Pekkonen, E., & Ahveninen, J. (2006). Enhanced magnetic auditory steady-state response in early Alzheimer’s disease. Clinical Neurophysiology, 117, 1990–1995.PubMedGoogle Scholar
  118. Painold, A., Anderer, P., Holl, A. K., Letmaier, M., Saletu-Zyhlarz, G. M., Saletu, B., & Bonelli, R. M. (2011). EEG low-resolution brain electromagnetic tomography (LORETA) in Huntington’s disease. Journal of Neurology, 258, 840–854.PubMedGoogle Scholar
  119. Palop, J. J., Chin, J., Roberson, E. D., Wang, J., Thwin, M. T., Bien-Ly, N., et al. (2007). Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron, 55, 697–711.PubMedGoogle Scholar
  120. Palop, J. J., & Mucke, L. (2009). Epilepsy and cognitive impairments in Alzheimer Disease. Archives of Neurology, 66, 435–440.PubMedCentralPubMedGoogle Scholar
  121. Palop, J. J., & Mucke, L. (2010). Synaptic depression and aberrant excitatory network activity in Alzheimer’s disease: Two faces of the same coin? Neuromolecular. Med, 12, 48–55.Google Scholar
  122. Peña-Ortega, F., & Bernal-Pedraza, R. (2012). Amyloid Beta Peptide slows down sensory-induced hippocampal oscillations. International Journal of Peptides, 2012, 236289.PubMedCentralPubMedGoogle Scholar
  123. Persson, J., Lind, J., Larsson, A., Ingvar, M., Sleegers, K., Van Broeckhoven, C., et al. (2008). Altered deactivation in individuals with genetic risk for Alzheimer’s disease. Neuropsychologia, 46, 1679–1687.PubMedGoogle Scholar
  124. Petit, D., Lorrain, D., Gauthier, S., & Montplaisir, J. (1993). Regional spectral analysis of the REM sleep EEG in mild to moderate Alzheimer’s disease. Neurobiology of Aging, 14, 141–145.PubMedGoogle Scholar
  125. Pignatelli, M., Lebreton, F., Cho, Y. H., & Leinekugel, X. (2012). “Ectopic” theta oscillations and interictal activity during slow-wave state in the R6/1 mouse model of Huntington’s disease. Neurobiology of Diseases, 48, 409–417.Google Scholar
  126. Pihlajamäki, M., DePeau, K. M., Blacker, D., & Sperling, R. A. (2008). Impaired medial temporal repetition suppression is related to failure of parietal deactivation in Alzheimer disease. The American Journal of Geriatric Psychiatry, 16, 283–292.PubMedGoogle Scholar
  127. Pijnenburg, Y. A., Strijers, R. L., Made, Y. V., van der Flier, W. M., Scheltens, P., & Stam, C. J. (2008). Investigation of resting-state EEG functional connectivity in frontotemporal lobar degeneration. Clinical Neurophysiology, 119, 1732–1738.PubMedGoogle Scholar
  128. Platt, B., Drever, B., Koss, D., Stoppelkamp, S., Jyoti, A., Plano, A., et al. (2011). Abnormal cognition, sleep, EEG and brain metabolism in a novel knock-in Alzheimer mouse, PLB1. PLoS ONE, 6, e27068.PubMedCentralPubMedGoogle Scholar
  129. Polanía, R., Nitsche, M. A., Korman, C., Batsikadze, G., & Paulus, W. (2012). The importance of timing in segregated theta phase-coupling for cognitive performance. Current Biology, 22, 1314–1318.PubMedGoogle Scholar
  130. Ponomareva, N., Klyushnikov, S., Abramycheva, N., Malina, D., Scheglova, N., Fokin, V., et al. (2014). Alpha-theta border EEG abnormalities in preclinical Huntington’s disease. Journal of the Neurological Sciences, 344, 114–120.PubMedGoogle Scholar
  131. Pooler, A. M., Noble, W., & Hanger, D. P. (2014). A role for tau at the synapse in Alzheimer’s disease pathogenesis. Neuropharmacology, 76(Pt A), 1–8.PubMedGoogle Scholar
  132. Prichep, L. S. (2007). Quantitative EEG and electromagnetic brain imaging in aging and in the evolution of dementia. Annals of the New York Academy of Sciences, 1097, 156–167.PubMedGoogle Scholar
  133. Rabinowicz, A. L., Starkstein, S. E., Leiguarda, R. C., & Coleman, A. E. (2000). Transient epileptic amnesia in dementia: A treatable unrecognized cause of episodic amnestic wandering. Alzheimer Disease and Associated Disorders, 14, 231–233.PubMedGoogle Scholar
  134. Ramsden, M., Henderson, Z., & Pearson, H. A. (2002). Modulation of Ca2+ channel currents in primary cultures of rat cortical neurones by amyloid beta protein (1–40) is dependent on solubility status. Brain Research, 956, 254–261.PubMedGoogle Scholar
  135. Ray, P. G., & Jackson, W. J. (1991). Lesions of nucleus basalis alter ChAT activity and EEG in rat frontal neocortex. Electroencephalography and Clinical Neurophysiology, 79, 62–68.PubMedGoogle Scholar
  136. Ray, N. J., Jenkinson, N., Wang, S., Holland, P., Brittain, J. S., Joint, C., et al. (2008). Local field potential beta activity in the subthalamic nucleus of patients with Parkinson’s disease is associated with improvements in bradykinesia after dopamine and deep brain stimulation. Experimental Neurology, 213, 108–113.PubMedGoogle Scholar
  137. Ribary, U., Ioannides, A. A., Singh, K. D., Hasson, R., Bolton, J. P., Lado, F., et al. (1991). Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proceedings of the National Academy of Sciences of the United States of America, 88, 11037–11041.PubMedCentralPubMedGoogle Scholar
  138. Rodriguez, G., Copello, F., Vitali, P., Perego, G., & Nobili, F. (1999). EEG spectral profile to stage Alzheimer’s disease. Clinical Neurophysiology, 110, 1831–1837.PubMedGoogle Scholar
  139. Romanelli, M. F., Morris, J. C., Ashkin, K., & Coben, L. A. (1990). Advanced Alzheimer’s disease is a risk factor for late-onset seizures. Archives of Neurology, 47, 847–850.PubMedGoogle Scholar
  140. Rombouts, S. A., Barkhof, F., Goekoop, R., Stam, C. J., & Scheltens, P. (2005). Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: An fMRI study. Human Brain Mapping, 26, 231–239.PubMedGoogle Scholar
  141. Rosen, H. J., Hartikainen, K. M., Jagust, W., Kramer, J. H., Reed, B. R., Cummings, J. L., et al. (2002). Utility of clinical criteria in differentiating frontotemporal lobar degeneration (FTLD) from AD. Neurology, 58, 1608–1615.PubMedGoogle Scholar
  142. Sanchez, P. E., Zhu, L., Verret, L., Vossel, K. A., Orr, A. G., Cirrito, J. R., et al. (2012). Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proceedings of the National Academy of Sciences of the United States of America, 109, E2895–E2903.PubMedCentralPubMedGoogle Scholar
  143. Schlingloff, D., Káli, S., Freund, T. F., Hajos, N., & Gulyás, A. I. (2014). Mechanisms of sharp wave initiation and ripple generation. Journal of Neuroscience, 34, 11385–11398.PubMedGoogle Scholar
  144. Schmitz, D., Fisahn, A., Draguhn, A., Buhl, E. H., Petrasch-Parwez, E., Dermietzel, R., et al. (2001). Axo-axonal coupling. A novel mechanism for ultrafast neuronal communication. Neuron, 31, 831–840.PubMedGoogle Scholar
  145. Schnitzler, A., & Gross, J. (2005). Normal and pathological oscillatory communication in the brain. Nature Reviews Neuroscience, 6, 285–296.PubMedGoogle Scholar
  146. Schnitzler, A., Timmermann, L., & Gross, J. (2006). Physiological and pathological oscillatory networks in the human motor system. Journal of Physiology-Paris, 99, 3–7.Google Scholar
  147. Scott, L., Feng, J., Kiss, T., Needle, E., Atchison, K., Kawabe, T. T., et al. (2012). Age-dependent disruption in hippocampal theta oscillation in amyloid-β overproducing transgenic mice. Neurobiology of Aging, 33, 1481.e13–1481.e23.Google Scholar
  148. Scott, D. F., Heathfield, K. W., Toone, B., & Margerison, J. H. (1972). The EEG in Huntington’s chorea: A clinical and neuropathological study. Journal of Neurology, Neurosurgery and Psychiatry, 35, 97–102.PubMedCentralPubMedGoogle Scholar
  149. Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62, 42–52.PubMedCentralPubMedGoogle Scholar
  150. Selkoe, D. J. (2002). Alzheimer’s disease is a synaptic failure. Science, 298, 789–791.PubMedGoogle Scholar
  151. Shah, M., & Catafau, A. M. (2014). Molecular imaging insights into neurodegeneration: Focus on tau PET radiotracers. Journal of Nuclear Medicine, 55, 871–874.Google Scholar
  152. Shankar, G. M., Bloodgood, B. L., Townsend, M., Walsh, D. M., Selkoe, D. J., & Sabatini, B. L. (2007). Natural oligomers of the Alzheimer Amyloid-ß protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signalling pathway. Journal of Neuroscience, 27, 2866–2875.PubMedGoogle Scholar
  153. Siegel, M., Donner, T. H., & Engel, A. K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nature Reviews Neuroscience, 13, 121–134.PubMedGoogle Scholar
  154. Simon, A., Traub, R. D., Vladimirov, N., Jenkins, A., Nicholson, C., Whittaker, R. G., et al. (2014). Gap junction networks can generate both ripple-like and fast ripple-like oscillations. European Journal of Neuroscience, 39, 46–60.PubMedCentralPubMedGoogle Scholar
  155. Snyder, E. M., Nong, Y., Almeida, C. G., Paul, S., Moran, T., Choi, E. Y., et al. (2005). Regulation of NMDA receptor trafficking by amyloid-beta. Nature Neuroscience, 8, 1051–1058.PubMedGoogle Scholar
  156. Sperfeld, A. D., Collatz, M. B., Baier, H., Palmbach, M., Storch, A., Schwarz, J., et al. (1999). FTDP-17: An early-onset phenotype with parkinsonism and epileptic seizures caused by a novel mutation. Annals of Neurology, 46, 708–715.PubMedGoogle Scholar
  157. Sperling, R. (2007). Functional MRI studies of associative encoding in normal aging, mild cognitive impairment, and Alzheimer’s disease. Annals of the New York Academy of Sciences, 1097, 146–155.PubMedGoogle Scholar
  158. Sperling, R. A., Dickerson, B. C., Pihlajamaki, M., Vannini, P., LaViolette, P. S., Vitolo, O. V., et al. (2010). Functional alterations in memory networks in early Alzheimer’s disease. Neuromolecular Medicine, 12, 27–43.PubMedCentralPubMedGoogle Scholar
  159. Stam, C. J., van Cappellen van Walsum, A. M., Pijnenburg, Y. A., Berendse, H. W., de Munck, J. C., Scheltens, P., & van Dijk, B. W. (2002). Generalized synchronization of MEG recordings in Alzheimer’s Disease: Evidence for involvement of the gamma band. Journal of Clinical Neurophysiology, 19, 562–574.PubMedGoogle Scholar
  160. Stark, E., Roux, L., Eichler, R., Senzai, Y., Royer, S., & Buzsáki, G. (2014). Pyramidal cell–interneuron interactions underlie hippocampal ripple oscillations. Neuron, 83, 467–480.PubMedCentralPubMedGoogle Scholar
  161. Steriade, M. (2003). The corticothalamic system in sleep. Front. Biosci, 8, d878–d899.PubMedGoogle Scholar
  162. Stoffers, D., Bosboom, J. L., Deijen, J. B., Wolters, E. C., Berendse, H. W., & Stam, C. J. (2007). Slowing of oscillatory brain activity is a stable characteristic of Parkinson’s disease without dementia. Brain, 130, 1847–1860.PubMedGoogle Scholar
  163. Swaab, D. F., Lucassen, P. J., Salehi, A., Scherder, E. J., van Someren, E. J., & Verwer, R. W. (1998). Reduced neuronal activity and reactivation in Alzheimer’s disease. Progress in Brain Research, 117, 343–377.PubMedGoogle Scholar
  164. Terman, D., Rubin, J. E., Yew, A. C., & Wilson, C. J. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. Journal of Neuroscience, 22, 2963–2976.PubMedGoogle Scholar
  165. Thevathasan, W., Pogosyan, A., Hyam, J. A., Jenkinson, N., Foltynie, T., Limousin, P., et al. (2012). Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism. Brain, 135, 148–160.PubMedCentralPubMedGoogle Scholar
  166. Timmermann, L., & Florin, E. (2012). Parkinson’s disease and pathological oscillatory activity: Is the beta band the bad guy? New lessons learned from low-frequency deep brain stimulation. Experimental Neurology, 233, 123–125.PubMedGoogle Scholar
  167. Traub, R. D., Draguhn, A., Whittington, M. A., Baldeweg, T., Bibbig, A., Buhl, E. H., & Schmitz, D. (2002). Axonal gap junctions between principal neurons: A novel source of network oscillations, and perhaps epileptogenesis. Reviews in the Neurosciences, 13, 1–30.PubMedGoogle Scholar
  168. Traub, R. D., & Whittington, M. A. (2010). Cortical oscillations in health and disease. Oxford, New York: Oxford University Press.Google Scholar
  169. Trottenberg, T., Fogelson, N., Kühn, A. A., Kivi, A., Kupsch, A., Schneider, G. H., & Brown, P. (2006). Subthalamic gamma activity in patients with Parkinson’s disease. Experimental Neurology, 200, 56–65.PubMedGoogle Scholar
  170. van der Hiele, K., Jurgens, C. K., Vein, A. A., Reijntjes, R. H., Witjes-Ané, M. N., Roos, R. A., et al. (2007). Memory activation reveals abnormal EEG in preclinical Huntington’s disease. Movement Disorders, 22, 690–695.PubMedGoogle Scholar
  171. van der Zee, J., Sleegers, K., & Van Broeckhoven, C. (2008). Invited article: the Alzheimer disease-frontotemporal lobar degeneration spectrum. Neurology, 71, 1191–1197.PubMedGoogle Scholar
  172. van Deursen, J. A., Vuurman, E. F., van Kranen-Mastenbroek, V. H., & Riedel, W. J. (2008). Increased EEG gamma band activity in Alzheimer’s disease and mild cognitive impairment. J Neural Transm, 115, 1301–1311.PubMedCentralPubMedGoogle Scholar
  173. van Deursen, J. A., Vuurman, E. F., van Kranen-Mastenbroek, V. H., Verhey, F. R., & Riedel, W. J. (2011). 40-Hz steady state response in Alzheimer’s disease and mild cognitive impairment. Neurobiology of Aging, 32, 24–30.PubMedGoogle Scholar
  174. Verret, L., Mann, E. O., Hang, G. B., Barth, A. M., Cobos, I., Ho, K., et al. (2012). Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell, 149, 708–721.PubMedCentralPubMedGoogle Scholar
  175. Villette, V., Poindessous-Jazat, F., Simon, A., Léna, C., Roullot, E., Bellessort, B., et al. (2010). Decreased rhythmic GABAergic septal activity and memory-associated theta oscillations after hippocampal amyloid-beta pathology in the rat. Journal of Neuroscience, 30, 10991–11003.PubMedGoogle Scholar
  176. Vreugdenhil, M., & Toescu, E. C. (2005). Age-dependent reduction of gamma oscillations in the mouse hippocampus in vitro. Neuroscience, 132, 1151–1157.PubMedGoogle Scholar
  177. Wada, Y., Nanbu, Y., Koshino, Y., Yamaguchi, N., & Hashimoto, T. (1998). Reduced interhemispheric EEG coherence in Alzheimer disease: Analysis during rest and photic stimulation. Alzheimer Disease and Associated Disorders, 12, 175–181.PubMedGoogle Scholar
  178. Walsh, D. M., & Selkoe, D. J. (2007). Aβ oligomers—A decade of discovery. Journal of Neurochemistry, 101, 1172–1184.PubMedGoogle Scholar
  179. Weinberger, M., Hutchison, W. D., Lozano, A. M., Hodaie, M., & Dostrovsky, J. O. (2009). Increased gamma oscillatory activity in the subthalamic nucleus during tremor in Parkinson’s disease patients. Journal of Neurophysiology, 101, 789–802.PubMedGoogle Scholar
  180. Wenk, G. L., Zajaczkowski, W., & Danysz, W. (1997). Neuroprotection of acetylcholinergic basal forebrain neurons by memantine and neurokinin B. Behavioural Brain Research, 83, 129–133.PubMedGoogle Scholar
  181. Whittington, M. A., & Traub, R. D. (2003). Interneuron Diversity series: Inhibitory interneurons and network oscillations in vitro. Trends in Neurosciences, 26, 676–682.PubMedGoogle Scholar
  182. Wu, J., Anwyl, R., & Rowan, M. J. (1995). Beta-Amyloid selectively augments NMDA receptor-mediated synaptic transmission in rat hippocampus. Neuroreport, 6, 2409–2413.PubMedGoogle Scholar
  183. Yamamoto, T., & Hirano, A. (1985). Nucleus raphe dorsalis in Alzheimer’s disease: Neurofibrillary tangles and loss of large neurons. Annals of Neurology, 17, 573–577.PubMedGoogle Scholar
  184. Yener, G. G., Emek-Savaş, D. D., Lizio, R., Çavuşoğlu, B., Carducci, F., Ada, E., et al. (2015). Frontal delta event-related oscillations relate to frontal volume in mild cognitive impairment and healthy controls. International Journal of Psychophysiology. doi: 10.1016/j.ijpsycho.2015.02.005.
  185. Yener, G., Güntekin, B., & Başar, E. (2008). Event-related delta oscillatory responses of Alzheimer patients. European Journal of Neurology, 15, 540–547.PubMedGoogle Scholar
  186. Yu, J. T., Chang, R. C., & Tan, L. (2009). Calcium dysregulation in Alzheimer’s disease: From mechanisms to therapeutic opportunities. Progress in Neurobiology, 89, 240–255.PubMedGoogle Scholar
  187. Zempel, H., & Mandelkow, E. M. (2012). Linking amyloid-β and tau: Amyloid-β induced synaptic dysfunction via local wreckage of the neuronal cytoskeleton. Neurodegenerative Diseases, 10, 64–72.PubMedGoogle Scholar
  188. Zhang, S., Han, D., Tan, X., Feng, J., Guo, Y., & Ding, Y. (2012). Diagnostic accuracy of 18 F-FDG and 11 C-PIB-PET for prediction of short-term conversion to Alzheimer’s disease in subjects with mild cognitive impairment. International Journal of Clinical Practice, 66, 185–189.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Volker Nimmrich
    • 1
    • 2
  • Andreas Draguhn
    • 3
  • Nikolai Axmacher
    • 4
    • 5
    Email author
  1. 1.AbbVie Deutschland GmbH & Co. KG, R & DLudwigshafenGermany
  2. 2.Institute of Experimental and Clinical Pharmacology and ToxicologyMedical Faculty Mannheim University of HeidelbergMannheimGermany
  3. 3.Institute for Physiology and PathophysiologyUniversity of HeidelbergHeidelbergGermany
  4. 4.Department of Neuropsychology, Institute of Cognitive NeuroscienceRuhr University BochumBochumGermany
  5. 5.German Centre for Neurodegenerative DiseasesBonnGermany

Personalised recommendations