Skip to main content

Advertisement

Log in

Epigenetic Mechanisms of Rubinstein–Taybi Syndrome

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Rubinstein–Taybi syndrome (RTS) is an incurable genetic disorder with combination of mental retardation and physical features including broad thumbs and toes, craniofacial abnormalities, and growth deficiency. While the autosomal dominant mode of transmission is limitedly known, the majority of cases are attributable to de novo mutations in RTS. The first identified gene associated with RTS is CREB-binding protein (CREBBP/CBP). Alterations of the epigenetic ‘histone code’ due to dysfunction of the CBP histone acetyltransferase activity deregulate gene transcriptions that are prominently linked to RTS pathogenesis. In this review, we discuss how CBP mutation contributes to modifications of histone and how histone deacetylase inhibitors are therapeutically applicable to epigenetic conditioning in RTS. Since most genetic mutations are irreversible and therapeutic approaches are limited, therapeutic targeting of reversible epigenetic components altered in RTS may be an ideal strategy. Expeditious further study on the role of the epigenetic mechanisms in RTS is encouraged to identify novel epigenetic markers and therapeutic targets to treat RTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abel, T., Nguyen, P. V., Barad, M., Deuel, T. A., Kandel, E. R., & Bourtchouladze, R. (1997). Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell, 88(5), 615–626.

    Article  CAS  PubMed  Google Scholar 

  • Abel, T., & Zukin, R. S. (2008). Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Current Opinion in Pharmacology, 8(1), 57–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alarcon, J. M., Malleret, G., Touzani, K., Vronskaya, S., Ishii, S., Kandel, E. R., et al. (2004). Chromatin acetylation, memory, and LTP are impaired in CBP ± mice: A model for the cognitive deficit in Rubinstein–Taybi syndrome and its amelioration. Neuron, 42(6), 947–959.

    Article  CAS  PubMed  Google Scholar 

  • Atkins, C. M., Selcher, J. C., Petraitis, J. J., Trzaskos, J. M., & Sweatt, J. D. (1998). The MAPK cascade is required for mammalian associative learning. Nature Neuroscience, 1(7), 602–609.

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanyam, M., Koteswari, A. A., Kumar, R. S., Monickaraj, S. F., Maheswari, J. U., & Mohan, V. (2003). Curcumin-induced inhibition of cellular reactive oxygen species generation: Novel therapeutic implications. Journal of Biosciences, 28(6), 715–721.

    Article  CAS  PubMed  Google Scholar 

  • Balci, S., Bostanci, S., Ekmekci, P., Cebeci, I., Bokesoy, I., Bartsch, O., et al. (2004). A 15-year-old boy with Rubinstein–Taybi syndrome associated with severe congenital malalignment of the toenails. Pediatric Dermatology, 21(1), 44–47.

    Article  PubMed  Google Scholar 

  • Bannister, A. J., Schneider, R., & Kouzarides, T. (2002). Histone methylation: Dynamic or static? Cell, 109(7), 801–806.

    Article  CAS  PubMed  Google Scholar 

  • Bartholdi, D., Roelfsema, J. H., Papadia, F., Breuning, M. H., Niedrist, D., Hennekam, R. C., et al. (2007). Genetic heterogeneity in Rubinstein–Taybi syndrome: Delineation of the phenotype of the first patients carrying mutations in EP300. Journal of Medical Genetics, 44(5), 327–333.

    Article  CAS  PubMed  Google Scholar 

  • Bartsch, O., Wagner, A., Hinkel, G. K., Krebs, P., Stumm, M., Schmalenberger, B., et al. (1999). FISH studies in 45 patients with Rubinstein–Taybi syndrome: Deletions associated with polysplenia, hypoplastic left heart and death in infancy. European Journal of Human Genetics, 7(7), 748–756.

    Article  CAS  PubMed  Google Scholar 

  • Beluffi, G., Pazzaglia, U. E., Fiori, P., Pricca, P., & Poznanski, A. K. (1987). Oto-palato-digital syndrome. Clinico-radiological study. Radiology Medica, 74(3), 176–184.

    CAS  Google Scholar 

  • Bito, H., Deisseroth, K., & Tsien, R. W. (1996). CREB phosphorylation and dephosphorylation: A Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell, 87(7), 1203–1214.

    Article  CAS  PubMed  Google Scholar 

  • Blough, R. I., Petrij, F., Dauwerse, J. G., Milatovich-Cherry, A., Weiss, L., Saal, H. M., et al. (2000). Variation in microdeletions of the cyclic AMP-responsive element-binding protein gene at chromosome band 16p13.3 in the Rubinstein–Taybi syndrome. American Journal of Medical Genetics, 90(1), 29–34.

    Article  CAS  PubMed  Google Scholar 

  • Bourtchouladze, R., Lidge, R., Catapano, R., Stanley, J., Gossweiler, S., Romashko, D., et al. (2003). A mouse model of Rubinstein–Taybi syndrome: Defective long-term memory is ameliorated by inhibitors of phosphodiesterase 4. Proceedings of the National Academy of Sciences of the United States of America, 100(18), 10518–10522.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caglayan, A. O., Lechno, S., Gumus, H., Bartsch, O., & Fryns, J. P. (2011). A boy with classical Rubinstein–Taybi syndrome but no detectable mutation in the CREBBP and EP300 genes. Genetic Counseling, 22(4), 341–346.

    CAS  PubMed  Google Scholar 

  • Camelo, S., Iglesias, A. H., Hwang, D., Due, B., Ryu, H., Smith, K., et al. (2005). Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 164(1–2), 10–21.

    Article  CAS  PubMed  Google Scholar 

  • Cantani, A., & Gagliesi, D. (1998). Rubinstein–Taybi syndrome. Review of 732 cases and analysis of the typical traits. European Review for Medical and Pharmacological Sciences, 2(2), 81–87.

    CAS  PubMed  Google Scholar 

  • Coupry, I., Monnet, L., Attia, A. A., Taine, L., Lacombe, D., & Arveiler, B. (2004). Analysis of CBP (CREBBP) gene deletions in Rubinstein–Taybi syndrome patients using real-time quantitative PCR. Human Mutation, 23(3), 278–284.

    Article  CAS  PubMed  Google Scholar 

  • Coupry, I., Roudaut, C., Stef, M., Delrue, M. A., Marche, M., Burgelin, I., et al. (2002). Molecular analysis of the CBP gene in 60 patients with Rubinstein–Taybi syndrome. Journal of Medical Genetics, 39(6), 415–421.

    Article  CAS  PubMed  Google Scholar 

  • Demeer, B., Andrieux, J., Receveur, A., Morin, G., Petit, F., Julia, S., et al. (2013). Duplication 16p13.3 and the CREBBP gene: Confirmation of the phenotype. European Journal of Medical Genetics, 56(1), 26–31.

    Article  PubMed  Google Scholar 

  • Devaskar, S. U., & Raychaudhuri, S. (2007). Epigenetics–a science of heritable biological adaptation. Pediatric Research, 61(5 Pt 2), 1R–4R.

    Article  PubMed  Google Scholar 

  • Ferrante, R. J., Ryu, H., Kubilus, J. K., D’Mello, S., Sugars, K. L., Lee, J., et al. (2004). Chemotherapy for the brain: The antitumor antibiotic mithramycin prolongs survival in a mouse model of Huntington’s disease. Journal of Neuroscience, 24(46), 10335–10342.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gardian, G., Browne, S. E., Choi, D. K., Klivenyi, P., Gregorio, J., Kubilus, J. K., et al. (2005). Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. Journal of Biological Chemistry, 280(1), 556–563.

    CAS  PubMed  Google Scholar 

  • Ghosh, A. K., Nagpal, V., Covington, J. W., Michaels, M. A., & Vaughan, D. E. (2012). Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): Differential expression of microRNAs during EndMT. Cellular Signalling, 24(5), 1031–1036.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giles, R. H., Petrij, F., Dauwerse, H. G., den Hollander, A. I., Lushnikova, T., van Ommen, G. J., et al. (1997). Construction of a 1.2-Mb contig surrounding, and molecular analysis of, the human CREB-binding protein (CBP/CREBBP) gene on chromosome 16p13.3. Genomics, 42(1), 96–114.

    Article  CAS  PubMed  Google Scholar 

  • Giussani, C., Selicorni, A., Fossati, C., Ingelmo, P., Canonico, F., Landi, A., et al. (2012). The association of neural axis and craniovertebral junction anomalies with scoliosis in Rubinstein–Taybi syndrome. Childs Nervous System, 28(12), 2163–2168.

    Article  Google Scholar 

  • Grossman, S. R. (2001). p300/CBP/p53 interaction and regulation of the p53 response. European Journal of Biochemistry, 268(10), 2773–2778.

    Article  CAS  PubMed  Google Scholar 

  • Grossman, S. R., Deato, M. E., Brignone, C., Chan, H. M., Kung, A. L., Tagami, H., et al. (2003). Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science, 300(5617), 342–344.

    Article  CAS  PubMed  Google Scholar 

  • Grossman, S. R., Perez, M., Kung, A. L., Joseph, M., Mansur, C., Xiao, Z. X., et al. (1998). p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Molecular Cell, 2(4), 405–415.

    Article  CAS  PubMed  Google Scholar 

  • Gu, W., & Roeder, R. G. (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell, 90(4), 595–606.

    Article  CAS  PubMed  Google Scholar 

  • Haettig, J., Stefanko, D. P., Multani, M. L., Figueroa, D. X., McQuown, S. C., & Wood, M. A. (2011). HDAC inhibition modulates hippocampus-dependent long-term memory for object location in a CBP-dependent manner. Learning and Memory, 18(2), 71–79.

    Article  CAS  PubMed  Google Scholar 

  • Hallam, T. M., & Bourtchouladze, R. (2006). Rubinstein–Taybi syndrome: Molecular findings and therapeutic approaches to improve cognitive dysfunction. Cellular and Molecular Life Sciences, 63(15), 1725–1735.

    Article  CAS  PubMed  Google Scholar 

  • Harth, W., & Linse, R. (2001). Dermatological stigmata in Rubinstein–Taybi syndrome. Hautarzt, 52(10 Pt 2), 977–979.

    CAS  PubMed  Google Scholar 

  • Hennekam, R. C. (2006). Rubinstein–Taybi syndrome. European Journal of Human Genetics, 14(9), 981–985.

    Article  CAS  PubMed  Google Scholar 

  • Hennekam, R. C., Tilanus, M., Hamel, B. C., Voshart-van Heeren, H., Mariman, E. C., van Beersum, S. E., et al. (1993). Deletion at chromosome 16p13.3 as a cause of Rubinstein–Taybi syndrome: Clinical aspects. American Journal of Human Genetics, 52(2), 255–262.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hou, J. W. (2005). Rubinstein–Taybi syndrome: Clinical and molecular cytogenetic studies. Acta Paediatrica Taiwanica, 46(3), 143–148.

    PubMed  Google Scholar 

  • Iyer, N. G., Ozdag, H., & Caldas, C. (2004). p300/CBP and cancer. Oncogene, 23(24), 4225–4231.

    Article  CAS  PubMed  Google Scholar 

  • Kalkhoven, E., Roelfsema, J. H., Teunissen, H., den Boer, A., Ariyurek, Y., Zantema, A., et al. (2003). Loss of CBP acetyltransferase activity by PHD finger mutations in Rubinstein–Taybi syndrome. Human Molecular Genetics, 12(4), 441–450.

    Article  CAS  PubMed  Google Scholar 

  • Kalkhoven, E., Teunissen, H., Houweling, A., Verrijzer, C. P., & Zantema, A. (2002). The PHD type zinc finger is an integral part of the CBP acetyltransferase domain. Molecular and Cellular Biology, 22(7), 1961–1970.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawai, H., Nie, L., Wiederschain, D., & Yuan, Z. M. (2001). Dual role of p300 in the regulation of p53 stability. Journal of Biological Chemistry, 276(49), 45928–45932.

    Article  CAS  PubMed  Google Scholar 

  • Kazantsev, A. G., & Thompson, L. M. (2008). Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nature Reviews. Drug Discovery, 7(10), 854–868.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M. S., Akhtar, M. W., Adachi, M., Mahgoub, M., Bassel-Duby, R., Kavalali, E. T., et al. (2012). An essential role for histone deacetylase four in synaptic plasticity and memory formation. Journal of Neuroscience, 32(32), 10879–10886.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Korzus, E., Rosenfeld, M. G., & Mayford, M. (2004). CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron, 42(6), 961–972.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Suthar, R., Panigrahi, I., & Marwaha, R. K. (2012). Rubinstein–Taybi syndrome: Clinical profile of 11 patients and review of literature. Indian Society of Human Genetics, 18(2), 161–166.

    Article  Google Scholar 

  • Kuwabara, T., Hsieh, J., Nakashima, K., Warashina, M., Taira, K., & Gage, F. H. (2005). The NRSE smRNA specifies the fate of adult hippocampal neural stem cells. Symposium on Nucleic Acids Chemistry, 49, 87–88.

    Article  Google Scholar 

  • Labenne, M., Noir, A., Amsallem, D., Bertrand, A. M., Menget, A., & Burguet, A. (1990). Rubinstein–Taybi syndrome in four cases. Pediatrie, 45(7–8), 471–475.

    CAS  PubMed  Google Scholar 

  • Lee, J., Hagerty, S., Cormier, K. A., Kim, J., Kung, A. L., Ferrante, R. J., et al. (2008). Monoallele deletion of CBP leads to pericentromeric heterochromatin condensation through ESET expression and histone H3 (K9) methylation. Human Molecular Genetics, 17(12), 1774–1782.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J., Hwang, Y. J., Shin, J.-Y., Lee, W.-C., Wie, J., Kim, K. Y., et al. (2013). Epigenetic regulation of cholinergic receptor M1 (CHRM1) by histone H3K9me3 impairs Ca2+ signaling in Huntington’s disease. Acta Neuropathologica, 125, 727–739.

    Article  CAS  PubMed  Google Scholar 

  • Marangi, G., Leuzzi, V., Orteschi, D., Grimaldi, M. E., Lecce, R., Neri, G., et al. (2008). Duplication of the Rubinstein–Taybi region on 16p13.3 is associated with a distinctive phenotype. American Journal of Medical Genetics. Part A, 146A(18), 2313–2317.

    Article  PubMed  Google Scholar 

  • Marks, P. A., Richon, V. M., & Rifkind, R. A. (2000). Histone deacetylase inhibitors: Inducers of differentiation or apoptosis of transformed cells. Journal of the National Cancer Institute, 92(15), 1210–1216.

    Article  CAS  PubMed  Google Scholar 

  • Miller, R. W., & Rubinstein, J. H. (1995). Tumors in Rubinstein–Taybi syndrome. American Journal of Medical Genetics, 56(1), 112–115.

    Article  CAS  PubMed  Google Scholar 

  • Mizuguchi, Y., Specht, S., Lunz, J. G, 3rd, Isse, K., Corbitt, N., Takizawa, T., et al. (2012). Cooperation of p300 and PCAF in the control of microRNA 200c/141 transcription and epithelial characteristics. PLoS ONE, 7(2), e32449.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oike, Y., Takakura, N., Hata, A., Kaname, T., Akizuki, M., Yamaguchi, Y., et al. (1999). Mice homozygous for a truncated form of CREB-binding protein exhibit defects in hematopoiesis and vasculo-angiogenesis. Blood, 93(9), 2771–2779.

    CAS  PubMed  Google Scholar 

  • O’Neil, D. W., Canada, R. T., Clark, M. V., & Lowe, J. W. (1989). Rubinstein–Taybi syndrome: Case report. Pediatric Dentistry, 11(2), 158–160.

    PubMed  Google Scholar 

  • Petrij, F., Giles, R. H., Dauwerse, H. G., Saris, J. J., Hennekam, R. C., Masuno, M., et al. (1995). Rubinstein–Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature, 376(6538), 348–351.

    Article  CAS  PubMed  Google Scholar 

  • Roelfsema, J. H., & Peters, D. J. (2007). Rubinstein–Taybi syndrome: Clinical and molecular overview. Expert Reviews in Molecular Medicine, 9(23), 1–16.

    Article  PubMed  Google Scholar 

  • Rouaux, C., Jokic, N., Mbebi, C., Boutillier, S., Loeffler, J. P., & Boutillier, A. L. (2003). Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. EMBO Journal, 22(24), 6537–6549.

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein, J. H., & Taybi, H. (1963). Broad thumbs and toes and facial abnormalities. A possible mental retardation syndrome. American Journal of Diseases of Children, 105, 588–608.

    Article  CAS  PubMed  Google Scholar 

  • Ryu, H., Lee, J., Hagerty, S. W., Soh, B. Y., McAlpin, S. E., Cormier, K. A., et al. (2006). ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington’s disease. Proceedings of the National Academy of Sciences of the United States of America, 103(50), 19176–19181.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ryu, H., Smith, K., Camelo, S. I., Carreras, I., Lee, J., et al. (2005). Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. Journal of  Neurochemistry, 93(5), 1087–1098.

    Google Scholar 

  • Sakaguchi, K., Herrera, J. E., Saito, S., Miki, T., Bustin, M., Vassilev, A., et al. (1998). DNA damage activates p53 through a phosphorylation–acetylation cascade. Genes and Development, 12(18), 2831–2841.

    Article  CAS  PubMed  Google Scholar 

  • Servillo, G., Della Fazia, M. A., & Sassone-Corsi, P. (2002). Coupling cAMP signaling to transcription in the liver: Pivotal role of CREB and CREM. Experimental Cell Research, 275(2), 143–154.

    Article  CAS  PubMed  Google Scholar 

  • Stefanko, D. P., Barrett, R. M., Ly, A. R., Reolon, G. K., & Wood, M. A. (2009). Modulation of long-term memory for object recognition via HDAC inhibition. Proceedings of the National Academy of Sciences of the United States of America, 106(23), 9447–9452.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sugai, F., Yamamoto, Y., Miyaguchi, K., Zhou, Z., Sumi, H., Hamasaki, T., et al. (2004). Benefit of valproic acid in suppressing disease progression of ALS model mice. European Journal of Neuroscience, 20(11), 3179–3183.

    Article  PubMed  Google Scholar 

  • Suzuki, K. T., Torres, L. C., Sugayama, S. M., Aguiar Alves Bda, C., Moreira-Filho, C. A., & Carneiro-Sampaio, M. (2013). New CBP mutations in Brazilian patients with Rubinstein–Taybi syndrome. Clinical Genetics, 83(3), 291–292.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, Y., Naruse, I., Maekawa, T., Masuya, H., Shiroishi, T., & Ishii, S. (1997). Abnormal skeletal patterning in embryos lacking a single Cbp allele: A partial similarity with Rubinstein–Taybi syndrome. Proceedings of the National Academy of Sciences of the United States of America, 94(19), 10215–10220.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Udaka, T., Kurosawa, K., Izumi, K., Yoshida, S., Tsukahara, M., Okamoto, N., et al. (2006). Screening for partial deletions in the CREBBP gene in Rubinstein–Taybi syndrome patients using multiplex PCR/liquid chromatography. GeneticTesting, 10(4), 265–271.

    Article  CAS  PubMed  Google Scholar 

  • Urdinguio, R. G., Sanchez-Mut, J. V., & Esteller, M. (2009). Epigenetic mechanisms in neurological diseases: Genes, syndromes, and therapies. The Lancet Neurology, 8(11), 1056–1072.

    Article  CAS  Google Scholar 

  • Vecsey, C. G., Hawk, J. D., Lattal, K. M., Stein, J. M., Fabian, S. A., Attner, M. A., et al. (2007). Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB: CBP-dependent transcriptional activation. Journal of Neuroscience, 27(23), 6128–6140.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verhoeven, W. M., Tuinier, S., Kuijpers, H. J., Egger, J. I., & Brunner, H. G. (2010). Psychiatric profile in Rubinstein–Taybi syndrome. A review and case report.Psychopathology, 43(1), 63–68.

    Article  CAS  PubMed  Google Scholar 

  • Vo, N., Klein, M. E., Varlamova, O., Keller, D. M., Yamamoto, T., Goodman, R. H., et al. (2005). A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 102(45), 16426–16431.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wallerstein, R., Anderson, C. E., Hay, B., Gupta, P., Gibas, L., Ansari, K., et al. (1997). Submicroscopic deletions at 16p13.3 in Rubinstein–Taybi syndrome: Frequency and clinical manifestations in a North American population. Journal of Medical Genetics, 34(3), 203–206.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Liu, X., Wu, H., Ni, P., Gu, Z., Qiao, Y., et al. (2010). CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Research, 38(16), 5366–5383.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wiley, S., Swayne, S., Rubinstein, J. H., Lanphear, N. E., & Stevens, C. A. (2003). Rubinstein–Taybi syndrome medical guidelines. American Journal of Medical Genetics. Part A, 119A(2), 101–110.

    Article  PubMed  Google Scholar 

  • Wood, M. A., Kaplan, M. P., Park, A., Blanchard, E. J., Oliveira, A. M., Lombardi, T. L., et al. (2005). Transgenic mice expressing a truncated form of CREB-binding protein (CBP) exhibit deficits in hippocampal synaptic plasticity and memory storage. Learn Memory, 12(2), 111–119.

    Article  Google Scholar 

  • Yagihashi, T., Kosaki, K., Okamoto, N., Mizuno, S., Kurosawa, K., Takahashi, T., et al. (2012). Age-dependent change in behavioral feature in Rubinstein–Taybi syndrome. Congenit Anom (Kyoto), 52(2), 82–86.

    Article  Google Scholar 

  • Yuan, Z. M., Huang, Y., Ishiko, T., Nakada, S., Utsugisawa, T., Shioya, H., et al. (1999a). Function for p300 and not CBP in the apoptotic response to DNA damage. Oncogene, 18(41), 5714–5717.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, Z. M., Huang, Y., Ishiko, T., Nakada, S., Utsugisawa, T., Shioya, H., et al. (1999b). Role for p300 in stabilization of p53 in the response to DNA damage. Journal of Biological Chemistry, 274(4), 1883–1886.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH NS 067283 (H.R.) and Brain Science Flagship Grant (2E24380) (H.R.) from Korea Institute of Science and Technology (KIST).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoon Ryu.

Additional information

Elizabeth Park and Yunha Kim have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, E., Kim, Y., Ryu, H. et al. Epigenetic Mechanisms of Rubinstein–Taybi Syndrome. Neuromol Med 16, 16–24 (2014). https://doi.org/10.1007/s12017-013-8285-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-013-8285-3

Keywords

Navigation