NeuroMolecular Medicine

, Volume 16, Issue 1, pp 137–149 | Cite as

β-Amyloid-evoked Apoptotic Cell Death is Mediated Through MKK6–p66shc Pathway

  • Muneesa Bashir
  • Arif A. Parray
  • Rafia A. Baba
  • Hina F. Bhat
  • Sehar S. Bhat
  • Umar Mushtaq
  • Khurshid I. Andrabi
  • Firdous A. Khanday
Original Paper

Abstract

We have previously shown the involvement of p66shc in mediating apoptosis. Here, we demonstrate the novel mechanism of β-Amyloid-induced toxicity in the mammalian cells. β-Amyloid leads to the phosphorylation of p66shc at the serine 36 residue and activates MKK6, by mediating the phosphorylation at serine 207 residue. Treatment of cells with antioxidants blocks β-Amyloid-induced serine phosphorylation of MKK6, reactive oxygen species (ROS) generation, and hence protected cells against β-Amyloid-induced cell death. Our results indicate that serine phosphorylation of p66shc is carried out by active MKK6. MKK6 knock-down resulted in decreased serine 36 phosphorylation of p66shc. Co-immunoprecipitation results demonstrate a direct physical association between p66shc and WT MKK6, but not with its mutants. Increase in β-Amyloid-induced ROS production was observed in the presence of MKK6 and p66shc, when compared to triple mutant of MKK6 (inactive) and S36 mutant of p66shc. ROS scavengers and knock-down against p66shc, and MKK6 significantly decreased the endogenous level of active p66shc, ROS production, and cell death. Finally, we show that the MKK6–p66shc complex mediates β-Amyloid-evoked apoptotic cell death.

Keywords

β-Amyloid P66shc MKK6 Reactive oxygen species (ROS) Phosphorylation Cell death 

Notes

Acknowledgments

This work was supported in part by the Department of Science and Technology, Govt. of India, No: SR/SO/BB-09/2009 and by the University Grants Commission No F. 17-82/98(SA-I). Work was also supported by FIST (SR/FST/LSI-384/2008) and SAP (F.3-26/2011 (SAP-II) grants awarded to the department by the Department of Science & Technology, Govt. of India, and University Grants Commission, Govt. of India, respectively. We are grateful to Kaikobad Irani, Associate Professor at UPMC, USA, for providing ShRNA of p66shc and SS Andrabi, Fellow at Harvard University, USA, for providing WT p66shc and WT MKK6 plasmids.

Conflict of interest

The authors declare no conflict of interest.

References

  1. Bashir, M., Kirmani, D., Bhat, H. F., Baba, R. A., Hamza, R., Naqash, S., et al. (2010). P66shc and its associate targets are upregulated in esophageal cancers. Cell Communication and Signaling, 8, 13.CrossRefPubMedGoogle Scholar
  2. Brera, B., Serrano, A., & De Ceballos, M. L. (2000). β-amyloid peptides are cytotoxic to astrocytes in culture: A role for oxidative stress. Neurobiology of Disease, 7, 395–405.CrossRefPubMedGoogle Scholar
  3. Canevari, L., Abramov, A. Y., & Duchen, M. R. (2004). Toxicity of amyloid peptide: Tales of calcium, mitochondria, and oxidative stress. Neurochemistry and Research, 29, 637–650.CrossRefGoogle Scholar
  4. Corrêa, S. A. L., & Eales, K. L. (2012). The role of p38 MAPK and its substrates in neuronal plasticity and neurodegenerative diseases. Journal of Signal transduction, 2012, 1–12.CrossRefGoogle Scholar
  5. Cotman, C. W., Whittemore, E. R., Watt, J. A., Anderson, A. J., & Loo, D. T. (1994). Possible role of apoptosis in Alzheimer’s disease. Annuals of New York Acadamy Sciences, 747, 36–49.CrossRefGoogle Scholar
  6. Das, D. K., Maulik, N., & Engelman, R. M. (2004). Redox regulation of angiotensin II signaling in the heart. Journal of Cellular and Molecular Medicine, 8, 144–152.CrossRefPubMedGoogle Scholar
  7. Derijard, B., Raingeaud, J., Barrett, T., Wu, I. H., Han, J., Ulevitch, R. J., et al. (1995). Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science, 267, 682–685.CrossRefPubMedGoogle Scholar
  8. Duyckaerts, C., Potier, M. C., & Delatour, B. (2008). Alzheimer disease models and human neuropathology: Similarities and differences. Acta Neuropathologica, 115, 5–38.CrossRefPubMedCentralPubMedGoogle Scholar
  9. Ferrer, I., Gomez-Isla, T., Puig, B., Freixes, M., Ribe, E., Dalfo, E., et al. (2005). Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer’s disease and tauopathies. Current Alzheimer Research, 2, 3–18.CrossRefPubMedGoogle Scholar
  10. Glenner, G. G., Wong, C. W., Quaranta, V., & Eanes, E. D. (1984). The amyloid deposits in Alzheimer’s disease: Their nature and pathogenesis. Applied Pathology, 2, 357–369.PubMedGoogle Scholar
  11. Hashimoto, Y., Tsuji, O., Niikura, T., Yamagishi, Y., Ishizaka, M., Kawasumi, M., et al. (2003). Involvement of c-Jun N-terminal kinase in amyloid precursor protein-mediated neuronal cell death. Journal of Neurochemistry, 84, 864–877.CrossRefPubMedGoogle Scholar
  12. Harraz, M. M., Park, A., Abbott, D., Zhou, W., Zhang, Y., & Engelhardt, J. F. (2007). MKK6 phosphorylation regulates production of superoxide by enhancing Rac GTPase activity. Antioxidants & Redox Signaling, 9, 1803–1813.CrossRefGoogle Scholar
  13. Hartmann, T., Bieger, S. C., Brühl, B., Tienari, P. J., Ida, N., Allsop, D., et al. (1997). Distinct sites of intracellular production for Alzheimer’s disease Aβ40/42 amyloid peptides. Nature Medicine, 3, 1016–1020.CrossRefPubMedGoogle Scholar
  14. Hensley, K., Floyd, R. A., Zheng, N. Y., Nael, R., Robinson, K. A., Nguyen, X., et al. (1999). p38 kinase is activated in the Alzheimer’s disease brain. Journal of Neurochemistry, 72, 2053–2058.CrossRefPubMedGoogle Scholar
  15. Holscher, C. (1998). Possible causes of Alzheimer’s disease: Amyloid fragments, free radicals, and calcium homeostasis. Neurobiology Disease, 5, 129–141.CrossRefGoogle Scholar
  16. Hooper, C., Killick, R., & Lovestone, S. (2008). The GSK3 hypothesis of Alzheimer’s disease. Journal of Neurochemistry, 104, 1433–1439.CrossRefPubMedCentralPubMedGoogle Scholar
  17. Hsu, M. J., Hsu, C. Y., Chen, B. C., Chen, M. C., Ou, G., & Lin, C. H. (2007). Apoptosis signal-regulating kinase 1 in amyloid β peptide-induced cerebral endothelial cell apoptosis. Journal of Neuroscience, 27(21), 5719–5729.CrossRefPubMedGoogle Scholar
  18. Iversen, L. L., Mortishire-Smith, R. J., Pollack, S., & Shearman, M. S. (1995). The toxicity in vitro of β-amyloid protein. Biochemical Journal, 311, 1–16.PubMedGoogle Scholar
  19. Jin, Y., Fan, Y., Yan, E. Z., Liu, Z., Zong, Z. H., & Qi, Z. M. (2006). Effects of sodium ferulate on amyloid-beta-induced MKK3/MKK6-p38 MAPK-Hsp27 signal pathway and apoptosis in rat hippocampus. Acta Pharmacologica Sinica, 27, 1309–1316.CrossRefPubMedGoogle Scholar
  20. Kalaria, R. N. (1999). Microglia and Alzheimer’s disease. Current Opinion in Hematology, 6, 15–24.CrossRefPubMedGoogle Scholar
  21. Kadowaki, H., Nishitoh, H., Urano, F., Sadamitsu, C., Matsuzawa, A., Takeda, K., et al. (2005). Amyloid beta induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death and Differentaition, 12, 19–24.CrossRefGoogle Scholar
  22. Kawahara, M., & Kuroda, Y. (2000). Molecular mechanism of neurodegeneration induced by Alzheimer’s β-Amyloid protein: Channel formation and disruption of calcium homeostasis. Brain Research Bulletin, 53, 389–397.CrossRefPubMedGoogle Scholar
  23. Khanday, F. A., Santhanam, L., Kasuno, K., Yamamori, T., Naqvi, A., Dericio, J., et al. (2006a). SOS-mediated activation of Rac1 by p66shc. Journal of Cell Biology, 172, 817–822.CrossRefPubMedGoogle Scholar
  24. Khanday, F. A., Yamamori, T., Singh, I. M., Zhang, Z., Bugayenko, A., Naqvi, A., et al. (2006b). Rac1 Leads to Phosphorylation-dependent increase in stability of the p66shc adaptor protein: Role in rac1-induced oxidative stress. Molecular Biolpgy of Cell, 17, 122–129.CrossRefGoogle Scholar
  25. Le, S., Connors, T. J., & Maroney, A. C. (2001). c-Jun N-terminal kinase specifically phosphorylates p66ShcA at serine 36 in response to ultraviolet irradiation. Journal of Biological Chemistry, 276, 48332–48336.PubMedGoogle Scholar
  26. Lee, D. H., & Wang, H. Y. (2003). Differential physiologic responses of alpha7 nicotinic acetylcholine receptors to β-amyloid1–40 and β-amyloid1–42. Journal of Neurobiology, 55, 25–30.CrossRefPubMedGoogle Scholar
  27. Lee, M., You, H. J., Cho, S. H., Woo, C. H., Yoo, M. H., & Joe, E. H. (2000). Implication of the small GTPase Rac1 in the generation of reactive oxygen species in response to β-amyloid in C6 astroglioma cells. Biochemistry Journal, 366, 937–943.Google Scholar
  28. Li, X. D., & Buccafusco, J. J. (2003). Effect of β-Amyloid peptide 1-42 on the cytoprotective action mediated by alpha7 nicotinic acetylcholine receptors in growth factor-deprived differentiated PC-12 cells. Journal of Pharmacological Experimental Therapy, 307, 670–675.CrossRefGoogle Scholar
  29. Luzi, L., Confalonieri, S., Di Fiore, P. P., & Pelicci, P. G. (2000). Evolution of Shc functions from nematode to human. Current Opinion in Genetics & Development, 10, 668–674.CrossRefGoogle Scholar
  30. Mattson, M. P. (2002). Oxidative stress, perturbed calcium homeostasis, and immune dysfunction in Alzheimer’s disease. Journal of Neurovirology, 8, 539–550.CrossRefPubMedGoogle Scholar
  31. Mattson, M. P., Barger, S. W., Cheng, B., Lieberburg, I., Smith-Swintosky, V. L., & Rydel, R. E. (1993). Β-Amyloid precursor protein metabolites and loss of Ca homeostasis in Alzheimer’s disease. Trends in Neuroscience, 16, 409–414.CrossRefGoogle Scholar
  32. Mattson, M. P., & Chan, S. L. (2003). Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium, 34, 385–397.CrossRefPubMedGoogle Scholar
  33. Migliaccio, E., Giorgio, M., Mele, S., Pelicci, G., Reboldi, P., Pandolfi, P. P., et al. (1999). The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature, 402, 309–313.CrossRefPubMedGoogle Scholar
  34. Nagele, R. G., D’Andrea, M. R., Lee, H., Venkataraman, V., & Wang, H. Y. (2003). Astrocytes accumulate Aβ42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Reearch, 971, 197–209.CrossRefGoogle Scholar
  35. Nebreda, A. R., & Porras, A. (2000). p38 MAP kinases: Beyond the stress response. Trends in Biochemical Sciences, 25, 257–260.CrossRefPubMedGoogle Scholar
  36. Nemoto, S., & Finkel, T. (2002). Redox regulation of forkhead proteins through a p66shc dependent signaling pathway. Science, 291, 2450–2452.CrossRefGoogle Scholar
  37. Okada, S., Kao, A. W., Ceresa, B. P., Blaikie, P., Margolis, B., & Pessin, J. E. (1997). The 66-kDa Shc isoform is a negative regulator of the epidermal growth factor-stimulated mitogen activated protein kinase pathway. Journal of Biological Chemistry, 272, 28042–28049.CrossRefPubMedGoogle Scholar
  38. Pacini, S., Pellegrini, M., Migliaccio, E., Patrussi, L., Ulivieri, C., Ventura, A., et al. (2004). SHC promotes apoptosis and antagonizes mitogenic signaling in T cells. Molecular and Cellular Biology, 24, 1747–1757.CrossRefPubMedCentralPubMedGoogle Scholar
  39. Pagani, L., & Eckert, A. (2010). Amyloid-Beta Interaction with Mitochondria. International Journal of Alzheimer’s Disease, 2011, 1–12.CrossRefGoogle Scholar
  40. Pelicci, G., Lanfrancone, L., Grignani, F., McGlade, J., Cavallo, F., Forni, G., et al. (1992). A novel transforming protein (SHC) within SH2 domain is implicated in mitogenic signal transduction. Cell, 70, 93–104.CrossRefPubMedGoogle Scholar
  41. Pike, C. J., Overman, M. J., & Cotman, C. W. (1995). Amino-terminal deletions enhance aggregation of β-amyloid peptides in vitro. Journal of Biological Chemistry, 270, 23895–23898.CrossRefPubMedGoogle Scholar
  42. Purdom, S., & Chen, Q. M. (2003). P66(Shc): At the crossroad of oxidative stress and the genetics of aging. Trends in Molecular Medicine, 9, 206–210.CrossRefPubMedGoogle Scholar
  43. Rodriguez, J. J., Witton, J., Olabarria, M., Noristani, H. N., & Verkhratsky, A. (2010). Increase in the density of resting microglia precedes neuritic plaque formation and microglial activation in a transgenic model of Alzheimer’s disease. Cell Death and Disease, 1, 1–6.CrossRefGoogle Scholar
  44. Ryder, J., Su, Y., & Ni, B. (2004). Akt/GSK3β serine/threonine kinases: Evidence for a signalling pathway mediated by familial Alzheimer’s disease mutations. Cellular Signaling, 16, 187–200.CrossRefGoogle Scholar
  45. Selkoe, D. J. (1994). Alzheimer’s disease: A central role for amyloid. Journal of Neuropathology and Experimental Neurology, 53, 438–447.CrossRefPubMedGoogle Scholar
  46. Selkoe, D. J. (1999). Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature, 399(Supp), A23–A31.CrossRefPubMedGoogle Scholar
  47. Smith, W. W., Norton, D. D., Gorospe, M., Jiang, H., Nemoto, S., Holbrook, N. J., et al. (2005). Phosphorylation of p66Shc and forkhead proteins mediates Aβ Toxicity. Journal of Cell Biology, 169, 331–338.CrossRefPubMedGoogle Scholar
  48. Smith, W. W., Gorospe, M., & Kusiak, J. W. (2006). Signaling Mechanisms Underlying A beta Toxicity: Potential Therapeutic Targets for Alzheimer’s Disease. CNS Neurological Disordors-Drug Targets, 5, 355–361.CrossRefGoogle Scholar
  49. Spuch, C., Ortolano, S., & Navarro, C. (2012). New insights in the amyloid-beta interaction with mitochondria. Journal of Aging and Research, 2012, 324968.CrossRefGoogle Scholar
  50. Stein, B., Brady, H., Yang, M. X., Young, D. B., & Barbosa, M. S. (1996). Cloning and characterization of MEK6 a novel member of the mitogen activated protein kinase kinase cascade. Journal of Biological Chemistry, 271, 11427–11433.CrossRefPubMedGoogle Scholar
  51. Strooper, B. D., & Annaert, W. (2000). Proteolytic processing and cell biological functions of the amyloid precursor protein. Journal of Cell Sciences, 113, 1857–1870.Google Scholar
  52. Sturchler, E., Feurstein, D., McDonald, P., & Duckett, D. (2010). Mechanism of oxidative stress-induced ASK1-catalyzed MKK6 phosphorylation. Biochemistry, 49, 4094–4102.CrossRefPubMedGoogle Scholar
  53. Su, B., Wang, X., Nunomura, A., Moreira, P. I., Lee, H., Perry, G., et al. (2008). Oxidative Stress Signaling in Alzheimer’s Disease. Current Alzheimer Research, 5, 525–532.CrossRefPubMedCentralPubMedGoogle Scholar
  54. Tare, M., Modi, R. M., Nainaparampil, J. J., Puli, O. R., Bedi, S., Fernandez-Funez, P., et al. (2011). Activation of JNK signaling mediates amyloid-ss-dependent cell death. PLoS One, 6, e24361.CrossRefPubMedCentralPubMedGoogle Scholar
  55. Tong, L., Thornton, P. L., Balazs, R., & Cotman, C. W. (2001). β-amyloid-(1–42) impairs activity-dependent cAMP-response element-binding protein signaling in neurons at concentrations in which cell survival is not compromised. Journal of Biological Chemistry, 276, 17301–17306.CrossRefPubMedGoogle Scholar
  56. Wang, H. Y., Lee, D. H., D’Andrea, M. R., Peterson, P. A., Shank, R. P., & Reitz, A. B. (2000). β-Amyloid(1–42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. Journal Biological Chemistry, 275, 5626–5632.CrossRefGoogle Scholar
  57. Yankner, B. A., Dawes, L. R., Fisher, S., Villa-Komaroff, L., Oster-Granite, M. L., & Neve, R. L. (1989). Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science, 245, 417–420.CrossRefPubMedGoogle Scholar
  58. Zhu, X., Ogawa, O., Wang, Y., Perry, G., & Smith, M. A. (2003). JKK1, an upstream activator of JNK/SAPK, is activated in Alzheimer’s disease. Journal of Neurochemistry, 85, 87–93.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Muneesa Bashir
    • 1
  • Arif A. Parray
    • 1
  • Rafia A. Baba
    • 1
  • Hina F. Bhat
    • 1
  • Sehar S. Bhat
    • 1
  • Umar Mushtaq
    • 1
  • Khurshid I. Andrabi
    • 1
  • Firdous A. Khanday
    • 1
  1. 1.Department of BiotechnologyUniversity of KashmirSrinagarIndia

Personalised recommendations